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Hepatocellular carcinoma (HCC) is the fourth main reason of cancer-related death. Codonopsis pilosula is a commonly used
traditional Chinese medicine (TCM) for patients with HCC. However, its potential mechanism for treatment of HCC remains
unclear. Here, we used transcriptomics and network pharmacology to explore the potential molecular mechanisms of Codonopsis
pilosula. In our study, twelve differentially expressed genes (DEGs) (5 upregulated and 7 downregulated) of Codonopsis pilosula
treating HepG2 cells (a kind of HCC cell) were identified. Among the 12 DEGs, HMOX1 may play an essential role. Codonopsis
pilosulamainly affects the mineral absorption pathway in HCC.We acquired 2957, 1877, and 255 targets from TCMID, SymMap,
and TCMSP, respectively. Codonopsis pilosula could upregulate HMOX1 via luteolin, capsaicin, and sulforaphane. Our study
provided new understanding of the potential pharmacological mechanisms of Codonopsis pilosula in treating HCC and pointed
out a direction for further experimental research.

1. Introduction

+ere are multiple types of primary liver cancer, of which
hepatocellular carcinoma (HCC), the fourth leading cause of
cancer-related death overall worldwide, is the most pre-
dominant type [1, 2]. During the last few decades, HCC
incidence has been increasing at a global level [3, 4], and it is
estimated that more than 1million people will die fromHCC
in 2030 [5, 6]. In addition to surgical treatments, drugs are
the key to HCC therapy [7]. Sorafenib has been the global
treatment standard for patients with HCC since 2007 [8], but
its efficacy is unsatisfactory [9]. As a widely used alternative
therapy, traditional Chinese medicine (TCM) can probably
prolong the median survival time and improve the overall
survival among patients with HCC [10]. Moreover, some
TCMs have been reported to have the ability to assist in
elevating the efficacy of sorafenib in the treatment of HCC
[11–13].

Codonopsis pilosula, a kind of TCM, has anticancer
activity and is widely used in adjuvant anticancer therapy
[14]. A lot of evidence has shown that many ingredients of
Codonopsis pilosula, such as Codonopsis pilosula polysac-
charide (CPP) and atractylenolide III (ATL), have anti-HCC
effects via different pathways. CPP is one of major active
constituents in Codonopsis pilosula, and it could inhibit the
proliferation and motility of HCC cells through the β-cat-
enin/TCF4 pathway [15]. CPP1a and CPP1c are two water-
soluble homogeneous polysaccharides isolated and purified
from Codonopsis pilosula, and they could induce HepG2 cell
apoptosis by upregulating the ratio of Bax/Bcl-2 and acti-
vating caspase-3 [16]. ATL, a sesquiterpenoid extracted from
Codonopsis pilosula, exerts tumor-suppressive functions in
liver cancer via the miR-195-5p/FGFR1 signaling axis [17].
However, Codonopsis pilosula, as a kind of Chinese herb, is
often used as a whole in clinical practice. +ere are few
reports on the mechanisms of Codonopsis pilosula in the
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treatment of HCC, and its application is greatly limited. +e
effects of TCM (or herbs of other nations) are not the sum of
all active ingredients. In the mixed system of Codonopsis
pilosula, new effects may emerge that the single active in-
gredients do not.

In this study, we integrated transcriptomics and network
pharmacology to understand the mechanisms of Codonopsis
pilosula in treating HCC. +e differentially expressed genes
(DEGs) of Codonopsis pilosula were derived from a previous
study (GSE115506) [18]. +e effective ingredients of
Codonopsis pilosula and targets were assayed by TCMID,
SymMap, and TCMSP [19–21]. +e mechanisms of Codo-
nopsis pilosula against HCCwere assessed by Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis. Furthermore, we found that
Codonopsis pilosula may regulate mineral absorption
through luteolin, capsaicin, and sulforaphane directly tar-
geting HMOX1.

2. Materials and Methods

2.1. Differentially Expressed Genes Screening. We obtained
DEGs of Codonopsis pilosula from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/) (series: GSE115506;
samples: GSM3179695, GSM3179696, GSM3179697,
GSM3179698, GSM3179699, and GSM3179700). In
GSE115506, total RNA was isolated from HepG2 cells 24
hours after 3mg/mL Codonopsis pilosula aqueous extract
treatment in vitro. We performed differential analysis by the
Limma R packages [22], and the cutoff value for identifying
DEG was set to |log2 fold change| >1 and adjusted pvalue
<0.05.

2.2. Components and Targets Acquisition. +e components
and targets of Codonopsis pilosula were acquired from
TCMID (http://www.megabionet.org/tcmid/) [20], Sym-
Map (http://www.symmap.org/) [21], and TCMSP (https://
tcmsp-e.com/) databases [19]. +ey are all integrative da-
tabases of traditional Chinese medicine.

2.3. Network Building. We performed the protein-protein
interaction (PPI) network analysis using STRING (https://
string-db.org/) [23]. +e Codonopsis pilosula-gene network,
protein-protein interaction (PPI) network, and Codonopsis
pilosula-component-target network were visualized by
Cytoscape software [24].

2.4. Functional Enrichment Analysis. We conducted Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analysis and biological process (BP) of Gene Ontology (GO)
analysis by R package clusterProfiler [25].

2.5. Expression Analysis of HMOX1. +e expression of
HMOX1 in HCC was obtained through UALCAN, which is a
comprehensive and interactive web resource for analyzing
cancer OMICS data [26].+e expression of HMOX1 after
apigenin, luteolin, capsaicin, 4-methylsulfinyl butyl isothio

cyanate (sulforaphane), and geniposide treatment was obtained
from the GEO database (apigenin series: GSE119552, samples:
GSM3377483, GSM3377484, GSM3377485, GSM3377486,
GSM3377495, GSM3377496, GSM3377497, and GSM3377498;
luteolin series: GSE18740, samples: GSM465440, GSM465441,
GSM465442, GSM465443, GSM465444, andGSM465445; caps
aicin series: GSE59727, samples: GSM1442972, GSM1442973,
GSM1442974, GSM1442975, GSM1442976, GSM1442977,
GSM1442978, and GSM1442979; sulforaphane series: GSE2
8813, samples: GSM713517, GSM713518, GSM713519, GSM71
3520, GSM713521, GSM713522, GSM713523, and GSM713
524; and geniposide series: GSE85871, samples: GSM2286350,
GSM2286351, GSM2286248, GSM2286249, GSM2286316,
GSM2286317, GSM2286398, andGSM2286399). In GSE18740,
mouse BV-2 microglia were treated with 50μM luteolin for 24
hours; in GSE59727, rat TRPV1-positive neurons were treated
with 10μM capsaicin for 30 minutes; in GSE119552, MCF-7
cells were treated with 10μM apigenin for 24 hours; in
GSE28813, MCF10A cells were treated with 15μM sulfor-
aphane for 24 hours; and in GSE85871, MCF-7 cells were
treated with 10μM geniposide for 12 hours. We extracted the
expression level of the HMOX1 gene from these expression
matrices and compared its significance with the t-test.

2.6. Molecular Docking. +e structure of HMOX1 protein
was obtained from PDB (https://www.rcsb.org/) [27], and
the structures of luteolin, capsaicin, and sulforaphane were
acquired from ZINC (https://zinc.docking.org/) [28]. We
used AutoDock 4.2 to prepare the PDBQT file and perform
molecular docking [29]. Finally, molecular docking maps
were visualized through PyMOL.

3. Results

3.1. Codonopsis pilosula-Gene Network and PPI Analysis.
We identified 12 DEGs (5 upregulated and 7 downregulated)
from the GSE115506 data set (Table S1). A volcano plot
(Figure 1(a)) and a heatmap (Figure 1(b)) were established to
show the distribution of DEGs in HepG2 cells after treating
Codonopsis pilosula. +e cutoff value for identifying DEG
was set to |log2 fold change| >1 and the adjusted pvalue
<0.05. Accordingly, we built a Codonopsis pilosula-gene
network (Figure 1(c)). In order to further explore the po-
tential association among these DEGs, we performed a PPI
network analysis for the 12 DEGs by STRING [23]. +e final
PPI network includes 11 nodes and 13 edges (Figure 1(d)).
Furthermore, we identified HMOX1, an upregulated gene, as
the hub gene because it has the highest degree.

3.2. GO and KEGG Analysis. +rough the clusterProfiler R
package for KEGG enrichment analysis, we found that only 1
pathway was significantly affected (padjust <0.05) during
Codonopsis pilosula treatment of HepG2 cells (Figure 2(a)).
HMOX1 (hub gene), MT1F, and MT1G were enriched in
mineral absorption. In total, 61 biological processes (GO
terms) were notably enriched (padjust <0.05) (Table S2).+e
top 5 biological processes are shown in Figure 2(b). +e
highly enriched biological processes include responses to
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iron ions, cellular responses to copper ions, cellular tran-
sition metal ion homeostasis, transition metal ion homeo-
stasis, and response to metal ions. +ese biological processes
and pathways are closely related to the metabolism and
homeostasis of metal ions, suggesting that Codonopsis
pilosula mainly affects the mineral absorption pathway in
HCC cells.

3.3. Codonopsis pilosulaReversesHMOX1Expression inHCC.
We acquired 2957 targets from TCMID, 1877 targets from
SymMap, and 255 targets from TCMSP (Table S3). According
to the intersection of these targets and 12DEGs, we found that
HMOX1 is the direct target of Codonopsis pilosula in three
databases (Figure 3(a)). Our results showed that the ex-
pression of HMOX1 was significantly enhanced (Figure 1).
Interestingly, HMOX1 was significantly decreased in HCC

patients (Figure 3(b)). +e abovementioned results suggest
that Codonopsis pilosula may resist HCC by reversing
HMOX1 expression in HCC patients.

3.4. Codonopsis pilosula Could Upregulate HMOX1 via
Luteolin, Capsaicin, and Sulforaphane. To explore how
Codonopsis pilosula promotes the expression of HMOX1, we
established a Codonopsis pilosula-component-target network
(Figure 4(a)). +e result showed that Codonopsis pilosula may
directly target HMOX1 through apigenin, luteolin, capsaicin,
4-methylsulfinyl butyl isothiocyanate (sulforaphane), and
geniposide. In addition, we detected the expression of HMOX1
after treating with these components (Figures 4(b)–4(f)).
Figure 4(b) showed that luteolin could upregulate Hmox1 in
BV-2 cells, although the p value is 0.081. Figure 4(c) showed
that capsaicin could significantly promote the expression of
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Figure 1: Codonopsis pilosula-gene network and PPI analysis. (a) Volcano plot and (b) heatmap of DEGs showed that genes with dramatic
changes after Codonopsis pilosula treatment. (c) Codonopsis pilosula-gene network. (d) +e PPI analysis of DEGs.
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Hmox1 in dorsal root ganglia neurons. Figure 4(d) showed that
apigenin could not affect the expression of HMOX1 in MCF-7
cells. Figure 4(e) manifested that sulforaphane could dra-
matically enhance the expression of HMOX1 inMCF10A cells.

Figure 4(f) showed that geniposide could not affect the ex-
pression of HMOX1 in MCF-7 cells. +ese results imply that
Codonopsis pilosula could upregulate HMOX1 in HCC via
luteolin, capsaicin, and sulforaphane.
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Figure 2: KEGG and GO analysis. (a) KEGG pathway enrichment of Codonopsis pilosula treating HepG2 cells. (b) +e top 5 biological
process in GO terms of Codonopsis pilosula treating HepG2 cells.
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Figure 3: Codonopsis pilosula could target HMOX1. (a) Among all targets and 12 DEGs of Codonopsis pilosula, HMOX1 is the only
common gene. (b) HMOX1 expression is significantly decreased in HCC.
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3.5. Potential Binding Site between Active Ingredients of
Codonopsis pilosula and HMOX1 Protein. For exploring
potential interaction between active ingredients of Codo-
nopsis pilosula (luteolin, capsaicin, and sulforaphane) and
HMOX1 protein, we predicted the potential binding site of

them via molecular docking. As shown in Figure 5(a),
luteolin may directly bind ASP-140, LEU-141, GLN-145,
ALA-173, SER-174, and ALA-175 to promote the expression
level of HMOX1. Capsaicin may combine with HMOX1 by
ARG-44, LYS-48, and PHE-95, thus enhancing the
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Figure 4: Codonopsis pilosula targeted HMOX1 via luteolin, capsaicin, and sulforaphane. (a) Codonopsis pilosula-component-target
network showed that Codonopsis pilosulamay target HMOX1 directly through apigenin, luteolin, capsaicin, sulforaphane, and geniposide.
(b) Luteolin trends to upregulate Hmox1 in BV-2 cells (p � 0.081). (c) Capsaicin could significantly upregulate Hmox1 in dorsal root
ganglia neurons (p � 0.029). (d) Apigenin could not affect the expression of HMOX1 in MCF-7 cells (p � 0.901). (e) Sulforaphane could
significantly enhance HMOX1 expression inMCF10A cells (p � 0.0006). (f ) Geniposide has no effect on the expression of HMOX1 inMCF-
7 cells (p � 0.56).
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expression level of HMOX1 (Figure 5(b)). Sulforaphane may
target HMOX1 via binding PHE-167 and ALA-175,
resulting in increased expression of HMOX1 (Figure 5(c)).
+ese results suggest that luteolin, capsaicin, and sulfor-
aphane may promote HMOX1 expression through direct
binding.

4. Discussion

TCMs are widely used during HCC treatment in China [30].
As with traditional medicine in other nations, herbal
medicines are the main form of TCM [31]. Unlike small
molecule drugs, herbal medicines contain many compo-
nents and possess complex targets. Besides, some studies
have revealed that miRNAs of herbal medicines may be
ingested by the body and regulate the process of disease
[32–34]. Complex components and targets limit the ex-
ploration of mechanisms in herbal medicines. Although
multiple active components of Codonopsis pilosula were
proved to have anti-HCC potential [15–17], the overall
mechanism of Codonopsis pilosula is unclear.

In the present study, the Codonopsis pilosula-gene net-
work was built by 12 striking DEGs (Figure 1(c)), and we
identified HMOX1 as the hub gene via the PPI network
(Figure 1(d)). HMOX1 was significantly enriched in the
mineral absorption pathway, and the biological processes of
its enrichment are primarily related to the metabolism of
metal ions (Figures 2(a) and 2(b)). A study reported that
there is a remarkable correlation between mineral absorp-
tion pathways and HCC development [35]. Furthermore,
metal ion metabolism plays an essential role in the pro-
gression and treatment of HCC [36, 37]. Consequently,
Codonopsis pilosula is highly likely to treat HCC via targeting
HMOX1 to affect the mineral absorption pathway.

HMOX1 (heme oxygenase-1) is a stress-induced enzyme
that catalyzes the degradation of heme to carbon monoxide,
iron, and biliverdin [38]. +e byproducts of HMOX1

enzymatic activity are cytoprotective because of their anti-
oxidant and anti-inflammatory properties, showing that
HMOX1 is a potential therapeutic target in many diseases
[39]. Our results revealed that HMOX1 was significantly
decreased in HCC patients (Figure 3(b)), and Codonopsis
pilosula could distinctly enhance the expression of HMOX1
in HepG2 cells (Figure 1), suggesting that Codonopsis
pilosula may reverse the expression pattern of HMOX1 in
the HCC environment. Interestingly, HMOX1 over-
expression could inhibit the growth, migration, and invasion
in vivo, as well as higher HMOX1 expression was also as-
sociated with favorable disease-free survival of HBV-HCC
patients who underwent hepatectomy [40]. +ese results
indicate that Codonopsis pilosula is likely to improve the
survival of HCC patients by promoting the expression of
HMOX1, and is a potential adjuvant therapy for HCC.

+rough the network pharmacology strategies, we built a
Codonopsis pilosula-component-target network
(Figure 4(a)). +e network showed that Codonopsis pilosula
may directly target HMOX1 via apigenin, luteolin, capsaicin,
sulforaphane, and geniposide. To verify this result, we ex-
amined the effect of luteolin on Hmox1 expression in mouse
BV-2 microglia (GSE18740), capsaicin on Hmox1 expres-
sion in rat TRPV1-positive neurons (GSE59727), apigenin
on HMOX1 expression in human breast cancer cells MCF-7
(GSE119552), sulforaphane on HMOX1 expression in hu-
man breast epithelial cells MCF10A (GSE28813), and gen-
iposide on HMOX1 expression in human breast cancer cells
MCF-7 (GSE85871) (Figures 4(b)–4(f)). +e results indi-
cated that luteolin, capsaicin, and sulforaphane could in-
crease the expression of HMOX1 expression in vitro,
although not in HCC cells. Luteolin, a natural flavonoid,
plays multiple roles in the anti-HCC process. Growth in-
hibition of luteolin on HCC cells is induced via multiple
signaling pathways of TGF-β1 pathways, p53 pathways, Fas/
Fas-ligand pathways [41], ER stress [42], and AKT/OPN
pathway [43]. Besides, a recent study reported that luteolin

(a) (b) (c)

Figure 5:+emolecular docking results of luteolin, capsaicin, and sulforaphane. (a) Luteolin may bind to HMOX1 with ASP-140, LEU-141,
GLN-145, ALA-173, SER-174, and ALA-175. (b) Capsaicin may combine with HMOX1 by ARG-44, LYS-48, and PHE-95. (c) Sulforaphane
may target HMOX1 via PHE-167 and ALA-175.
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could significantly inhibit HCC growth and cause apoptosis
and cell cycle arrest in vitro and significantly suppress HCC
growth in vivo via upregulating miR-6809-5p [44]. Cap-
saicin is a natural vanilloid and may inhibit the growth of
SK-Hep-1 hepatocellular carcinoma cells by inducing ap-
optosis via Bcl-2 downregulation and caspase-3 activation
[45]. Moreover, capsaicin could induce apoptosis in HepG2
cells by reducing the levels of xIAP and cIAP1 proteins,
which are inhibitors of caspase-3 activation [46]. Inter-
estingly, both luteolin and capsaicin are able to assist
sorafenib to produce better anti-HCC therapeutic effects
[47, 48]. Sulforaphane, a member of the isothiocyanate
family, has exhibited promising inhibitory effects on breast
cancer, lung cancer, liver cancer, and other malignant
tumors [49]. Some studies revealed that sulforaphane could
induce apoptosis [50] and enhance the radiation sensitivity
[51] in HCC.

Notably, there are about 200 phytometabolites in
Codonopsis pilosula, and the main bioactive ingredients
include polysaccharides, polyyne and polyacetylene gly-
cosides, lignans, penoids, alkaloids, flavonoids, and lac-
tones [52]. Polysaccharides are large-molecule components
in Codonopsis pilosula, which have a significant inhibitory
effect on gastric cancer and lung cancer, in addition to liver
cancer [53]. Although luteolin, capsaicin, and sulforaphane
are not the most abundant ingredients of Codonopsis
pilosula, they are essential for understanding the phar-
macological effects of Codonopsis pilosula. Tang et al. found
that Codonopsis pilosulamay play an antigastric cancer role
through luteolin [54], suggesting that luteolin may play an
important role in the anticancer effects of Codonopsis
pilosula. Furthermore, several studies showed that luteolin
[55], capsaicin [56], and sulforaphane [57] could target
HMOX1 and significantly enhance its expression level.
Luteolin, capsaicin, and sulforaphane are components of
Codonopsis pilosula, but their quantitative studies in
Codonopsis pilosula are insufficient. It is reported that the
content of luteolin in Codonopsis thalictrifolis is 0.7% via
HPLC [58]. It is important to notice that Codonopsis
thalictrifolis is not Codonopsis pilosula, although they

belong to the Codonopsis genus, and there may be great
differences in chemical composition between them.
Nonetheless, as a reference, the data implied that the
content of the luteolin in Codonopsis pilosula may be less
than 0.1% or even 0.01%. +e lowest dose of luteolin that
has been reported to produce anti-HCC effects in rats is
0.2mg/kg via intraperitoneal injection [59]. In addition,
orally administered luteolin (0.2mg/kg) could produce
anticolon cancer effects in rats [60]. Fuzheng Jiedu Xiaoji
formulation (including 15 g of Codonopsis pilosula) could
inhibit HCC progression in patients [61]. Jian Pi Li Qi
Decoction (including 20 g of Codonopsis pilosula) could
improve the prognosis of patients with HCC [62].
+erefore, it is likely that the effective concentration of
luteolin can be reached in the application of Codonopsis
pilosula. At present, there are no quantitative studies on
capsaicin and sulforaphane in Codonopsis pilosula. Studies
showed that capsaicin (2mg/kg) [63] and sulforaphane
(50mg/kg) [64] could inhibit the growth of HCC in xe-
nograft mice. Compared with the effective dosage of
capsaicin and sulforaphane, the application of Codonopsis
pilosula (15–20 g) is higher. Consequently, luteolin, cap-
saicin, and sulforaphane are likely to reach effective con-
centrations in the clinical application of Codonopsis
pilosula. +ese studies suggest that Codonopsis pilosula is
most likely to exert anti-HCC effects via luteolin, capsaicin,
and sulforaphane (Figure 6). In fact, although our study
showed that luteolin, capsaicin, and sulforaphane may play
roles in the adjuvant treatment of HCC by Codonopsis
pilosula, they may not be the main active ingredients of
Codonopsis pilosula. As an herbal medicine, Codonopsis
pilosula contains a variety of ingredients. An inulin fructan
from Codonopsis pilosula possessed potential anti-HCC
effects (inhibiting proliferation and inducing apoptosis) on
Huh-7 and HepG2 cells without side effects on normal cells
[65]. In addition, a novel fructose-enriched polysaccharide
from Codonopsis pilosula inhibited HepG2 cell prolifera-
tion and promoted apoptosis [66]. Taken together, apo-
ptosis may be one of the anti-HCC pathways of Codonopsis
pilosula.

Normal liver cell
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Figure 6: Schematic diagram of Codonopsis pilosula for HCC treatment.
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5. Conclusions

+e present study explored the effects of Codonopsis pilosula
in the treatment of HCC via transcriptomics and network
pharmacology. We revealed the transcriptome changes of
HCC cells induced by Codonopsis pilosula. In addition,
Codonopsis pilosula is likely to upregulate HMOX1 directly
through luteolin, capsaicin, and sulforaphane, thus affecting
the mineral absorption pathway in HCC cells. +is study
provides clues to comprehend the potential mechanisms of
Codonopsis pilosula in treating HCC. Of course, these
conclusions require further experimental support.
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