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Analysis of resistance to bending 
of metal electroconductive layers 
deposited on textile composite 
substrates in pVD process
ewa Korzeniewska  1 ✉, Gilbert De Mey2, Ryszard pawlak1 & Zbigniew Stempień3

in the article a description of the behaviour of metallic layers created in the process of physical vacuum 
deposition on a composite textile substrates during their cyclical bending process is presented. either 
the results of experimental research or the theoretical considerations of changes in the structure 
resistance as a function of the number of fatigue cycles are presented. It was confirmed mathematically 
that at the beginning of the bending process, in the case of a small number of bends, single cracks 
appear on the surface of the layer. After exceeding a certain number of bends, the nature of defects 
on the surface of the layer changes and the dominating mechanism of changes is the widening and 
elongation of already existing cracks. It has been confirmed mathematically that changes in resistance 
in these cases depend respectively on the number of bending cycles and next on quadratic value of 
number of cycles. A correspondence between the mathematical description and experimental results 
was obtained.

Traditional electronic devices are usually constructed on rigid substrates that, if bent or twisted, have a signifi-
cant impact on the electronic function of the built-on systems and can even lead to destruction. Change of the 
substrate to plastic or foil enabling bending or twisting of electrically conductive layers. The elastic electronics is 
characterized by that feature. Elements of flexible electronics are composed of two layers: a thin passive substrate, 
e.g. plastic, and from the second functional layer of an electronic element. When a flexible substrate is made of 
woven fabrics, the term “textile electronics” or textronic is used for those types of systems1. Flexible electronics 
could fill in the gap in some applications such as flexible displays, solar cells. It is used for the production of plastic 
keyboards as well as electronic labels that protect clothing against theft. The area of elastic electronics usage can 
also be increased to produce conductive circuits, textile antennas or passive components of electronic circuits. 
Such systems are used in clothing worn where measurement and control functions are important (temperature, 
humidity, pressure, kinematic analysis and motion sensors, responses rate monitoring, sensor for cardiac activity, 
biosensors, etc.)2–5. The potential impact of textronics in the field of health protection is significant. Risk assess-
ment and diagnosis will be faster and treatment will be more effective6,7.

The production of elastic electronics is possible in spray coating processes using carbon nanotubes, graphene 
flakes or nanofibers, electroless plating, sputtering, physical vacuum deposition, plasma coating or digital print-
ing4,8–13. To fabricate the electroconducting elements on or in textile substrates the varied methods are usu-
ally used: the embroidery14, dip coating15, electrospinning16, electroless plating17,18, ink-jet or screen printing 
method19,20, thin metallic wires or yarns3, metal-coated fibres21,22, conductive fibers produced by doping intrinsi-
cally conductive polymers23, the fibers with metallic core and the outer polymer coating, and even with the liquid 
metal core24, sputtering25–27 or chemical and physical vacuum deposition2,7. The 3D printing method is also used 
to direct deposition of electroconductive architectures on textiles. The most common polymer 3D printing tech-
nique currently is fused deposition. In this technique, a spool of thermoplastic filament, commonly acrylonitrile 
butadiene styrene (ABS) or poly(lactic acid) (PLA) is fed to a heating element, which melts the plastic, and forces 
it out of a nozzle onto a build surface. With the aid of a machine, the plastic is deposited in thin strands that slowly 
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builds up into a 3D shape. For example using that technique Changyong with the group fabricates the tactile sen-
sors28 or Zhang et al. printed a supercapacitor textile for energy storage29.

In flexible and printed electronics 2D structures dominate, e.g. resistors, conductive coils and con-
tacts2,3,13,15,30,31. Such structures were sporadically produced using PVD.

Each technique requires different process controlling and monitoring. PVD is one of the environmental 
friendly method in which no chemical reactions take place, the thin films with high purity can be obtained as 
well the different shapes of layers could be created using the metals characterized with the best electroconductive 
properties. Using that method it is relatively easy to create gold, silver or copper layers. It should be also noted that 
PVD can be preferred in those cases where it is particularly important to achieve the intended shapes and electri-
cal parameters. Due to the usage of the physical vacuum deposition technology, flexible layers of small thickness 
can be obtained that do not cause additional stiffening of the substrate.

Limitations of the PVD method result from insufficient adhesion of deposited layers resulting from the prop-
erties of the substrate material, unstable surface morphology in the case of textile materials. It can result in a lack 
of electrical conductivity in a larger area. The right choice of layer material can be crucial for the reactive inkjet 
printing process, were different chemical processes occur31,32. In such case, the deposition of gold layers is only 
acceptable solution. The production of thin electrically conductive gold layers in the PVD process is then eco-
nomically justified.

Smart textiles are the dominant trend in the textiles development, in particular of wearable electronics33. 
However, the production of intelligent textronic systems is now becoming a reality based on the successful syn-
ergy of conventional textile with other fields of science, such as materials science, communication technology, 
electronics and data processing. The combination of electronics and textile substrates requires the flexibility of the 
produced circuits and creation of functional thin layers on flexible substrates34. The electrical properties depends 
not only on thickness or the type of deposited metal but also on homogeneity of the layers35.

One of the basic conditions of using textronic systems is their mechanical resistance to bending or stretch-
ing36–39. The fatigue strength properties of thin metallic layers created on polymer substrates (films) have been 
studied so far due to their usage in flexible electronics40–44. There are few literature reports regarding fatigue 
tests of conductive layers on textile materials45. Theoretically, it has been shown that if the layer is well com-
bined with the polymer substrate, the locally generated elongation is suppressed by the substrate and the metal 
layer can evenly deform far beyond the strength range. However, in the case of delamination, the layer becomes 
free-standing and breaks at much lower stresses than when it was integrated with the substrate40. In most cases 
described in the literature, thin Cu layers on polymeric substrates are investigated. The dependence of the char-
acter of fatigue damages and fatigue life on the thickness of the layer has been demonstrated41. The results of 
research allowed to determine the approximate limit of the layer thickness of about 100 nm, which delimits other 
mechanisms of fatigue destruction42. Above this thickness, as a result of dislocation slip, extrusion and intrusion 
pairs are created, which initiate microcracks. Below 100 nm, the stresses are so great that cracks can be initiated by 
structure defects or grain boundaries. To determine the fatigue strength, the measurement of the resistance of the 
samples is used. In paper42, it was shown that the relative change in sample resistance in a long bending cycle can 
be approximated by two intersecting straight lines, and the intersection defines fatigue strength and corresponds 
to the number of bending cycles at which the microcracks initiate.

Against the background of the conducted research in the area of the fatigue strength of thin layers, it is impor-
tant to understand the behaviour of metallic structures created in the process of physical vacuum deposition on 
a flexible composite substrate. This article attempts to describe the mathematical changes in the resistance of 
structures depending on the number of bending cycles.

Materials and Methods
Materials. In the presented research the electroconductive layers were formed on composite textile sub-
strates during the physical vacuum deposition process. Elastic composite materials commercially named Cordura 
(Miranda Ltd Poland, surface mass 250 g/m2) and PTFE membrane (DEVA F-M, s.r.o., Czech Republic, surface 
mass 130 g/m2) were used as substrates. Cordura is a material made of nylon threads covered in the lamination 
process with polyurethane film. This material belongs to the group of the most resistant to environmental factors 
and the propagation of accidental damage. It is used for the production of outdoor equipment and for the produc-
tion of utility fabrics for special services. The PTFE membrane is made of non-woven fabric on which a thin layer 
of Teflon film has been stretched. Additionally nanofibers were embedded in the composite production process 
on the top of PTFE layer. This kind of material is used as water and windproof, primarily in top sports clothing.

Silver and gold with a purity of 99.99% were used as the material vaporized from the tungsten boats used as 
a thermal resistance source. Metals with the required purity have been provided by the Mennica-Metale Ltd., 
Poland.

pVD process. The process of thin electroconductive layers producing was carried out using physical vacuum 
deposition technology in the chamber of Classic 250 Pfeiffer Vacuum System. The process was carried out after 
reaching the initial vacuum of 5 × 10−5 mbar and lasted 5 minutes. The required geometry of the samples, with 
the dimensions presented in Fig. 1, was obtained by using previously prepared masks. The mask was created 
with 3D printer with varied thickness to minimize the shadow effect of masking and to obtain the homogeneous 
thickness of the thin film.

However, such treatment is not fully profitable due to the shading of the substrate and consequently the het-
erogeneous thickness of the applied metal. The use of even a thin mask (below 0,5 mm) does not eliminate com-
pletely this phenomenon. Therefore, the authors used a thin mask (thickness 0.3 mm) to minimize the mentioned 
effect. For even better fulfillment of the condition of creating the desired geometry of the structures, the authors 
suggest the usage of laser ablation in the layer deposited on a large surface in the massless process.
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To determine the thickness of the metal layer, in the same process, a reference glass was placed next to the 
substrate. Metal layer was also applied on that glass. Next, using the Dektak 3ST profilometer, the thickness of 
the applied electrically conductive layers was measured (Fig. 2). To explain the phenomena of the dependence 
of relative change in the sample resistance on the number of bending cycles, the thickness of the layer could be 
considered as the even and it was 230 nm for Au (Fig. 2a) and 250 nm for Ag (Fig. 2b).

Due to the mechanism of layer creating in the physical vacuum deposition process, it is difficult to obtain the 
same electrical parameters of the deposited layers each time. The parameters of the metal vapour stream, which 
mainly result from the temperature and its distribution in the evaporation source (which is not point-like) and 
the amount of material subjected to evaporation play the decisive role. Even controlling the temperature of the 
evaporation source by pyrometric measurements will not ensure perfect repeatability.

Bending Resistance tests
Therefore, the presented test results relate to the average values of 20 measurement series. The method of cyclic 
bending was used to test the mechanical strength of the layers, because it reflects well the real working conditions 
of textronic systems. The idea of measurement is presented in Fig. 3a45. The material sample was fixed in the 
clamps. One of them was capable of pivoting by an angle of 2α = 90 °. It was important that the axis of rotation 
of the movable clamp coincides with the edge of the sample fastening. In each cycle, when the deflection angle is 

Figure 1. The geometry and structure dimensions of test structure created in the PVD process on textile 
substrates, 1,2 - current electrodes, 3,4 - voltage electrodes”.

Figure 2. The part of the profile plot of obtained (a) gold (b) silver thin films.

Figure 3. Cyclic bending test: (a) measurement idea; (b) view of the stand.
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0 °, the sample resistance was measured with a Picotest M3500A ohmmeter. The view of the test bench is shown 
in Fig. 3b.

The silver layers were subjected to 200 bending cycles. Regardless of the used substrate, after exceeding this 
number of bends, no continuity of the conducting layer was observed. The different behaviour of resistance dur-
ing bending cycles was observed in the case of gold layers. Because they are more resistant to fatigue tests, they 
were subjected to 1500 bending cycles on the Cordura substrate and 50000 ones on the Membrane.

experimental Results
The results of fatigue tests are shown in Fig. 4 in the form of graphs where dependence of relative change of the 
sample resistance on the number of bending cycles are presented. The fatigue strength of the tested layers should 
be assessed positively. Taking into account the stringent test conditions (high bending stresses - bending about 
90°), the sample resistance increased several times after several hundred or several thousand cycles45,46. The pre-
sented test results relate to the average values of 20 measurement series.

The nature of the resistance changes for the Ag layers and the Au layers on the Cordura substrate is similar 
and typical for the behaviour of the metallic layers created on the flexible substrate. The resistance of the Au layers 
produced on Membrane varied differently. However, in this case it was a very small change of 45% of the initial 
resistance value up to 50000 cycles. The plot presented in Fig. 4d shows only the linear dependence of relative 
resistance thin film created on Membrane on number of bending cycles. This kind of phenomena was observed 
till the end of the conducted test (i.e. 50000 cycles).

Unambiguous criteria (standards) for the evaluation of the results of such tests do not exist, however, accord-
ing to the authors, it can be assumed that a 10-fold increase in the layer resistance would be in that research 
acceptable. However, it should be noticed that the assumed criterion should not be define as an acceptance limit 
in each case. In some applications 10-fold increase in the layer resistance could be accepted but in some other not. 
For example, when these type of layers will be used as the sensor electrodes and the resistance of active sensor 
layer will be much higher than the resistance of electrodes, 10-fold increase in the layer (electrodes) resistance 
could be accepted. However, when these type of layers will be e.g. used as the current collectors in supercapacitor, 
increase in the layer resistance could limit its performance due to rise of the supercapacitor serial resistance and 
therefore 10-fold limit would be unacceptable. Because the resistance of the tested layers are characterized by the 
very small initial value, the authors arbitrary assumed the 10-fold increase in the layer resistance as the good limit 
value. Using this criterion, the Ag layers on Cordura would survive 120 cycles and 180 cycles on the Membrane. 
The Au layers created on Cordura would meet this criterion up to 1400 cycles. All changes in resistance at the 

Figure 4. Relative change of resistance of test structures subjected to cyclic bending.
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initial stage were linear (in Fig. 4 they were marked in blue), while the number of cyclic bends increased, the 
relative change in resistance of the samples changes according to the quadratic function (in Fig. 4 marked in red).

The differences of the silver and gold layers resistance to bending stress results both from the properties of 
the used substrate and kind of the applied metal. Cordura is a material with less elasticity resulting from both the 
threads used to make it and from the polyurethane layer (thickness about 100 μm47) being the direct substrate 
for the applied metal layer. Non-woven threads that are a basic component of the Membrane textile composite 
on which Teflon film has been stretched are thinner and more flexible than the nylon ones which are the part of 
the Cordura fabric.

Furthermore in the case of the Membrane the metallic layers were characterized by greater adhesion to the 
substrate due to the presence of microfibers on the surface of the substrate. For this reason, embedded metal lay-
ers were associated with this substrate to a much greater extent. The differences in the properties of the substrates 
explain the behaviour of metallic layers in bending cycles (cf. Figure 4a,c Cordura and Fig. 4b,d Membrane). 
Research on layer adhesion will be the subject of separate considerations.

According to the authors, the difference in resistance to bending of the tested films results also from the vari-
ous properties of deposited metals. Gold is the most malleable of all metals so it is also a metal of greater plasticity 
than silver. Gold hardness is 2.5 on the Mohs scale and the value for silver is a little higher and equals 2.5-3. All 
features mentioned above contribute to the differences observed between the plots presented in Fig. 4a,b (silver 
layers) and in Fig. 4c,d (gold layers).

Observations of the surface of the test samples were carried out using the Optical SZ 630-T optical microscope 
with a magnification of 60×. The obtained microscopic images are presented in Fig. 5a,b,d,f,g,i. Observations 
were also carried out using the SEM microscope. The images supplement the information obtained with the 
optical ones. They were obtained with the Hitachi S-4200 scanning microscope and are shown in Fig. 5c,e,h,j.

The microscopic images presented in Fig. 5 show the structure of the silver layer applied to the Membrane (5a-
5e) and Cordura (5f-5j) composite substrates. In pictures b), c) and g), h) single cracks appear in the first phase of 
the bending process. At a later stage, numerous cracks appear with different widths and distances between each 
other (Fig. 5d,e,i,j). Their nature varies depending on the used substrate and depends on its flexibility. More minor 
changes in the wide field are observed on Cordura. The cracks on the Membrane are deeper and less frequent.

theoretical Analysis
The theoretical analysis will provide an explanation for the experimentally observed phenomena. For a low num-
ber N or fatigue cycles, the global electric resistance of the sample varies linearly with N or R ~ N (Fig. 4). For 
larger values of N, a quadratic relationship R ~ N2 is observed (Fig. 4). One may wonder whether this is a pure 
coincidence or is there more behind it? Anyway, the theoretical analysis will prove that a linear or a quadratic 
relationship can be obtained.

As shown in the photographs (Fig. 5), cracks occur at the moving clamp. To analyse this problem theoreti-
cally, one has to calculate the electric resistance of a rectangular sheet having a crack at one contact, which will 
obviously be the moving contact. Hence, one has to find the potential distribution in the sheet. The latter will be 
done with a variational technique. Although this is an approximate method, it has proved to be very efficient for 
the evaluation of resistance and capacitance values48. First of all the calculation will be presented in detail for one 
single crack. Then the results will be extended for multiple but non overlapping cracks.

The purpose of this theoretical analysis is not to provide a complete modelling of the fatigue process. This 
should require that a lot of parameters have to be taken into account: bending angle, number of cycles, thickness 
non uniformity, changes of material properties in the neighbourhood of a crack due to the exerted tensile forces. 
The purpose of the theoretical analysis is just to prove that the electric resistance of the samples changes with 
the number of bending cycles N in a linear and/or quadratic way. Although this is a huge simplification of the 
fatigue process, it offers the advantage that a simple analytical calculation can be provided. To take into account 
the number of bending cycles, it is assumed that either a crack becomes longer during each cycle or a new crack 
is generated.

In a previous published paper48, a similar problem was solved using conformal mapping techniques. Although 
this is an exact analysis, it turned out to be quite complicated. Moreover, a mathematical exact analysis is not 
necessary taking into account the large variations of the experimental results.

Variational approach. In order to calculate the resistance of a thin layer, one has to evaluate the potential 
distribution φ. Once this job is done, one can find the total current I0 for a given applied voltage V0. The resistance 
is then easily found as R = V0/I0. In order to find the potential distribution φ(x, y) one has to solve the Laplace 
equation:

0 (1)2φ∇ =

for the geometry shown in Fig. 6, showing a rectangular shaped resistor without any cracks. At the metallic con-
tacts AB and CD, the potential is known:

V at AB (2)0φ =

at CD0 (3)φ =

At the free boundaries BC and DA, i.e. any boundary making contact with a non conducting medium, one has 
to apply the Neumann boundary condition or the normal derivative should vanish:
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Figure 5. Microscopic images of the surface of samples with thin Ag layer subjected to cyclic bending stress. 
(a) Membrane substrate before bending process - optical microscopy. (b) Membrane substrate after 10 bending 
cycles with single crack - optical microscopy. (c) Membrane substrate after 10 bending cycles with single crack 
- SEM microscopy. (d) Membrane substrate after 100 bending cycles with multi cracks - optical microscopy. (e) 
Membrane substrate after 100 bending cycles with multi cracks - SEM microscopy. (f) Cordura substrate before 
bending process - optical microscopy. (g) Cordura substrate after 10 bending cycles with single crack - optical 
microscopy. (h) Cordura substrate after 10 bending cycles with single crack - SEM microscopy. (i) Cordura 
substrate after 10000 bending cycles with multi cracks - optical microscopy. (j) Cordura substrate after 10000 
bending cycles with multi cracks - SEM microscopy.
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n
at BC and DA0 (4)

φ∂
∂

=

The Eq. (1) with the boundary conditions (2), (3) and (4) can be solved analytically or numerically. Here we 
will present an approximate analytical method based on the so called variational approach.

The variational method starts with the evaluation of the following functional:

J dS[ ] (5)S

2∫ ∫ φ= ∇

where S denotes the surface of the resistive layer. It has been proved mathematically that the functional J reaches 
its extreme value if one inserts a function φ in (5) which satisfies the Laplace’ Eq. (1). The variational approach 
can also be used as an approximation. One inserts a trial function φtrial in (5). φtrial satisfies all the boundary con-
ditions (2), (3) and (4) but not necessarily the Eq. (1). Usually parameters are included in the trial function. One 
obtains the optimum value of J by evaluating the derivative of J with respect to these parameters. In such a way 
one obtains an approximation of the extreme value of J.

It has been proved that with a trial function which differs 45% from the exact solution in some points, the total 
resistance of a layer was still found with an accuracy of 8%, although no parameter was included23. Although the 
variational approach is no so widely used, it is the fundamental basis of the finite element method.

A major advantage is that the functional J has a physical meaning. Using Gauss theorem we have:

∮∫ ∫ ∫φ φ φ φ
σ σ

= ∇ =
∂
∂

=
∂
∂

= = ∝
∂

J dS
n

dl V
n

dl V I
t

V
t R R

[ ] 1
(6)S S C

D

S S

2
0

0 0 0
2

0 0

where ∂S denotes the boundary ABCDA of S, σ is the electric conductivity of the layer and tS its thickness. V0, σ 
and tS being known, the value of J provides us the value of the resistance R0. An approximate value of J, by using a 
trial potential, will give us then an approximate value of the resistance R0.

In this paper we are only interested in the change of the resistance due to the bending experiment. V0, σ and 
tS do not vary when one or more cracks are formed. If the sheet without any cracks has a resistance R0, which will 
increase to Rc when a crack is formed, we have using (6):

− ∝ −J J
R R
1 1

(7)c
c

0
0

where J1 and J2 denote the corresponding values of the functional. For small cracks the change of the resistance is 
small, i.e. R1 ≈ R2, hence (7) can be further simplified to:

− ∝ − =
−

≈
− +

∝ − +J J
R R

R R
R R

R R
R

R R1 1
(8)

c
c

c

c

c
c0

0

0

0

0

0
2 0

In other words, a small variation of the functional value is proportional to the variation of the resistance.
If the bending experiments are carried with a constant current I0 instead of a constant voltage V0 the relation 

(8) hold exactly even for larger variations of the resistance.

Geometry with a single crack. Consider again a rectangular shaped electric conducting layer with con-
tacts AB and CD. Due to the moving clamp a crack PQ has been created (Fig. 7). As a consequence the electric 
contact is limited to AP and QB. The crack PQ does not supply any current and has to be treated mathematically 
as a free boundary.

The trial function is displayed graphically in Fig. 7. The value V has been introduced as a parameter. For 
a/2 < y < H, the potential φtrial varies linearly between V and V0. For 0 < y < a/2 the potential φtrial also varies 

Figure 6. Rectangular geometry of a sample without cracks.
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linearly between 0 and V, but only above AP and QB, i.e. where there is no crack. Above the cracks, the equipoten-
tial lines of the trial function φtrial are bended as quarter circles. In the striped zone the potential is just constant: 
φtrial = V. One can easily verify that the trial function satisfy all boundary conditions. ∂φtrial/∂y = 0 on the crack 
PQ, ∂φtrial /∂x = 0 on both sides BC and DA, φtrial = 0 at the contacts AP and QB or the non cracked zone. At last 
φtrial = V0 at the top contact CD.

Inserting the trial function φtrial in the functional (5) reads:

∫ ∫ φ π
= ∇ =







−
− 





+ −
−

J dxdy V W
a

V V W
H

( ) 2 4
4

( )
(9)S

trial a1
2 2

0
2

2

The above expression still contains an unknown parameter: V. To find this value, we have to look for the opti-
mum value of the functional J by evaluating ∂J1/∂V = 0. One obtains:

=
− +π

−
−

−

V
(10)

V W
H a

W
a

W
H a

/ 2
2 4

4 / 2

0

Inserting this value in (9) and taking into account that a is a small value, gives us the optimum value for the 
functional J1,opt:

J V
H

a V W
H

4
4

4
4 4 (11)

opt1,
0
2

2

2 2
0
2π π

= −






−
+





− 









+

The last term of (11) is the value of Jopt for a = 0 or Jopt(a = 0) = V0
2W/H. Hence the variation of the functional 

which, according to (8) is also the change of the resistance value due to a single crack is given by:

J J a V
H

a R R( 0) 4
4

4
4 4 (12)

opt opt c1, 1,
0
2

2

2 2

0
π π

− = = −






−
+





− 









∝ − +

Most important conclusion is that the change of the resistance is proportional to the square of the crack’s 
length a.

Multiple cracks. We consider now the case that n cracks, each of them having the same length a, are existing 
along the moving contact AB. In Fig. 5 the particular case n = 2 has been displayed in Fig. 8.

Figure 7. Rectangular geometry of a sample with a single crack PQ at the bottom contact AB.

Figure 8. Rectangular geometry of a sample with two cracks PQ and P’Q’at the bottom contact AB.
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The trial function φtrial to be used now, is drawn schematically in Fig. 8 as well. The calculation is almost iden-
tical to the one of the preceding section, so that the mathematical details can be skipped here. For the geometry 
of Fig. 8, the functional is now called J2:

π π
− = =







−
+





− 









∝ − +J J a nV
H

a R R( 0) 4
4

4
4 4 (13)

opt opt c2, 2,
0
2

2

2 2

0

The conclusion is obvious, the change of the resistance is proportional to the number of cracks n.
From the theory outlined so far, we come up with the knowledge that a new crack is not the same as a crack 

which is doubling its length. The first one gives a change in resistance which varies linearly with the number of 
cracks (~n) whereas the second one gives rise to a quadratic behaviour (~n2).

Note that this theoretical analysis is only valid as long as the lengths of the cracks are sufficiently small, at 
least much smaller than the width W of the contacts. It must be also remarked that the purpose of this theoretical 
analysis is not to get a mathematical expression which can be fitted accurately to the experimental data. We just 
wanted to prove the two relations ~n and ~n2.

Discussion
It has been proved theoretically that if the number of cracks n is growing, the change of the resistance is propor-
tional to n. From the experimental curves (Fig. 4), a linear relationship is observed for small values of N, i.e. the 
number of fatigue cycles. Hence we may conclude that in the beginning (small N) cracks are created during each 
cycle. The more cycles, the more cracks.

The theory also reveals that if the number of cracks remains constant but the cracks are growing in length, a 
quadratic relationship is found (~n2). The experiments (Fig. 4) show a quadratic relationship with the number 
of fatigue cycles N, at least for larger values of N. One may conclude that after a certain number of fatigue cycles, 
existing cracks become longer and new cracks are no longer created.

By comparing the theory with the experiments, the conclusion is that in the beginning of the fatigue experi-
ment, the creation of cracks is the dominant mechanism. After some fatigue cycles the dominant mechanism is 
the elongation of the previously created cracks.

The proposed theoretical description allows better understanding of the behaviour of the tested layers during 
bending cyclic loads, which has a direct impact on the operational fatigue strength of such layers. In some applica-
tions, e.g. as the conductive electrodes or tracks, the change of the resistance up to 10 times is acceptable because 
the initial resistance is low. Such fatigue strength is demonstrated by the layers in the area where the change in 
resistance is linearly dependent on the number of cycles.

Additionally, it should be noticed that the presented theoretical model was developed under the assumptions 
of isotropic properties of textile composites. These isotropic properties can be assumed for the non-woven fabric 
coated with Teflon. In case of structures based on woven fabric, the interface layers were isotropic, however the 
raw woven fabrics typically are anisotropic.

conclusion
On the basis of the experiment, a mathematical description was created to understand the nature of changes in 
resistance of metallic thin layers created on the composite textile substrates depending on bending stress and 
prediction of their strength.

During the research, two ranges of load (number of bending cycles) were distinguished in which the strength 
behaviour of the layer is of a different nature. In the initial phase of tests, the resistance of structures depends 
linearly on the number of bends. This is related to the appearance of new cracks on the surface of the layer. In the 
next part of the research, when new cracks no longer arise, existing defects widen and lengthen. In this case, the 
change in resistance depends on the square of the number of bends. The presented description was confirmed in 
microscopic observations. This method in combination with microscopic images describes the behaviour of the 
layer in the fatigue process.

The results of the conducted experiments confirm the validity of the model. Further evaluation of the model 
could relate to its use for layers applied with another technique.

The purpose of further research is an attempt to modify the technology of creating of metallic structures on 
composite substrates to broaden the linear range of their strength, thereby increasing the load range of the created 
layers.
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