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Abstract
Selecting relevant feature subsets is vital in machine learning, and multiclass feature selection is harder to perform since

most classifications are binary. The feature selection problem aims at reducing the feature set dimension while maintaining

the performance model accuracy. Datasets can be classified using various methods. Nevertheless, metaheuristic algorithms

attract substantial attention to solving different problems in optimization. For this reason, this paper presents a systematic

survey of literature for solving multiclass feature selection problems utilizing metaheuristic algorithms that can assist

classifiers selects optima or near optima features faster and more accurately. Metaheuristic algorithms have also been

presented in four primary behavior-based categories, i.e., evolutionary-based, swarm-intelligence-based, physics-based,

and human-based, even though some literature works presented more categorization. Further, lists of metaheuristic

algorithms were introduced in the categories mentioned. In finding the solution to issues related to multiclass feature

selection, only articles on metaheuristic algorithms used for multiclass feature selection problems from the year 2000 to

2022 were reviewed about their different categories and detailed descriptions. We considered some application areas for

some of the metaheuristic algorithms applied for multiclass feature selection with their variations. Popular multiclass

classifiers for feature selection were also examined. Moreover, we also presented the challenges of metaheuristic algo-

rithms for feature selection, and we identified gaps for further research studies.
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1 Introduction

Our world is witnessing a vast increase in digital data

generation daily. These massive data come in various

forms, for example, text, images, numbers, audio, videos,

and graphs, which can help humans advance knowledge.

Such data are generated in various fields of human

endeavors like engineering, healthcare, science, industries,

education, and others which can be grouped for insight,

prediction, and knowledge purposes. Unfortunately, a sig-

nificant part of these data are raw, irrelevant, unusable,

redundant, and therefore need to be transformed to be

suitable for modeling. Before modeling, the data are pre-

processed and classified into relevant datasets for the

model’s training to get insights, make predictions, and

contribute to knowledge.

Feature selection problems have become a major real-

world problem of reducing the dimension of large datasets

available in various scientific endeavors, yet maintaining

performance accuracy is paramount. Typically, there is

often an insufficient number of objects to sufficiently rep-

resent the distribution of the high-dimensional feature

spaces [21]. Therefore, reducing dimensionality is a critical

issue in numerous scientific fields. Researchers have pro-

posed different approaches to feature reduction in the lit-

erature [77, 111]. Feature reduction was classified into two

main categories: feature extraction or construction and

feature selection [8]. Feature extraction builds some new

set of subsets from the original dataset, while feature

selection chooses the appropriate subset from the original

dataset without any transformation.

Feature selection has posed a significant challenge in

machine learning. Based on the increasing time required to

locate the best features in a high-dimensional dataset,

feature selection is considered an NP-hard problem [279].

To find the best subset, the authors proposed several

techniques such as exhaustive search, greedy search, and

random search [8]. Many of these techniques are plagued

with the problem of converging prematurely, immense

complexity, and high computational cost. Hence, meta-

heuristics have become more prevalent in dealing with

these challenges. Metaheuristic algorithms are, therefore,

very efficient and effective in locating the best subset of a

dataset and are still able to maintain the model’s accuracy.

Due to its strength, this study focuses on feature selection

problems with metaheuristic algorithms.

In recent years, multiple researchers have proposed

various metaheuristic algorithms to solve optimization

problems. This study reviews modern metaheuristic algo-

rithms that solve feature selection for multiclass classifi-

cation problems. Some review works were found in the

literature, but none was conducted for the multiclass

feature selection problem to the best of our knowledge.

Agrawal et al. [8] conducted a complete review of meta-

heuristic algorithms for a decade between 2009 and 2019 to

solve binary feature selection problems. However, real-

world problems are not always dichotomous. A compre-

hensive survey on evolutionary computation for feature

selection was conducted by Xue et al. [261, 266]. Their

survey enumerated the state of the art of approach with a

focus on genetic algorithm (GA), particle swarm opti-

mization (PSO), ant colony optimization (ACO), and

genetic programming.

Also, Jović et al. [119] reviewed feature selection

methods with applications. The review focused on feature

selection in four application domains: text mining, image

processing, computer vision, industrial application, and

bioinformatics. However, the study considered only one

research work in each domain mentioned, which is not

comprehensive. A comprehensive literature review on

feature selection algorithms in swarm intelligence was

conducted by Brezočnik et al. [32]. The study categorized

the sixty-four algorithms examined into eight different

taxonomy categories and presented the most common

application areas. Similarly, Rostami et al. [203] intro-

duced a comparative analysis of other swarm intelligence-

based feature selection methods, considering the strength

and weaknesses of this method. Moreover, Abiodun et al.

[5] conducted an organized review of evolving feature

selection methods for text classification optimization tasks.

The scope of their work was from 2015 to 2021, reviewing

over 200 articles concerning metaheuristic and hyper-

heuristic procedures. To this end, the research question

below is expressed to achieve this study:

What articles employed metaheuristic algorithms to

solve multiclass feature selection between the years 2000

to 2022?

The following questions were formulated to answer the

question above.

a. What metaheuristic algorithms have been used to solve

the multiclass feature selection problems?

b. What are the major feature selection methods used by

the algorithms identified in (a) above?

c. What are the key factors of the methods identified in

(b) above are used by the metaheuristic algorithms?

d. What are the issues or challenges of metaheuristic

algorithms in multiclass feature selection?

e. What are the research gaps and future directions in

multiclass feature selection problems?

A limited related study has been done on metaheuristic

feature selection on the multiclass problem [50, 261, 266],

which focuses on evolutionary computation approaches to

feature selection and high dimensional feature selection on

microarray data, respectively. Therefore, this study reviews
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various categories of metaheuristic algorithms in solving

multiclass problems within two decades (i.e., 2000–2022),

e.g., human-based, physics-based, evolutionary-based, and

swarm intelligence-based approaches. The motivation of

this study is the lack of literature reviewed to explore the

multiclass feature selection problem holistically and since

many real-world classification problems are not just binary.

Therefore, this study is unique because it presents a new

holistic approach to reviewing multiclass feature selection

with metaheuristic algorithms. Due to this, we make the

following contributions:

1. Presentation of the existing body of knowledge found

in the literature for feature selection was examined and

compiled, followed by a presentation of classification

and lists of metaheuristic algorithms in each category.

2. Systematic literature of multiclass wrapper-based

metaheuristic algorithms for feature selection problems

is presented. Here, the variations of each examined

metaheuristic algorithm are discussed.

3. A presentation of the key factors of the wrapper-based

approach like classifier description, datasets used, and

their respective evaluation metrics utilized.

4. Issues and challenges of metaheuristic algorithms for

multiclass feature selection were presented, and vari-

ous approaches to solving the challenges were

mentioned.

5. Lastly, we presented research gaps and explained

future research areas as deduced from the literature to

assist the researchers in this domain.

The remaining aspects of this paper are structured as

follows: In Sect. 2, the background for feature selection

and metaheuristic algorithm is presented. Section 3 pre-

sents the methodology used to collect papers for this study.

Section 4 provides the various categories of metaheuristic

algorithms for solving multiclass feature selection diffi-

culties. After that, Sect. 5 presents various hybrid tech-

niques found in the literature for solving multiclass

problems. The study discussed the problems and challenges

of metaheuristic algorithms in Sect. 6; Sect. 7 outlines the

application areas where multiclass feature selection prob-

lems were solved. The review discussion with future

directions and other research areas in metaheuristic algo-

rithms are presented in Sect. 8, while Sect. 9, which is the

last section, presents this paper’s conclusion.

2 Background

Feature selection is a necessary data preprocessing or

preparation procedure to illustrate the best relevant,

applicable, and essential feature space(s). This approach

entails choosing a subset with the utmost discrete and

appropriate feature(s) from a huge class of features for

record representation in a dataset for predictive modeling

[62]. It is an aspect of feature engineering where the dataset

attribute is employed to reduce the dimension of the

problem to be tackled and, as a result, ease the classifica-

tion process phase. The main goal of feature selection is to

minimize measurement in large dimensional datasets [5].

Conversely, metaheuristic algorithms contribute substan-

tially to optimizing the challenge of selecting the best or

near best optima solution. Therefore, a comprehensive

description of the definition concepts with the problem of

feature selection and categorization of metaheuristic algo-

rithms will be considered in this section.

2.1 Feature selection

Feature selection has drawn the research community’s

attention in the past years. It aimed at removing the best

features from an original dataset. It was adopted to advance

the quality of feature sets in many machine learning

responsibilities, i.e., classification, regression, clustering,

and prediction of time-series activities [261, 266]. In

machine learning activities, feature selection is a crucial

and noticeable task. There are different application areas

where feature selection was applied in several areas of

specialization to solve classification problems, e.g., text

mining, image analysis, and biomedical problems. Where

significant features exist, there is learning to overfit, which

results in their performance degeneration. A central branch

of data mining and machine learning research is dimen-

sional reduction techniques, which have been studied and

widely adopted strategy for dimensionality reduction

among various practitioners, which is aimed at selecting

the best subset of relevant features from an original dataset

using specific relevant evaluation criteria that produces

better performance in learning like better interpretability of

model, lower the cost of computational and higher learning

accuracy [7]. Figures 1 and 2 show a general concept of

feature selection where an original feature set was pre-

sented and underwent a selection process. Finally, some

relevant or best feature sets are chosen.

Generally, various feature selection methods have been

developed to get the optima subsets. Depending on whether

the training set is a labeled one or not, we can group feature

selection algorithms into supervised [7, 227], unsupervised

[58, 160], and semi-supervised [258, 260, 285]. We can

further classify supervised feature selection into three: fil-

ter, wrapper, and embedded methods. The filter methods

isolate feature selection from the classifier learning such

that it removes any bias of the learning algorithm from

interfering with the feature selection’s algorithm [7]. It

usually concentrates on the overall characteristics of the

data [258, 260].

Neural Computing and Applications (2022) 34:19751–19790 19753

123



On the other hand, the wrapper method predicts the

accuracy of the already determined algorithm for learning

to generate the selected features’ quality. These feature

selection models are often luxurious to run on prominent

data features. Usually, the wrapper approach includes the

classification algorithm, and it interacts with the classifier.

Although this method usually presents better results than

the filter approach, they are slower and are computationally

expensive because they depend on the resource demand of

the modeling algorithm [119].

Therefore, the wrapper methods rely on modeling

algorithms where every subset is generated and assessed.

Generating subset in wrapper method is based on various

search strategies. Exponential, sequential, and random

techniques are the three search techniques under the

wrapper method [119]. Exponential algorithms evaluate

several subsets that exponentially increase with the feature

space size. This method is almost impossible because of its

high computational cost, even though it shows accurate

results. Sequential algorithms add or remove features in

sequence (one or more). This may result in local minima

once the selected subset is added to or taken from the

original dataset,it cannot be further modified. Random

algorithms integrate randomness into their search tech-

nique, which prevents it from being trapped in local min-

ima. They are often referred to as population-based

methods, e.g., metaheuristic algorithm, random generation,

simulated annealing, etc. Figure 2 vividly displays the

typical feature selection process flowchart from the initial

feature set through to subset evaluation. Finally, the

embedded approach combines the wrapper and filter

methods. In this approach, feature selection is included in

the training process and is particular to the learning algo-

rithms [101]. This method may be more efficient in many

aspects as they get a solution quicker by avoiding retrain-

ing a predictor from the beginning for all the investigated

variable subset [85].

We exclude the detailed description of each feature

selection method because their detailed explanation is

contained in [261, 266]. We show the general wrapper

method of the feature selection framework to solve feature

selection problems in Fig. 3. The categorization method is

shown in Fig. 4, where the spheres in the figure represent

the methodology adopted by this paper that defines the way

we get to the metaheuristic algorithms.

2.2 Metaheuristic algorithms

Metaheuristic algorithms are generally a higher-level

technique that seeks to generate a sufficiently helpful

solution to any optimization problem [50] that is compli-

cated and challenging to solve to an optimal level. It has

become vital to locate an optimal solution based on

insufficient or partial data in the world of inadequate

resources such as time and computational capacity. The

advent of metaheuristics in finding a solution to this opti-

mization problem has become one of the most remarkable

accomplishments of the past decades in research endeav-

ors. Metaheuristic algorithms behave in a stochastic man-

ner because they begin their optimization by picking

random solutions. The technique works as a black box,

avoiding local optima while exploring the search space

effectively and efficiently because of the stochastic nature

Fig. 1 Generalization of the

concept of feature selection

Fig. 2 Illustration of the general feature selection process
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Fig. 3 Framework for wrapper

feature selection

Fig. 4 Categorization of feature

selection methods
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of the algorithms. One main strength of metaheuristic

algorithms is their outstanding ability to avoid premature

convergence. Due to its class of global optimization tech-

niques, metaheuristic algorithms have capabilities of both

exploration and exploitation. However, they are often

found to trap in local optima rather than a global optimum.

The primary reason for this is the difficulty of trade-off

exploration and exploitation appropriately [257]. These

two are also known as diversification and intensification,

respectively. In a generation sense, diversification means

the ability to search a lot of different sections of the search

space. In contrast, intensification implies finding superior

solutions within those sections [142]. Although these two

are sometimes conflicting goals, a search algorithm should

still balance them. A trade-off between exploration and

exploitation is substantial for all optimization methods. A

compelling trade-off between these two will help to reduce

computational cost and device efficient optimization.

Metaheuristic algorithms are successfully utilized to solve

science and engineering difficulties like civil engineering

to design bridges and buildings; electrical engineering to

get an optimal solution to power generation; data mining

for prediction, classification, clustering, and many more;

industrial sector for transportation, job scheduling, facility

location problems [8].

The issue of the trade-off between the exploration and

exploitation in multiclass feature selection and classifica-

tion problems received attention from researchers where

different methods were adopted to ensure that these con-

flicting objectives are balanced, such as the work done by

Sahebi et al. [207] where their approach made some ran-

dom changes to the intelligent crossover (IC), intelligent

mutation (IM), and their developed inverse operator. The

inverse operator was employed to investigate the moni-

tored genes accurately. This introduced an increment in the

intelligence of their approach as the exploration and

exploitation were done with a greater knowledge of the

search space. In Nagpal et al. [170], the study utilized the

selection of just the k-best particles as they applied force on

each other to maintain an adequate balance between

exploration and exploitation. In that study, k was a function

of time which decreased linearly to 1, and the study

assigned random weights as the coefficient. The two main

categories of metaheuristic algorithms are:

a. Single solution-based metaheuristic algorithms the

goal of most existing feature selection methods is to

maximize the classification performance during the

search procedure only or combine the classification

performance of the feature subset numbers into one

objective function [261, 266]. When algorithms work

based on one solution per time and involve the local

search-based metaheuristics like tabu search, variable

neighborhood search (VNS), and iterated local search

[161], this is referred to as a trajectory method. It may

often be trapped in local optima due to non-compre-

hensive exploration of the search space.

b. Population-based or multiple metaheuristic algorithms

this class of metaheuristics performs a search with

numerous initial points similar to swarm-based meta-

heuristics [161]. The population-based algorithm ben-

efits from scouring the search space for exploration in a

useful way. This method is appropriate for searching

for global solutions because it can provide global

exploration and local exploitation. They are not easily

trapped in the local optima because multiple solutions

help each other and explore the search space exten-

sively. Due to their benefit of iterating toward the good

part of search space is mostly used in real-world

problems.

Metaheuristic algorithms have drawn significant atten-

tion from researchers to solve feature selection problems in

recent decades. In solving this problem, metaheuristic

algorithms are categorized into four main aspects depend-

ing on their behaviors: evolutional-based, physics-based,

swarm intelligence-based, and human-based [162]. Fig-

ure 5 illustrates the categorization of metaheuristic

algorithms.

1. Evolutionary-based algorithms algorithms in this cat-

egory are nature-inspired and begin their process by

randomly generating their population solutions. The

renowned algorithm in this group is the genetic

algorithm—GA, which John Holland developed in

the 1960s based on Darwin’s evolutionary theory. GA

has been given much attention with different variants

and improvements from researchers and was applied to

solve various problems in a real-world situations. Other

popular algorithms developed in this group include

genetic programming, tabu search, evolution strategy,

differential evolution, flower pollination algorithm

[270], memetic algorithm [165], and many more.

2. Swarm Intelligence-based algorithms are inspired by

the social interaction or behavior of birds, animals,

insects, fish, and many more. Numerous metaheuristic

algorithms have been established within the last two

decades in this category, and more are being devel-

oped. Several researchers have developed variants of

some popular ones, and others have hybridized algo-

rithms from this category. The renowned algorithms in

this category are the particle swarm optimization

(PSO) algorithm [59]. It was inspired by a group of

birds flying through their search space to find the best

location. It was developed by Kenneth and Eberhart in

1995 and has gained so much attention due to its rich

mathematical basis for solving problems. Other
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algorithms in this group are cuckoo search [267], gray

wolf optimizer [154], and krill herd Algorithm [248].

3. Physics-based algorithms algorithms that fall in this

group draw their inspiration from the laws of physics in

the world. Some of the common algorithms in this

group include ray optimization [125], gravitational

search algorithms [201], galaxy-based search algorithm

[100], equilibrium optimizer [72], atom search opti-

mizer [287].

4. Human-based algorithms the algorithms here are

inspired by activities performed by or behaviors of

humans. Human beings perform various activities that

affect their performance, and researchers use these

behaviors to develop algorithms. The two most popular

algorithms in this category are teaching–learning-based

optimization (TLBO) by Rao et al. [200] and league

championship algorithms (LCA) by Husseinzadeh

Kashan [105]. Others include exchange market algo-

rithm (EMA) by Ghorbani and Babaei [81], seeker

optimization algorithm (SOA) by Dai et al. [49], and

social-based algorithm (SBA) by Ramezani and Lotfi

[197].

2.3 Scientific background

This subsection presents the mathematical background of

the feature selection problem and its multiclass approach.

The feature selection problem is mathematically repre-

sented as follows: If a dataset ‘‘s’’ contains ‘‘d’’ feature

numbers, then the problem involves the mechanism for

choosing the best subset from ‘‘d’’ features. If we have a

dataset s ¼ f1; f2; . . .; fdf g. This aimed at selecting the best

subsets of features from s. Remove subset of d ¼
f1; f2; . . .; fnf g where n\d and f1; f2; . . .; fn. This signifies

the features of whichever dataset.

In Sánchez-Maroño et al. [211], a wrapper-based

method of combining ANOVA with functional networks

was proposed to estimate the function of f in terms of n

input variable, f ¼ x1; x2; x3; . . .; xn through the

approximation of its component function known as AFN-

FS, which serves as our reference point. This same integer

function may also be written to be the sum of the 2n

orthogonal summands:

f x1; x2; . . .; xnð Þf0 þ
X2n�1

v¼1

fv xvð Þ ð1Þ

Here, v denotes each subset possible with n variable input

and f0 constant corresponds to no argument function. Each

of the functional component fv xvð Þ in the above expression

is approximated by the AFN technique as:

fv xvð Þ ¼
X2n�1

j¼1

cvjpvj xvð Þ ð2Þ

In the equation above, cvj represent parameters that are

supposed to be estimated where pv represent the

orthonormalized basis functions set [35].

A problem of optimization was solved by utilizing the

cvj parameters to learn:

Minimize J ¼
Xm

s¼1

e2
s ¼

Xm

s¼1

ys � ŷsð Þ2 ð3Þ

In Eq. 3, m is the available number of samples and ys is

the output desired for sample s and ŷs is the output esti-

mated to be attained by:

ŷs ¼ f̂ x1; x2; . . .; xsnð Þf0 þ
X2n�1

v¼1

Xkv

j¼1

cvjpvj xsvð Þ ð4Þ

Immediately the cvj parameters become learned, it leads

to the derivation of two sets of indices called the Global

Sensitivity Index (GSI) and Total Sensitivity Index (TSI).

The former shows the relevance of the variance in each of

the functional components in Eq. 1, while the latter shows

each feature’s relevance. These two indices can be

expressed as follows:

Fig. 5 Classification of metaheuristic algorithms
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GSIv ¼
Xkv

j¼1

c2
vjv ¼ 1; 2; . . .; 2n � 1; TSIi ¼

X2n�1

v¼1

GSIvxi 2 v;

i ¼ 1; . . .; n:

ð5Þ

Those two indices allow ascertaining the relevant fea-

tures individually or combined with the others. To advance

its application scope, the AFN-FS was modified due to its

limited complexity function in Eq. 4 by employing incre-

mental approximation as follows:

ŷs ¼ f0 þ
Xn

i¼1

Xkv

j¼1

c2
ijpj xsið Þ ð6Þ

In Eq. 5, s indicate a particular sample, and the initial

feature is represented by n and ki represent the function set

for the estimation of the univariate component of i. The

approximation complexity can be increased as soon as

some sets of features are cast off by adding other compo-

nents. This process is iterative to take away as many fea-

tures as possible. It, however, does not diminish the

approximation of the mean accuracy.

Further, since this study focuses on the wrapper

approach to multiclass feature selection, we present the

mathematical background to the multiclass concept and its

problem structure. The multiclass output is denoted by

utilizing a distributed representation, that is, giving a set of

classes of L, ys as the output is derived by L elements such

that ysl ¼ 0 0 to indicate that it is not included. This

changes the optimization challenge of multiclass classifi-

cation to:

J ¼ �
X

s

XL

l¼1

ysl ln ŷsl þ 1 � yslð Þ ln 1 � ŷslð Þf g ð7Þ

ŷsl is the estimate of the desired output ysl which indicates

that sample s might probably belong to class l. The con-

sideration is that the sample belongs to the class having the

highest value of ŷsl.

The other approach to multiclass issues entails trans-

forming this problem into many binary ones. The different

ways of achieving this task are by using the method of

ECOC—error correction output codes [56]. This technique

transforms its output by utilizing a matrix Mk�c with the

number of classes cð Þ in the column and the classifiers

number (k) as rows. These schemes are often represented

[99] as:

• One-versus-rest here, one classifier is used for each

class (k ¼ c) which transforms an issue with c classes

into c binary ones.

• One-versus-one with 1 vs. 1, each classifier is generated

for every class pair. So, we have classifiers k ¼ c c�1ð Þ
2

3 Methodology and technique of paper
collection

This section explained the procedure employed to select,

collect, and review papers. Discussion of keywords or

techniques search, databases or data sources, and criteria

for inclusion & exclusion were presented. This study fol-

lowed the systematic review approach [8], and we got a

guide from work done by Agushaka & Ezugwu [12].

3.1 Search keywords

The study selected some keywords as our search criteria on

the data sources or databases to achieve our review

objectives. These include multiclass, feature selection,

metaheuristics, and algorithms. Initially, the search activi-

ties began in September 2021, and the final search for

articles was done in March 2022. The papers from the

search output were scanned for relevance to collect addi-

tional articles from their in-text citation and reference

areas.

3.2 Academic data sources

This study used the appropriate keywords to search and

select relevant articles from the available literature. The

target was particular to articles published in trustworthy

peer-reviewed journals, conference proceedings, and edited

books indexed in Scopus, Elsevier, IEEE Xplore, Springer

link, Research gate, Google Scholar, and Web of Science

databases. Also, the study considered those repositories as

having high-quality, highly ranked, and internationally

recognized articles published in SCI-index journals and

conference proceedings. The number of articles reviewed

sums up to 221. The keywords above formed our search

bases in the named repositories from 2000 to 2022.

3.3 Inclusion or exclusion criteria

To solely extract relevant articles from the literature, we

framed a few criteria for inclusion and exclusion. After

scanning the titles, abstracts, methodologies, conclusion, or

the entire content in other cases, we include or exclude the

articles using the set criteria. Table 1 shows the criteria for

selection.

3.4 Eligibility

The eligibility of the articles selected was determined by

the set inclusion or exclusion criteria. A total of 40 related

articles were selected from Scopus, 67 from Elsevier, 40

from IEEE, 39 from Springer, 13 from Google Scholar, and
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27 from Web of Science. On Scopus, 39 articles were

published in peer-reviewed journals and one conference

proceeding; Elsevier published the highest number of

articles; IEEE published 29 peer-reviewed journal articles

and 11 articles in conference proceeding; in Springer, 32

articles in peer-reviewed journals and two articles in con-

ference proceeding were included; 25 articles in peer-re-

viewed journals and two articles in conference proceeding

were reviewed from Web of Science, and 11 journal arti-

cles and two book chapters were reviewed from Google

Scholar which sum up to 221 articles. The number of

articles presented here was obtained after applying the

inclusion and exclusion criteria. Therefore, more articles

were obtained after the search using the aforementioned

keywords, which were then excluded based on the exclu-

sion criteria.

4 Metaheuristic algorithms for multiclass
feature selection

Most of the classification metaheuristic algorithms are

binary. However, several real-world problems are not

dichotomous, i.e., 0 or 1, yes or no, true or false, present or

absent. Therefore, the need to extend binary feature

selection for multiclass becomes essential. Multiclass

classification is more complex than a binary variant. Only

the decision boundaries of one class are to be known in the

binary selection, while in multiclass classification, numer-

ous limitations are involved in binary feature selection.

This study considers multiclass variants of metaheuristic

algorithms to get the relevant feature. We considered four

categories of all multiclass variants of metaheuristic algo-

rithms: evolutionary-based, swarm intelligence base,

human-related, physics base, and finally, we examined

some hybrid versions that combine two or more

metaheuristic algorithms in solving problems in multiclass

feature selection.

4.1 Evolutionary algorithms

We observed that this category of algorithms seems to

receive the least attention in solving multiclass feature

selection problems. A limited number of these algorithms

were developed recently, i.e., from 2000 to 2022. Table 2

shows the list of available metaheuristic algorithms

developed within the specified years. The popular genetic

algorithm was combined with a support vector machine

(SVM) classifier to solve binary or multiclass feature

selection problems and parameter optimization in the

hospital expense model [235]. Still, its year of development

is out of the scope of this study. Although we considered

this in the hybrid method. Simon [222] proposed a bio-

geography-based optimization that was used to solve a

real-world sensor selection issue used in the health esti-

mation of aircraft engines. The algorithm’s performance

was tested on fourteen standard benchmarks and was

compared with seven population-based optimization algo-

rithms like GA, DE, ACO, SGA, and PSO. The result

shows that BBO and SGA outperformed seven out of

fourteen benchmarks. Table 1 presents the list of meta-

heuristic algorithms for feature selection that falls under

evolutionary-based from 2000 to 2022.

4.2 Swarm intelligence

Swarm-based metaheuristic algorithms have recently

received the most significant attention from researchers.

Swarm intelligence systems comprise a population of

simple agents interacting locally and in their immediate

environment. They are usually a biological system that

draws their inspiration from nature. The agents follow a

simple procedure even though no central management

Table 1 Criteria for inclusion or exclusion

Inclusion Exclusion

Articles that utilized the wrapper-based metaheuristic approach to

solve feature selection problems

Although we mentioned the various supervised methods, we excluded

the work using filter approaches to solve the feature selection

problem

Articles published in areas of feature selection between 2000 and 2022

in multiclass situations, either as multiple binaries to solve multiclass

problems or as single multiclass problems

Articles employed in binary problem areas within the years specified

and the ones used in multiclass situations before the year 2000

Articles from trustworthy peer-reviewed journals, edited books, and

conference proceedings from Scopus, Elsevier, IEEE Xplore,

Springer link, Research gate, Google Scholar, and Web of Science

databases

Articles that were published as part of abstracts, keynote speeches,

editorials, and textbooks

Articles that were reported in English Language Articles that were reported in other languages
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structure controls how the individual agent is meant to

behave [213]. A clear benefit here is ‘‘autonomy’’ since the

agents are not controlled by external management, and

each agent represents a solution to a particular problem.

Also, due to their self-coordination, we can say that the

swarm is robust, providing no single point of failure.

Another benefit deduced from their behavior is ‘‘self-or-

ganization’’ [32]. Examples of the renowned algorithms in

this group include particle swarm optimization (PSO), ant

colony optimization, artificial bee colony (ABC) opti-

mization, and others. Many of these algorithms were

recently proven to provide appropriate outcomes in a large

type of actual-world applications [59]. Figure 6 shows a

general framework for swarm intelligence algorithms that

must obey some fundamental phases.

This section describes some swarm intelligence meta-

heuristic algorithms in selecting multiclass classification

problems with their modifications and the dataset used.

Table 3 presents a comprehensive list of SI metaheuristic

algorithms developed between 2000 and 2022 to solve

feature selection issues. Although this might not be all, it

shows the attention given to SI in the last two decades.

Moreover, Fig. 7 represents the role of classifiers in feature

selection.

4.3 Ant lion optimizer

The ant lion optimizer (ALO) imitates the chasing system

of antlions in nature. It was developed by Mirjalili

[152, 153] and implemented using five significant steps of

chasing prey by the ants: the ant’s random walk, building

their traps, catching their prey, entrapping ants, and traps

re-building. A new feature selection technique was pro-

posed by Wang et al. [250] based on a modified ALO

Table 2 List of evolutionary-based metaheuristic algorithms

Algorithm acronym Name References

HMO Honey-bees mating optimization algorithm Abbass [1]

GBE Queen-bee evolution Qin et al. [191]

BBBC Big bang–big crunch Erol and Eksin [67]

CMAES Covariance matrix adaptation evolution strategy Iruthayarajan and Baskar [108]

IWO Invasive weed optimization Rad and Lucas [193]

SWOA Small-world optimization algorithm Du et al. [57]

GSO Group search optimization He et al. [95]

ICA Imperialist competitive algorithm Atashpaz-Gargari and Lucas [25]

GSO Group search optimizer He et al. [95]

DS Differential search algorithm Civicioglu [42]

BSA Backtracking search optimization Civicioglu [44]

CRO Corel reefs optimization Salcedo-Sanz et al. [208]

FPA Flower pollination algorithm Yang et al. [270]

SFS Stochastic fractal search Salimi [210]

SFO Synergistic fibroblast optimization Dhivyaprabha et al. [55]

Fig. 6 General framework of

swarm intelligence algorithms
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Table 3 List of swarm intelligence-based metaheuristic algorithms

Abbreviation Algorithm name References

BFO Bacteria foraging optimization Passino [181]

BCA Bacteria chemotaxis algorithm Muller et al. [168]

GEP Gene expression programming Ferreira [74]

AFSA Artificial fish swarm algorithm Neshat et al. [176]

WSO Wasp swarm optimization Pinto et al. [182]

CSO Cat swarm optimization Chu et al. [40]

ABC Artificial bee colony Karaboga and Basturk [121]

MS Monkey search Zhang and Liu [280]

FA Firefly algorithm Łukasik and _Zak [143]

BS Bacterial swarming Chu et al. [41]

FS Fish-school search Filho et al. [75]

SFS Stochastic fractal search Salimi [210]

PFA Paddy field algorithm Isaac et al. [109]

BA Bumblebees algorithm Comellas and Martı́nez-Navarro [45]

CS Cuckoo search Yang and Deb [267]

GSO Group search optimizer He et al. [95]

CGS Consultant-guided search Lordache [141]

BA Bat algorithm Yang and Gandomi [269]

FA Fireworks algorithm Tan and Zhu [232]

FA Firefly algorithm Yang [268]

FOA Fruit fly optimization algorithm Pan [178]

FPA Flower pollination algorithm Yang et al. [270]

ACS Artificial cooperative search algorithm Civicioglu [43]

KH Krill herd algorithm Gandomi and Alavi [79]

WSA Wolf search algorithm Tang et al. [234]

DE Dolphin echolocation Kaveh and Farhoudi [124]

SSO Social spider optimization Cuevas et al. [46]

SSO Swallow swarm optimization algorithm Neshat et al. [175]

EVOA Egyptian vulture optimization algorithm Sur et al. [230]

GWO Gray wolf optimization Mirjalili et al. [154]

SSO Shark smell optimization Abedinia et al. [3]

ALO Ant lion optimizer Mirjalili [152, 153]

BSA Bird swarm algorithm Meng et al. [151]

EHO Elephant herding optimization Wang et al. [249]

MFO Moth flame optimization Mirjalili [152]

AAA Artificial algae algorithm Uymaz et al. [243]

DA Dragonfly algorithm Mirjalili [156]

SMO Spider monkey optimization Bansal et al. [28]

BSO Bird swarm algorithm Meng et al. [151]

CSA Crow search algorithm Askarzadeh [24]

WOA Whale optimization algorithm Mirjalili and Lewis [157]

MBF Mouth brooding fish algorithm Jahani and Chizari [114]

BO Butterfly optimization Arora and Singh [22]

GOA Grasshopper optimization algorithm Saremi et al. [212]

PBO Polar bear optimization Polap and Woźniak [185]

SSA Salp swarm algorithm Mirjalili et al. [158]

SHO Spotted hyena optimizer Dhiman and Kumar [53]

EPO Emperor penguin optimizer Jimoh et al. [117]
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called MALO and WSVM in reducing the dimension of

hyperspectral images. They compared the MALO with

other well-known algorithms on some hyperspectral image

datasets, and the result showed that the MALO outper-

formed other methods.

In Zawbaa et al. [277], an optimization technique for the

feature selection problems is proposed, which studied the

antlion optimizer technique’s ‘‘chaotic’’ variance. This

chaotic system attempted to advance the trade-off between

exploitation and exploration phases. The method was tested

with various chaotic maps on some datasets of feature

selection. Medjahed et al. [149] presented a method of

feature selection and a broad cancer diagnostic procedure

using kernel-based learning. The SVM recursive feature

elimination (SVM-RFE) was utilized to prefilter the genes.

Next, the SVM-RFE was improved by utilizing binary

dragonfly (BDF). Experiments were conducted on six

microarray datasets found in the literature. Furthermore,

the result demonstrated the approach’s efficacy and pro-

vided an advanced classification accuracy rate by a reduced

number of genes. Moreover [27], a novel search technique

for minimal attribute reduction based on rough sets and

ALO was proposed. The experiment used University of

California Irvine (UCI) repository datasets, and its results

indicated that features selected by ALO are well classified

with satisfactory accuracy. Emary & Zawbaa [65] modified

the ALO and applied it to feature selection with reliance on

the Lèvy flights called Lèvy antlion optimization (LALO)

algorithm, which was involved in a wrapper-based model

used to pick the combination of an optimal feature that

Table 3 (continued)

Abbreviation Algorithm name References

SSA Squirrel search algorithm Jain et al. [115]

BOA Butterfly optimization algorithm Arora and Singh [22]

EPC Emperor penguins colony Harifi et al. [92]

PFA Pathfinder algorithm Yapici and Cetinkaya [271]

HHO Harris hawks optimization Heidari et al. [97]

SFO Sailfish optimizer Shadravan et al. [218]

SOA Seagull optimization algorithm Dhiman and Kumar [54]

BWO Black window optimization Premkumar et al. [188]

ChOA Chimp optimization algorithm Khishe and Mosavi [130]

MPA Marine predators algorithm Faramarzi et al. [73]

MRFO Manta ray foraging optimization Zhao et al. [288]

GNDO Generalized normal distribution optimization Zhang et al. [282]

RFO Red fox optimization algorithm Połap and Woźniak [186]
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Fig. 7 Role of classifiers in

feature selection
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maximized classification while minimizing the number of

features selected.

4.4 Artificial bee colony algorithm

ABC got its inspiration from the intelligent behavior that

mimics the bee’s food search behavior in the populations.

Dervis Karaboga originally developed the ABC in 2005.

The base algorithm was employed to perform the local

search combined with a random search used for hybrid

optimizations. Shunmugapriya and Kanmani [221] pro-

posed a new mixed technique called AC-ABC. The fea-

tures of ABC and Ant Colony algorithms were combined to

improve feature selection. They attempted to eradicate the

immobility behavior of the ants, including the associated

global search time consumption for original solutions using

the chosen bees. The ACO used the exploitation ability of

the ABC to ascertain the best ant with the best feature

subset, and the bees made use of the generated feature

subsets for their food sources. They used thirteen UCI

benchmark datasets for the evaluation of their algorithm.

Hancer et al. [90] combined a new multi-objective ABC

approach based on a feature selection algorithm with the

non-dominated sorting technique and genetic operators.

They developed two main strategies: ABC with binary

representation and ABC with continuous representation.

They examined the proposed algorithm performance on 12

benchmark datasets. The results show that the method with

the binary model has a better performance in dimension-

ality reduction and classification accuracy than the con-

tinuous model.

Further, Zhang et al. [284] studied a multi-objective

feature selection approach known as a two-archive multi-

objective artificial bee colony algorithm (TMABC-FS).

They proposed two novel operators: diversity-guiding

search for bees that are onlookers and convergence-guiding

search for used bees to find a class of non-dominated

feature subsets with good distribution and merging. Two

archives were employed: the external archive and the lea-

der archive, to improve the ability of diverse types of bees

to search. The hybrid algorithm was validated using several

UCI datasets and was compared with a few traditional

algorithms and multi-objective techniques with evidence

that TMABC-FS is a robust and efficient method in solving

cost-sensitive issues in feature selection. Arslan and Ozturk

[23] offered a new method of feature selection based on

ABC Programming (ABCP). This approach was referred to

as Multi Hive ABCP (MHABCP) to solve a high-dimen-

sional SR problem. They investigated the general perfor-

mance of the MHABCP and its learning capability using

synthetic datasets of actual high-dimensional SR and

compared them with other existing methods. The method

outperformed others in choosing relevant features, reduc-

ing the data dimensionality.

The authors [252] proposed a quick multi-objective

evolutionary feature selection technique, known as

FMABC-FS—fast multi-objective ABC. The algorithm

was applied to many UCI datasets. The results confirmed

that the sample size strategy of the variable is more

appropriate to FMABC-FS, with optimal feature subsets

having less running time than other algorithms. Almar-

zouki [18] utilized the ABC algorithm to select lesser genes

for the classification of cancer disease. This method

employed the CNNs for tumor classification without

including labels. In the testing and training phases, three

cancer datasets were utilized: kidney, lungs, and brain

cancer datasets. This study also presented suggestions on

ways to pre-process and modify gene expression further to

improve the detection of cancer accuracy in future

research.

4.5 Bat algorithm

The echolocation comportment of bats inspired the bat

algorithm. This ability to echolocate microbats is interest-

ing as the bats can locate their prey and categorize different

insect types in total darkness [269]. Bats send sound waves

and receive reflections to find their prey’s actual path and

location. On reception of the sound waves, the bat that

transmits the waves then draws an audio image of its sur-

rounding obstacles and sees them clearly [203]. Since its

development in 2011, the bat algorithm has attracted con-

siderable attention, and researchers have modified it and

developed its versions to solve feature selection issues.

Although a year after its creation, Nakamura et al. [171]

produced a binary version called binary bat algorithm

(BBA) [171], this review’s focus is not on binary classifi-

cation. Taha et al. [231] presented a hybrid of a nature-

inspired bat algorithm and the naive Bayes classifier known

as BANB. This approach explored four perspectives:

classification accuracy, number of features, feature gener-

alization, and stability. The algorithm’s performance was

assessed on twelve datasets taken from various domains

and then compared with the other three popular algorithms

for feature selection. Results indicated that BANB out-

performed in choosing fewer features while the classifica-

tion accuracy was maintained and is more stable in yielding

more feature subsets than other methods.

Again, Jeyasingh and Veluchamy [116] proposed a

modified bat algorithm (MBA). They used simple random

sampling to choose from the subset, some random instan-

ces, and remove irrelevant features from an original feature

set. They applied the MBA to enhance the classification of

radiofrequency to identify breast cancer occurrence. The

MBA was modified by using simple random sampling to
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choose random instances of the dataset, which reduced the

dimension of the feature set, and a random forest trained

those selected features for classification. However, using a

simple random sample might not be appropriate in all sit-

uations and may lead to information loss. Tawhid and

Dsouza [237] proposed a hybrid variant of BA with an

enhanced PSO, which was used to better the performance

of feature selection. They used the PSO algorithm to

increase the merging ability of the hybridized algorithm.

Saleem et al. [209] developed a modified niche-based bat

algorithm (NBBA) with a KNN classifier to solve the

feature subset selection issue. The study used over twenty

standard UCI repository datasets, and the result showed the

capacity of the HBBEPSO in searching feature space.

Hammouri et al. [2, 89] adopted the BA to explore features

subset optimally and increase the cancer classification

accuracy. They combined the wrapper and filter approaches

to improve the feature selection performance, where robust

mRMR was used as a filter method to choose the highly

appropriate feature. The improved BA played the role of

the search strategy for the wrapper method of the final

elements selected.

4.6 Chimp optimization algorithm

Chimp optimization algorithm (ChOA) is a recently

developed metaheuristic method [130] inspired by chimps’

sexual motivation and individual intelligence in their col-

lective foraging that is quite different from the other

predators. It was originally developed to remove two major

problems of local optima trapping and slow convergence in

high-dimensional datasets. After it was developed, Wu

et al. [256] proposed an enhanced version of the ChOA

called enhanced chimp optimization algorithm (EChOA) to

solve feature selection problems. This study discovered

that despite the four divisions of the hunting strategy

baseline algorithm to diversify the population, the algo-

rithm was still limited by local optimum trapping, which

led to the EChOA’s introduction of highly disruptive

polynomial mutation (HDPM) for the population diversity

increment. Three strategies were introduced to enhance the

population’s balance between the exploration and

exploitation phases. The study employed support vector

machine as a learning algorithm known as EChOA-SVM.

The results of the method were compared with other well-

known methods and evaluated using seventeen benchmark

datasets from the UCI repository, which showed the

superiority of the method in terms of higher classification

accuracy and lower feature selected on most datasets.

In the following year, Piri et al. [184] proposed a binary

multi-objective chimp optimization algorithm (BMO-

ChOA) with dual archive and k-nearest neighbors (KNN)

classifier to mine relevant medical data aspects. The study

was evaluated using fourteen various dimensions of med-

ical datasets, and the results showed a better performance

of the BMOChOA in the features selected and accuracy of

performance. The main shortfall of this method is com-

putational complexity and scalability. Furthermore,

Pashaei and Pashaei [180] presented two binary versions of

the ChOA to tackle the feature selection problem. First, S-

and V-shaped transfer functions were utilized to convert

the continuous search space to binary, and in the second

approach, the crossover operator was used to improve its

exploratory behavior. Five high-dimensional biomedical

datasets and other datasets from other domains like text,

life, and image were adopted to evaluate the performance

of the approach. The study was compared with six popular

feature selection methods, including PSO, GA, ACO, etc.

The method outperformed the other methods in the study in

the number of genes selected and the accuracy of classifi-

cation on most datasets.

4.7 Cuckoo search optimization algorithm

The CSO algorithm was inspired by carefully observing the

cuckoo birds’ behavior with their reproduction tactic. It is a

popular algorithm for solving real-world problems. The

way cuckoo birds lay their eggs and reproduction was the

basis for forming this algorithm. The CSO algorithm

commences with a primary population of this bird as other

evolutionary algorithms. The cuckoo’s initial population

has many eggs in the host bird’s nest. Some eggs are more

likely to grow into adult birds, while others are recognized

and damaged by the host bird. Grown eggs indicate the

higher suitability of the area and nest in the search space.

The aim of cuckoo as an optimization algorithm is to dis-

cover the place for a higher survival rate of most eggs

[203]. In 2012, Tiwari [238] proposed a cuckoo-algorithm-

based feature selection to solve the face recognition prob-

lem. He applied the algorithm to an array of feature vectors

extracted by an image’s 2-D discrete cosine transform. In

the study, the algorithm searched the feature space for an

optimal feature and employed the classifier to locate the

most matching image in the dataset using Euclidean dis-

tance. The algorithm outperformed PSO, which made him

conclude that the cuckoo algorithm is more efficient for

face recognition. Mousavirad and Ebrahimpour-Komleh

[166] introduced a new approach to the cuckoo search

algorithm. The best feature subsets were initially chosen

using the CSO algorithm, and then KNN was used as the

classifier. This proposed algorithm was assessed using

some UCI repository’s datasets, i.e., Iris, Wine, Pima,

Glass Classification, and Breast Cancer which was com-

pared with forward feature selection (FFS) & backward

feature selection (BFS), GA-based feature selection (GA-
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FS), and PSO-FS. The result indicates an improved per-

formance classification.

Similarly, Elyasigomari et al. [63] proposed a combi-

nation of cuckoo optimization and harmony search opti-

mization called minimum redundancy and maximum

relevance cuckoo optimization algorithm–harmony search

(MRMR-COA-HS) to solve gene selection problems for

cancer classification. First, the MRMR was used to select

the relevant genes, after which these selected genes were

passed into the wrapper system, which combined the novel

COA-HS algorithm by utilizing the SVM classifier. They

applied the method to some microarray datasets to assess

the leave-one-out cross-validation approach. The perfor-

mance assessment was conducted with other evolutionary

algorithms, and it notably outperformed other methods by

selecting the lower number of genes while maintaining the

highest classification accuracy. Jayaraman and Sultana

[113] introduced artificial gravitational cuckoo search

algorithm (AGCSA) with particle bee optimized associa-

tive memory neural network (PBAMNN) to manage heart

disease-related information gotten from the UCI repository

of heart disease dataset, which has three hundred and three

instances and seventy-five attributed with high dimen-

sionality. The features’ dimensionality was selected

according to the attribute of the AGCSA with notable re-

duction, and the selected features were processed by the

PBAMNN, which was used to improve the heart disease

recognition rate. In Mehedi et al. [150], a method was

proposed to improve the multiclass support vector machine

(MSVM) classifier’s performance by adopting the modified

cuckoo search (MCS) called (MCS-MSVM). This

approach was applied to minimize the challenge of power

quality disturbances. This method showed exceptional

100% classification accuracy when simulated under a

noise-free condition and over 98% under various signal-to-

noise ratios conditions. This approach was utilized in the

electric power network for detesting and classifying power

quality disturbance. The MCS reduced the feature dimen-

sion and the computational bottleneck by selecting a fewer

subset of features.

4.8 Dragon fly algorithm

The dragonfly algorithm (DA) inspired the peculiar flock-

ing comportment of dragonflies in nature. It was developed

by Mirjalili [156] and applied to various problems. Zhang

et al. [283] propose a new feature selection technique

known as IG-MBKH. Information gain (IG) was the basis

for a pre-screening feature ranking method, while an

improved binary krill herd (MBKH) algorithm was inte-

grated. Its results specified the ability of the IG-MBKH

algorithm to achieve convergence improvement, reduced

number of feature subsets, and accurate classification

compared to many new algorithms. Cui et al. [48] pre-

sented a new algorithm for feature selection called hybrid

improved dragonfly algorithm (HIDA), combining the

advantages of both improved dragonfly algorithm (IDA)

with mRMR to produce a suitable feature subset with a

classification of higher accuracy. The performance of

HIDA was examined using ten gene datasets and eight

datasets from the UCI repository. The result showed the

superiority of HIDA. Moreover, in 2021, Chantar et al. [36]

also proposed an improved version of the DA as they

combined simulated annealing (SA) to resolve the local

optima challenge of the DA, and they enhanced the ability

of the technique to select the best feature subsets for

effective classification. The approach utilized a set of fre-

quently used datasets from the UCI repository to test the

performance of the approach. The results showed the

superiority of the hybridized approach. Other DA varia-

tions and application areas are found [198]. Abdelaziz et al.

[2] presented an improved DA for feature selection chal-

lenges. This method proposed three variants of the BDA

using 19 datasets from the UCI repository, out of which 3

were multiclass datasets and were compared with other

literature methods. These approaches, according to the

study, outperformed other methods. However, the efficacy

of these methods was not tested on more multiclass and

large datasets, which will prove their effectiveness in a

real-world scenario.

4.9 Firefly algorithm

The firefly algorithm was inspired by the optical connec-

tion between fireflies in mating and exchanging informa-

tion with light flashes and was introduced in 2010 by Yang

[268]. Kanimozhi and Latha [120] proposed a new tech-

nique in combining the SVM classifier with the earlier

proposed binary form of the firefly algorithm to retrieve

images. The algorithm was over Corel Caltech and Pascal

database images to increase the algorithm’s performance

with optimal features. Zhang et al. [281] proposed a novel

variance of the FA for discriminatory feature selection in

regression models and classification to support decision-

making procedures by employing approaches to data-based

learning. Simulated annealing (SA)-improved local and

global solutions, chaotic-accelerated parameters, and

diversion mechanisms of feeble solutions to circumvent the

possibility of local optimum entrapment and lessen the

untimely convergence problem in the baseline FA meta-

heuristic algorithm. The study evaluated the efficiency of

the proposed model using twenty-nine classifications and

eleven datasets of regression benchmark. The technique

substantially improved over other well-known FA versions

statistically and traditional search methods for various

feature selection issues. Chikara et al. [39] presented an
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upgraded firefly algorithm DyFA-Dynamic FA for feature

selection, which improved convergence rate and reduced

computation complexity using dynamic adaptation in blind

image steganalysis. The study further reduced the compu-

tational complexity by using a hybrid DyFA designed by

collaborative filter and wrapper techniques (DyFA), an

incremental SVM classifier with radial basis function ker-

nel on ten cross-validations to estimate the efficiency of the

DyFA algorithm. Selvakumar and Muneeswaran [215]

presented another feature selection technique based on the

FA for network intrusion detection issues. The method

combines a filter method of feature selection and wrapper

methods of feature selection using the C4.5 & Bayesian

network to pick the final feature subsets and utilized for

KDD CUP 99 datasets. Marie-Sainte and Alalyani [148]

proposed a feature selection approach based on the FA. The

study employed selected features using an SVM classifier

to categorize Arabic texts.

4.10 Flower pollination algorithm

The pollination technique of flowers inspired the flower

pollination algorithm (FPA). Some researchers have pro-

posed binary versions of this algorithm, while others

modified or combined the binary versions to solve multi-

class feature selection problems. In 2015, Zawbaa et al.

[278] proposed a multi-objective flower pollination algo-

rithm (MOFPA) optimization hybrid with a rough set for

feature selection. It explored the abilities of wrapper and

filter-based feature selection techniques. They tested the

MOFPA on eight datasets from the UCI data repository. In

2017, Rajamohana et al. [195] proposed an algorithm that

extracted features using the adaptive binary flower polli-

nation algorithm (ABFP), a global optimization method

applied to spam detection problems. They used naive

Bayes (NB) classifier as an objective function. The result

showed that the ABFPA technique selected only the

informative set and gave a higher accuracy of classification

when compared with other competitive techniques. In

2019, Singh and Kaur [226] proposed the FPA algorithm to

select optimal features. They used three predefined feature

selection algorithms to select the most crucial attribute for

detecting anomalies. The performance was compared on

over ten features from Kyoto 2006? for intrusion detection

system (IDS).

4.11 Fireworks algorithm

The fireworks (FA) by Tan and Zhu [232] is a swarm-based

metaheuristic algorithm inspired by observing fireworks

explosions for complex functions of global optimization.

Xue et al. [261, 266] proposed a novel mathematical

optimization model for supervised classification problems

using FA directly for classification without modification.

Based on the training set, a linear equation set was con-

structed, and an objective function was proposed, which

was optimized by FA. 70% of samples were employed as

the training set. At the same time, four various datasets

were utilized in the experiment. The outcome indicated that

the new approach could accurately identify the label set.

Xue et al. [264] presented a self-adaptive FA (SaFWA) to

solve the optimization classification model competently.

The SaFWA utilized four main candidate solution gener-

ation strategies (CSGSs) to grow the variety of solutions.

They used eight datasets for the experiments to estimate the

performance of SaFWA, and the result indicates that the

approach is feasible in solving classification problems

through SaFWA and the optimization classification model.

4.12 Gray wolf optimizer

The gray wolf optimization algorithm (GWO) was inspired

by the chasing procedure of a group of gray wolves in their

natural environment [154]. The algorithm emulates the

hierarchy of leadership and chasing approach of gray

wolves in their natural setting. The GWO has been used

recently for solving feature selection problems in data

mining. Emary et al. [64] proposed a feature selection

method based on multi-objective GWO in searching for the

most appropriate and useful features, reducing the feature

dimension. The hybrid approach employed the lower

computation complexity in the filter method to advance the

wrapper method’s performances. It was tested using dif-

ferent UCI datasets and achieved much robustness and

stability. Li et al. [138] proposed a novel predictive-based

framework that hybridized an improved GWO (IGWO) and

kernel extreme learning machine (KELM) known as

IGWO-KELM and applied it to problems in medical

diagnosis. The approach was compared with the base GA

and GWO using some well-known disease diagnosis

problems using performance metrics: accuracy of classifi-

cation, the number of selected feature subsets G-mean,

specificity, precision, and F-measure. Its result proved to be

superior to its counterparts.

Moreover, Too et al. [239] proposed a novel viable

binary variant of the gray wolf optimizer (CBGWO) to

solve the feature selection challenge in the electromagnetic

classification of signals. They extracted some time–fre-

quency features from the STFT coefficient, and the new

method was used to evaluate the optimal subset from the

initial dataset. Experimental results showed that the

CBGWO was superior in feature reduction and classifica-

tion performance. It also has a very low cost of computa-

tion which is appropriate for real-world applications.

Sreedharan et al. [229] developed a system for recognizing

facial emotions known as facial emotion recognition (FER)
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that can analyze essential human facial expressions, like

normal, smile, unhappy, angry, amaze, terrified, and irri-

tate. The manner of recognition of the FER system was

categorized into four activities, pre-processing, extraction

of feature, selection of feature, and classification. After pre-

processing, scale-invariant feature transform-based feature

extraction was used to extract the features from the facial

point. A neural network (NN) based on GWO was utilized

to categorize the various emotions from the selected fea-

tures. Kitonyi and Segera [133] presented a hybridization

of a popular metaheuristic optimizer called GWO and

gradient descent algorithm to resolve feature selection

issues. They first compared the approach with the baseline

GWO in twenty-three test functions and developed three

binary implementations, and compared the final imple-

mentation against two implementations of the binary GWO

and binary GWPSO using six medical datasets taken from

the UCI repository on the rate of accuracy, the number of

features selected subsets, precision, F-measure, and sensi-

tivity metrics. A newly proposed hybridized technique

comprised the extended binary cuckoo search, genetic

algorithm, and whale optimization algorithm, which aimed

to reduce the time required to search a huge database

during image retrieval. This approach was compared with

other popular classification algorithms like KNN, NB,

random forest—RF, CatBoost, considering recall, preci-

sion, error rate, F-measure, etc. [118].

4.13 Grasshopper optimization algorithm

Grasshopper optimization algorithm (GOA) was developed

by Saremi et al. [212]. It was modeled mathematically,

mimicked the grasshopper’s swarm behavior in nature, and

was applied to solving challenging problems in structural

optimization. Aljarah et al. [16] proposed a hybridized

approach based on the GOA to enhance the SVM model’s

parameters and simultaneously find the optima features

subset. The method employed eighteen different dimen-

sional benchmark data to test its accuracy. They assessed

the performance of the proposed approach with seven other

popular algorithms. The results indicated that this approach

outperformed other methods in most datasets regarding the

classification accuracy and reduced the number of feature

subsets selected. Zakeri and Hokmabadi [276] proposed a

new feature selection method called GOFS, based on

mathematically modeling the interaction between

grasshoppers to find food sources. They modified the base

GOA to ensure its suitability for feature selection. They

were enhanced by statistical measures in the iteration

processes to change the same features with the most

promising ones. The approach used various publicly

available datasets to test its performance. The results pro-

duced by this method were compared with twelve other

prominent forms of feature selection with indications of the

significance of the GOFS. The study in Khurana and

Verma [132] proposed a combination of tuned grasshopper

optimization algorithms with classifiers. Their meta-

heuristic method aims to determine the significantly

reduced feature subset from all features and improve the

classification performance. They used the random search

technique for tuning the classifiers and adopted KNN &

SVM. They evaluated the performance of the approach

using five multiclass datasets to test accuracy and the area

under the curve—AUC. They computed the results with

some cross-validation techniques. The researchers com-

pared the result of the proposed method with other algo-

rithms, which showed the technique’s performance by

outperforming all the compared prominent methods.

4.14 Harris hawk optimization

After the HHO was proposed in 2019, some researchers

applied, improved, and hybridized it to solve the feature

selection problems. The studies by Hu et al. [102] and Wei

et al. [254] presented a hybrid approach of HHO and

KELM. Wei et al. worked on an intelligent prototype to

predict students’ entrepreneurial intention. The HHO was

utilized to improve the KELM model. Afterward, Gaussian

barebone was used to improve the HHO algorithm to

empower the ability of optimization to tune KELM’s

parameters and identify the compressed feature sets. The

method was referred to as GBHHO-KELM. The study

adopted the use of thirty benchmark problems of CEC 2014

and re-evaluated some popular techniques. The results

showed that the GBHHO-KELM achieved higher stability

and better classification accuracy. However, Hu et al.

combined improved a binary version of the HHO known as

HHSORL and applied the study to predict the severity of

Covid-19 virus infection. Hussain et al. [104] later pro-

posed a hybrid version of HHO with the sine–cosine

algorithm. The SCA was employed to solve the ineffective

exploration of HHO, and the new method was called

SCHHO, which was tested with other well-known meth-

ods. The outcome increased the convergence speed and

produced significant search results with no computational

cost added. Qu et al. [192] proposed a hybrid feature

selection technique known as VNLHHO-variable neigh-

borhood learning Harris hawks optimizer. They also pre-

sented a new activation function to change the incessant

solution of VNLHHO into binary values. The NB classifier

was used to select genes that can assist in classifying tis-

sues of binary and multiclass cancers.
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4.15 Krill herd algorithm

The individual krill behaviors of herding inspired the krill

herd (KH) algorithm. This algorithm is based on swarm

intelligence and bacterial foraging algorithms introduced

by Gandomi and Alavi [79]. The krill movement’s objec-

tive function finds each krill’s minimum distance from

food and the herd’s highest density. After it was developed,

other modifications and hybridization were proposed for

feature selection problems. In Wang et al. [247], the study

a proposed series of chaotic particle swarm krill herd

(CPKH) algorithms to solve optimization tasks within

restricted time situations. Various 1-D chaotic maps were

used instead of the method’s parameter. They assessed the

approach on thirty-two benchmark functions and a gear

train design difficulty, and the results revealed the accuracy

and effectiveness of the CPKH method. Hafez et al. [87]

proposed a hybridization method of monkey algorithm

(MA) for feature selection and KHA called MAKHA. The

system was developed to quickly search the feature space

for a near-optimal subset and minimize a given fitness

function. This method was utilized to choose the optimal

combination of features, thereby reducing the datasets’ data

dimension to increase the performance classification and

select fewer feature subsets. The fitness function employed

focused on classification accuracy as the main objective

and data size reduction as secondary. It was evaluated on

eighteen datasets and proved its advancement over other

methods. In Rani and Ramyachitra [199], the fish swarm

optimization algorithm with SVM and random forest RF

techniques for cancer feature selection and classification

reduced only a few features from the datasets. Next, an

enhanced krill herd optimization (KHO) technique was

used to select the genes, and the RF technique was utilized

to categorize the types of cancer. The random forest clas-

sification was used for its classification accuracy. They

tested the efficiency of this method on ten different gene

microarray cancer datasets. The KHO/RF method outper-

formed the other methods with 100% accuracy of results

for most datasets.

4.16 Polar bear optimization

The PBO algorithm was created by Polap and Woźniak

[185], with its inspiration drawn from the survival of polar

bears in hunting for food in unsuitable weather conditions.

The study modeled the polar bear behavior as optima

solutions’ search engine. The simulated adaptation of polar

bears during harsh winter became an advantage for the

search exploration and exploitation phases, and the popu-

lation control was the birth & death mechanism. From the

literature, we discover that not much work has been done in

developing other variants of the PBO with application to

feature selection. In Haq et al. [91], a binary polar bear

optimization was designed to solve the combinatorial

problems of scalable unit commitment (UC). The method

was also employed to solve the economic dispatch problem

using the conventional lambda iteration method. The work

in Mirkhan and Çelebi [159] proposed a hybrid technique

of rough set and polar bear optimization to find optima

feature reducts which is the main goal of feature selection.

The rough set theory is a potent technique for measuring

the influence of every attribute in a dataset and the effect of

removing an attribute on the accuracy of the dataset. The

heuristic algorithm plays an important role in avoiding the

evaluation of all combinations of features. This method

harnesses the advantage of a polar bear by utilizing a

dynamic population and its birth and death mechanism to

quickly locate optimal solutions by removing irrelevant

candidates and retaining the promising ones. The method

was able to find better optimal reducts considering the size

of the population, time of execution, and number of

iterations.

4.17 Red fox optimization

The red fox optimization was developed by Połap and

Woźniak [186] and was inspired by the hunting methods in

nature of the red fox. The study modeled the exploration

phase using the red fox’s territorial search for food when

they spot a prey afar off as global search and exploitation

using movement within the habitat to get closer to the prey

before attaching as the local search. This study was initially

applied to solve the optimization problem in the engi-

neering field. The algorithm has then been used to tackle

feature selection problems. After its development in 2021,

Khorami et al. [131] proposed a hybrid red fox optimiza-

tion with a convolutional neural network to detect the

COVID-19 virus from sets of X-ray images. Their

approach examined chest X-ray images using a new pipe-

line machine vision-based system for more precise results.

After the X-ray images input was pre-processed in their

method, they segmented the region of interest. After that, a

combination of gray-level co-occurrence matrix (GLCM)

and discrete wavelet transform (DWT) features was

extracted from processed images. The results of the method

suggest adequate efficiency in diagnosing the COVID-19

virus compared to other methods in the literature.

Moreover, Vaiyapuri et al. [244] developed a hybridized

red fox optimizer with a deep-learning-enabled microarray

gene expression classification (RFODL-MGEC) method.

Genes were the features, and the study aimed to advance

classification performance by choosing suitable features.

The RFO was utilized to get optima feature subsets, and a

bidirectional deep neural network was employed to classify
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multiarray gene expression. The neural network parameters

used were tuned optimally using the CGO algorithm. The

approach was able to perform satisfactorily on the datasets

used. However, this method was not used on large-scale

datasets, which may reduce the model’s performance.

Furthermore, Fu et al. [78] presented an improved variance

of the red fox, called developed red fox optimization

(DRFO), which was applied to detect skin cancer. Like that

of Khorami et al. [131], this study employed a pipeline

method to accurately diagnose melanoma from some der-

moscopy images. They segmented the region of interest

using the kernel fuzzy C-means approach after pre-pro-

cessing of images was done. Lastly, an optimized classi-

fication technique, a multi-layer-based perceptron, was

used for the final diagnosis.

4.18 Salp swarm optimization

The salp swarm algorithm (SSO) is a recently developed

algorithm inspired by nature [158] to solve different opti-

mization issues. The base algorithm’s inspiration was

inspired by the flooding behavior of salps crossing and

hunting in aquatic habitats and was employed to solve

engineering difficulties. Ibrahim et al. [106] presented a

hybridized optimization technique for feature selection

problems. The proposed algorithm combined the SSO

algorithm and the PSO called SSAPSO to improve the

efficacy of both exploitation and exploration phases. They

tested the performance of the SAPS using two investiga-

tional sequences. They compared the first with related

methods using benchmark functions. In contrast, the other

was used to determine the best feature set and remove

irrelevance ones from the original datasets using various

datasets from the UCI ML repository.

Also, [242] proposed a technique for selecting optimal

feature subset in the wrapper method and solving feature

selection problems. They included two enhancements into

the base SSA: based learning at the starting phase of SSA

to improve its population diversity in the search space.

Secondly, it included developing and using a new local

search algorithm with SSA to enhance its exploitation. The

KNN classifier was used in the training data as a fitness

function. To validate the performance of the enhanced SSA

(ISSA), they applied it to eighteen datasets from the UCI

repository. They compared it with four common opti-

mization algorithms and four criteria of assessment. The

result showed that ISSA performed better than all the base

algorithms in the fitness function accuracy, reduction of

features in most datasets, and convergence curve. Neggaz

et al. [172] developed a new version of SSA for feature

selection known as improved follower of salp swarm

algorithm, which used the sine cosine algorithm and dis-

rupts operator (ISSAFD), to update the followers’ position

in the SSA by utilizing mathematical functions of sinu-

soidal as inspired by the sine cosine algorithm (SCA).

Twenty datasets were evaluated, four of which were mul-

ticlass, higher dimensional. The results showed the efficacy

of the ISSAFD in reducing feature dimension and fewer

selected features, specificity, accuracy, and sensitivity. The

enhancement improved the exploration phase and avoided

getting stuck in the local zone. Hegazy et al. [96] improved

the structure of basic SSA to enhance the solution accu-

racy, reliability, and convergence speed and was called

ISSA. Inertia weight was added as a new control parameter

to adjust the best solution. This new method was tested in

the feature selection task and was merged with the KNN

for feature selection, where twenty-three datasets from UCI

were employed to test the performance of the ISSA algo-

rithm. Both Tubishat et al. [242] and Hegazy et al. [96] did

similar work in the same year on the same SSA. However,

with a few differences in their methods, both called their

improved variant ISSA. Jain and Dharavath [112] pre-

sented a feature selection technique that improved the

SSOA-salp swarm optimization algorithm called memetic-

MSSOA, which they transformed into binary to get the best

classification accuracy. They compared the efficacy of the

MSSOA with the other five metaheuristic algorithms on

UCI datasets. This approach was applied to detect plant

diseases with superior performance.

4.19 Whale optimization algorithm

The WOA was inspired by the bubble-net chasing strategy

of humpback whales and was proposed by Mirjalili and

Lewis [157]. This algorithm comprises three operators in

simulating the pursuit of their prey, bubble-net foraging,

and encircling prey behavior of the humpback whales. This

algorithm has been used to solve many optimization

problems in recent times. Mafarja and Mirjalili [146]

proposed a novel feature selection based on WOA’s

wrapper method. They discovered that the algorithm had

not been thoroughly applied to feature selection problems.

They proposed two binary modifications of the WOA

algorithm to explore the best feature subsets as classifica-

tion, which are (1) roulette wheel and tournament selection

mechanisms against a random operator in the process of

searching, and (2) mutation and crossover operators were

employed in enhancing the WOA algorithm’s exploitation

phase. They used twenty benchmark datasets in the

approach.

Earlier in 2017, the same researchers proposed a hybrid

WOA with a simulated annealing technique for feature

selection. Their aim for adopting the simulated annealing

in their approach was to ensure enhanced exploitation by

searching the most capable areas that the WOA algorithm

can locate. Nematzadeh et al. [173] presented a filter
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method of feature selection outside the scope of this study.

Zheng et al. [289] presented a novel hybrid algorithm for

feature selection known as the maximum Pearson maxi-

mum distance increased whale optimization algorithm

(MPMDIWOA). In the first instance, a filter algorithm was

proposed named maximum Pearson maximum distance

(MPMD) based on Pearson coefficient and correlation

distance. Next, parameters were projected in MPMD to

fine-tune the weights of redundancy and relevance. Sec-

ondly, the revised whale optimization algorithm acted as a

wrapper algorithm. They verified this method using ten

benchmark UCI machine learning datasets. The outcomes

indicated that the algorithm’s classification accuracy was

meaningfully higher than the other compared algorithms.

In Bui et al. [33], a hybridization of the WOA and

adaptive neuro-fuzzy inference system approach called

WANFIS was proposed to solve feature selection and land

pattern classification problems. The capital of Vietnam,

Hanoi, was selected as a case study due to its complex

surface. They compared the model’s performance with

many benchmarked classifiers using standard indicators

like the Kappa index and receiver operator characteristics.

The result showed the outperformance of WANFIS over

other approaches. In Mandal et al. [147], the researchers

presented a three-stage framework for feature selection

using a wrapper–filter method to detect medical-related

diseases. The approach adopted three classifiers: naı̈ve bay,

SVM, and KNN, with the whale optimization algorithm as

the wrapper-based feature selection method to reduce the

feature subset and achieve higher accuracy at stage three of

their approach. Earlier in their approach, the filter tech-

nique was introduced, including Chi-square, ReliefF, and

mutual information. Later in stage two, they applied the

XGBoost algorithm to get the best feature set. The efficacy

of their approach was evaluated on UCI datasets, and the

results displayed better performance over other popular

techniques. In Too et al. [241], the authors developed two

variants of the WOA called spatial bound whale opti-

mization algorithm (SBWOA) and its simplified version

S-SBWOA in solving the multiclass high-dimensional

problem of feature selection. The study utilized sixteen

high-dimensional feature selection datasets from the Ari-

zona State University repository. The two variants out-

performed other methods in producing higher validation

accuracies, least mean fitness values, standard deviation,

selected features, and computational time. This study

showed significantly reduced features, increased accuracy,

precision, and F-measure compared to the other eight

methods. However, the study could adopt other popular

classifiers apart from the kNN in the future to enhance the

validation accuracy.

4.20 Human related

This section presents a summary of human-based meta-

heuristic algorithms for multiclass feature selection. Since

human activity defers, researchers have developed and still

propose various algorithms that depict the actions of

humans to solve complex problems. Although the literature

shows limited metaheuristic algorithms developed under

this approach, the most popular are the teaching–learning

optimization, brainstorm optimization, and league cham-

pionship algorithms. This section will examine some of

these algorithms applied to solve feature selection prob-

lems and their application areas. Table 4 presents the list of

human-based metaheuristic algorithms developed to solve

feature selection challenges over the years of consideration.

4.21 Brainstorm optimization

Brainstorm optimization (BSO) was proposed by and

inspired by the human brainstorming process [220] and was

applied to data classification. Pourpanah et al. [71] pro-

posed a novel hybridized BSO based and the fuzzy ART-

MAP (FAM) model called FAM-BSO feature selection and

optimization technique for classification problems. The

researchers employed ten benchmark challenges and a case

study in the real world to appraise the hybrid’s ability.

They statistically quantified the results using the bootstrap

approach with very high confidence intervals, which

showed promising results compared with the original FAM

and other procedures. Yun-Tao et al. [275] proposed a new

two-phase evolutionary feature selection technique called

clustering-guided integer brainstorm optimization algo-

rithm (IBSO-C). The study introduced a new strategy and

an integer update scheme for improving the search per-

formance of individuals in BSO. They compared the results

with many existing algorithms using real-world datasets.

The results indicated that IBSO-C could select fewer fea-

ture subsets with high classification accuracy at a less

computational cost. Furthermore, Song et al. [228] devel-

oped the adaptive mechanism-based BSO (ABSO) algo-

rithm built on chaotic local search. They tested its

performance on twenty-nine benchmark functions to

ascertain its effectiveness and stability and compared the

results with other optimization algorithms. Their results

proved that ABSO outperformed those five algorithms

considering its stability and convergence accuracy.

4.22 Gaining sharing knowledge-based
algorithm

The GSK mimics acquiring and disseminating knowledge

in the human lifespan. It was developed by Mohamed et al.
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[163] for solving continuous space optimization problems.

It was developed based on two essential stages: junior and

senior gaining and sharing phases. The performance of

GSK was verified and analyzed using thirty test problems

taken from the CEC2017 benchmark with ten recent well-

known metaheuristic algorithms. Results showed the

robustness, convergence, and quality of GSK delivering

excellent performance in solving optimization problems,

particularly on dimensionally severe issues. Agrawal et al.

[10] presented an improved form of the GSK algorithm to

search for optimal feature subsets. They first represented a

binary version of the GSK utilizing a probability estimation

operator (Bi-GSK) on the main pillars of GSK and intro-

duced a chaotic map to improve the performance of Bi-

GSK. They used twenty-one UCI repository datasets to test

the performance of the Bi-GSK, with its results showing

that Chebyshev’s chaotic map portrayed an improved

performance accuracy and convergence rate. It also out-

performed other metaheuristic algorithms considering fit-

ness value, efficiency, and the limited number of selected

feature subsets, thereby reducing the dimension of the

original datasets. Agrawal et al. [11] proposed the GSK

algorithm over continuous search space with a total of eight

S-shaped and V-shaped transfer functions used to solve

binary search space problems. They tested performance on

twenty-one UCI repository benchmark datasets and com-

pared the results with some commonly used metaheuristic

algorithms. They performed two nonparametric tests to

investigate the results, which showed superiority

statistically.

4.23 Teaching–learning-based optimization

Rao et al. [200] developed the teaching–learning-based

optimization (TLBO) to optimize the problems in

mechanical design. The TLBO works on the consequence

of teachers’ impact on their students. This population-

based approach ensures that solutions move to a global

solution. They evaluated the algorithm’s effectiveness on

five diverse controlled benchmark test functions with dif-

ferent characteristics and real-world applications. Since it

was initially proposed, researchers have developed some

versions and hybridization to solve feature selection

problems. Allam and Nandhini [17] utilized the TLBO for

optimizing features in automatically diagnosing breast

disease. They employed the naive Bayes classifier to find

the individual’s fitness and multilayer perceptron (MLP),

J48, random forest with logistic regression algorithms to

estimate its efficacy. The results confirmed that the

scheme generated a higher rate of accuracy on the Wis-

consin Diagnosis Breast Cancer (WDBC) dataset in cate-

gorizing the benign and malignant tumors. Sevin and

Dökeroglu [217] hybridized the TLBO algorithm and

extreme learning machines (ELM) called TLBO-ELM to

solve data classification problems under which feature

selection falls. It was tested on some set of UCI benchmark

datasets. Its performance was proven viable for binary and

multiclass classification of data problems compared with

some commonly used algorithms.

Das et al. [51] proposed FSTLBO, a TLBO based on a

feature selection method to find the optimal feature subsets.

This method revises the weak features with strong ones,

and the results indicate a substantial enhancement when

performance was considered compared to some other fea-

ture selection models. The method fulfilled its objective of

increasing performance, reducing the computational cost,

increasing accuracy, removing irrelevant data, and helping

faster model learning. Muhammad et al. [167] presented a

novel text feature selection technique that used an amal-

gamation of rough set theory (RST) and TLBO known as

RSTLBO. They developed four frameworks in the

RSTLBO: the acquisition of standard datasets, dataset pre-

processing,utilizing the RSTLBO method; selected feature

set used by employing the SVM technique. The result

showed that the algorithm produced an improved sentiment

analysis. Rajinikanth and Pavithra [196] presented a

Table 4 List of human-based

metaheuristic algorithms
Abbreviation Algorithm name References

SWOA Small-world optimization algorithm Du et al. [57]

LCA League championship algorithm Kashan [122]

SEOA Social emotional optimization Xu et al. [258, 260]

BSO Brainstorm optimization Shi [220]

TLBO Teaching–learning-based optimization Rao et al. [200]

ASO Anarchic society optimization Ahmadi-Javid [19]

EMA Exchange market algorithm Ghorbani and Babaei [81]

JA Jaya algorithm Venkata Rao [245]

GSK Gaining sharing knowledge-based algorithm Mohamed et al. [163]

SAR Search and rescue optimal planning system Kratzke et al. [134]

CHIO Coronavirus herd immunity optimization Al-Betar et al. [13]
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density-based modified teaching–learning-based optimiza-

tion (DMTLO) to select features, KNN to cater for NaN

values, and classification was done by SVM & Ensemble.

The result proved that the DMTLO outperformed the

existing methods by generating the required number of

attributes. Some binary variants of this algorithm and

application areas of TLBO are not covered in this study,

and an example is a work by Chen et al. [38].

4.24 Physics base

Physics-based metaheuristic algorithms were established

based on the inspiration of physics laws. Some of these

algorithms were applied in solving feature selection prob-

lems in different application areas. This section examines a

few of these physics-based algorithms and their variants

that were proposed in solving feature selection problems in

different areas of application. Table 5 presents the list of

physics-based metaheuristic algorithms for feature selec-

tion issues.

4.25 Equilibrium optimizer

EO is a new metaheuristic algorithm in the physics-based

category based on inspiration from control volume mass

balance models used to estimate equilibrium and dynamic

states and was developed to solve various engineering

problems [72]. This algorithm is referred to as one of the

very influential, fast, and best performance population-

based algorithms for optimization. A new wrapper-based

feature selection algorithm and chaos theory [214] was

proposed. In this approach, chaos theory’s principles were

employed to overcome the slow rate of convergence and its

shortcoming of getting entrapped in local optima, which

exists in the original EO. Therefore, the approach embeds

ten different chaotic maps in optimizing the EO to over-

come the difficulties and accomplish a more robust and

efficient search mechanism. The researchers also used eight

different S & V-shaped transfer functions and tested the

performance on fifteen benchmark datasets and four large-

scale NLP UCI repository datasets. The result showed that

this technique is highly competitive in finding optimal

feature subsets.

In Elgamal et al. [61], the study produced a novel

metaheuristic optimizer called improved equilibrium opti-

mization algorithm (IEOA) with two significant advance-

ments in the original EO. The first applied elite opposite-

based learning (EOBL) to improve its population’s diver-

sity, while the other integrated three new local search

strategies to prevent its local optima trapping problem. The

IEOA enhanced the population’s diversity and the classi-

fication accuracy, feature subsets selected, and an increased

convergence speed. They tested the performance on

twenty-one biomedical benchmark UCI repository datasets.

The results then showed the outperformance of IEOA over

the original EO and other algorithms for most of the

datasets used. Moreover [177], the researchers presented a

hybrid feature selection approach that is based on the

Table 5 List of physics-based

metaheuristic algorithms
Abbreviation Algorithm name References

GSA Gravitational search algorithm Rashedi et al. [201]

CSS Charged system search Kaveh and Talatahari [127]

GbSA Galaxy-based search algorithm Hosseini [100]

EMO Electromagnetic optimization Cuevas et al. [47]

ACROA Artificial chemical reaction optimization algorithm Alatas [14]

Spiral Spiral optimization Tamura and Yasuda [233]

BA Black hole algorithm Hatamlou [94]

WSA Water cycle algorithm Eskandar et al. [68]

RO Ray optimization Kaveh and Khayatazad [125]

MBA Mine blast algorithm Sadollah et al. [205]

CBO Collision bodies optimization Kaveh and Mahdavi [126]

SCA Sine cosine algorithm Sindhu et al. [224]

MVO Multi-verse optimizer Mirjalili et al. [155]

EFO Electromagnetic field optimization Abedinpourshotorban et al. [4]

LAPO Lightening attachment procedure optimization Nematollahi et al. [174]

TEO Thermal exchange optimization Kaveh and Dadras [123]

EO Equilibrium optimizer Faramarzi et al. [72]

ASO Atom search optimization Zhao et al. [287]

NRO Nuclear reaction optimization Wei et al. [253]

HGSO Henry gas solubility optimization Hashim et al. [93]
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Relief filter technique and EO called RBEO-LS, which has

two phases: first utilized the ReliefR algorithm as a pre-

processing step for feature weights assignment and the

second used binary EO (BEO) as a wrapper search tech-

nique. The performance was tested on sixteen datasets from

the UCI database and other high-dimensional biological

datasets. The results displayed that RBEO-LS proved

superior to other well-known algorithms. Further work in

feature selection for biological data classification devel-

oped using the EO can be found in Too and Mirjalili [240].

4.26 Gravitational search algorithm

The GSA was introduced by Rashedi et al. [201]. The basis

of this algorithm was the gravitational law and mass

interactions. The search agents in this approach were an

assembly of masses that cooperate based on the laws of

motion and Newtonian gravity. The algorithm was com-

pared with some popular search techniques, and the results

showed the high performance of the GSA in solving dif-

ferent nonlinear functions. Papa et al. [179] proposed a

combination of algorithms that utilized the optimization

behavior of GSA and the speed of the optimum-path forest

(OPF) classifier called (OPF-GSA) in providing an accu-

rate and quick framework for the selection of features. The

experiments on the datasets gotten from UCI and NTL

datasets, like classification of images, recognition of

vowels, power distribution systems, and fraud detection,

were conducted to evaluate the robustness of the OPF-GSA

against linear discriminant analysis (LDA), principal

component analysis (PCA), and an algorithm based on PSO

for selection of features. Nagpal et al. [170] explored the

power of the wrapper-based GSA in solving feature

selection issues using biomedical datasets. This approach

utilized the GSA and KNN to reduce the number of feature

subsets while improving prediction accuracy. Ing et al.

[107] presented a new system to regulate the best daily

arrangement based on variable photovoltaic (PV) output

generation and the profile data load. The results indicated

that the proposed best daily configuration technique could

advance the performance of the distribution network con-

cerning the reduction of power loss, improvement of

voltage profile, and switching minimization.

Furthermore, Zhu et al. [290] proposed an improved

GSA known as IGSA, which adopted the concept of global

memory and the definition of exponential Kbest to improve

the baseline GSA. In this approach, the authors improved

the exploitation ability of the IGSA by memorizing the

optimal solution obtained, thereby preventing the particles

from premature convergence and slow movement, main-

taining an equilibrium between the exploration and

exploitation. Moreover, Taradeh et al. [236], a GSA-based

algorithm with evolutionary mutation and crossover

operators was presented to solve the multiclass feature

selection problems. The method used both KNN and

decision tree classifiers on eighteen popular UCI datasets to

assess the method’s performance. It was compared with

PSO, GA, and the baseline GSA and outperformed the

algorithms mentioned. Kumar and John [135] presented a

hybridized Gaussian-based particle swarm optimization

gravitational search algorithm for wide-ranging feature

selection. This method overcame the shortcoming of get-

ting stuck in local optima and large parameter usage pla-

gued by GSA, PSO, and PSOGSA. SVM was used as a

classifier and was assessed for different benchmark

datasets.

4.27 Sine cosine algorithm

The SCA is a novel metaheuristic algorithm developed by

Sindhu et al. [224] for global optimization using a novel

position update approach. The approach’s position update

procedure for each search agent was generated by two

coefficients: exploration and exploitation rates. Those

coefficients were updated in every run of the algorithm and

presented an appropriate balance between the two phases,

and the performance was evaluated using some benchmark

functions. Experimental results showed faster convergence

speed and achievement of global best with higher accuracy.

Hafez et al. [88] produced a feature selection system that

utilizes the SCA. Typically, the SCA can search the feature

region rapidly to get the best or a near-best subset of fea-

tures by curtailing a particular fitness function. They

evaluated the performance of the approach on eighteen

datasets which showed advancement when compared with

other procedures such as PSO and GA. Khamees & Rashed

[129] presented a novel hybrid method for feature selec-

tion. The approach combined SCA and CS to exploit and

explore the search space to reach the best solution. The

performance was tested on four UCI repository medical

datasets and was compared with the baseline SCA and

other algorithms. The results indicated the method’s effi-

cacy in exploring and exploiting the search space, selecting

the fewest feature subset possible, reducing datasets’

dimensions, and improving a high classification rate with

low run-time on all datasets used. Moreover, Rehman et al.

[202] developed a novel Multi Sine Cosine algorithm

(MSCA), which employed several swarm clusters to

explore & exploit the search space to evade the local

minima or maxima issues. The researchers evaluated the

hybridization performance on different benchmark func-

tions. Statistically, the results showed the superiority of

MSCA in terms of convergence when tested against some

commonly used metaheuristic algorithms.
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5 Hybrid methods

Hybrid metaheuristic algorithms combine two or more best

operators of various metaheuristic algorithms to present a

new enhanced or superior version of the existing ones.

Many hybrid algorithms have been proposed recently, and

hybridization is attracting much attention from the research

community. In feature selection, several hybrid meta-

heuristic algorithms have been proposed to solve this

problem in application to biomedical data, image classifi-

cation, data mining, and many more to obtain optimal

feature subsets from irrelevant, redundant original datasets.

These hybrid algorithms help eliminate the possibility of

trapping in local optima, efficient & effective search space

exploration, avoiding premature convergence, and making

better exploration. This section explains some of the

recently proposed hybrid approaches to selecting the best

feature subset in different application areas.

In addition, Yousefpour et al. [274] presented a hybrid

method with two metaheuristic algorithms to discover the

best feature subset. This study treated this task in two

stages: first was to obtain local solutions using filter–

wrapper methods to reduce the urge dimensional feature

space; second, they used two metaheuristic algorithms to

select optimal subset when integrated with harmony search

(HS) and GA. The experimental results on three mostly

used datasets in sentiment analysis prove the approach’s

efficacy over other base methods in classification accuracy.

Sindhu et al. [225] proposed a hybrid wrapper-based fea-

ture selection technique of biogeography-based optimiza-

tion (BBO) and sine cosine algorithm (SCA) called IBBO

for solving feature selection issues. This method introduced

the position update mechanism of the SCA algorithm into

BBO to improve variety within the habitats. The results

showed the outperformance of most of the datasets when

the performance was checked against fourteen benchmark

datasets from the UCI repository, with seven benchmark

test functions used.

Furthermore, Pirgazi et al. [183] presented a hybridized

filter–wrapper metaheuristic gene selection approach based

on shuffled frog-leaping algorithm (SFLA) and the IWSSr

method for high dimension datasets. They implemented

two main phases in their system: filter, which used ReliefF

for weighing feature, and wrapper, which used the SFLA

and IWSSr algorithms to perform effective feature search.

The result of the experiment showed a more compact

feature set reduction with high classification accuracy. In

Mohmmadzadeh [164], the study used the natural process

of whale optimization & flower pollination algorithms and

an opposition-based learning approach to achieve the

algorithm’s accuracy and convergence speed. The pro-

posed algorithm’s performance was evaluated using ten

UCI datasets in spam email detection. Compared with

some metaheuristic algorithms, the results were efficacious

in the classification accuracy and average feature selection

reduction size. Moreover, Dey et al. [52], the study pro-

posed a hybrid feature selection method of metaheuristic

using a golden ratio optimization (GRO) and equilibrium

optimization (EO) algorithms called the golden ratio-based

equilibrium optimization (GREO) algorithm applied in

recognizing speech emotion. They fed the selected features

by the model into the XGBoost classifier. They considered

linear prediction cepstral coefficients (LPCC) and linear

predictive coding (LPC)-based features as input and opti-

mized using the GREO algorithm. Two standard datasets

were used to assess its high recognition accuracy and

outperformed other well-known metaheuristic algorithms

for feature selection.

Similarly, Qian et al. [190] proposed an upgraded

combined feature selection algorithm comprised of non-

linear inertia weight binary particle swarm optimization

with shrinking encircling and exploration mechanism

(NBPSOSEE) with sequential backward selection (SBS)

known as NBPSOSEE-SBS, to select the best feature

subset and applied in electric charge recovery risk. The

experiment results proved the effectiveness of NBPSO-

SEE-SBS in reducing the significant number of irrelevant

features and improving the prediction results in terms of

the lower execution time compared with a well-known

algorithm with seven other popular wrapper-based features

subset selection techniques used in the prediction of risk of

ECR for power customers. Xue et al. [263] proposed a

modern hybrid selection algorithm comprising the GA and

PSO to enhance the search capabilities of this model, and

KNN was utilized as the classifier. The method’s perfor-

mance was used in some simulations using the learning

array from UCI as a benchmark dataset. Finally, in this

section is the work of [6], the work presented a new hybrid

binary variance of improved chaotic crow search and par-

ticle swarm optimization algorithm (ECCSPSOA with

kNN as the classifier in solving feature selection chal-

lenges. The version of CSA was hybridized with PSO for

better search strategies and convergence into the optimal

global solution within the search space. The method used

15 UCI datasets from popular optimization algorithms with

six different performance metrics. The findings demon-

strated the efficacy of ECCSPSOA in obtaining a median

accuracy rate of 89.67% over the fifteen datasets. The

approach outperformed some commonly used methods

considering standard deviation and fitness value by getting

the least value in thirteen and eight of the datasets con-

sidered. However, a major drawback of the ECCSPSOA is

its selection of more features on seven of fifteen datasets

used. A newly proposed hybridized technique comprised

the extended binary cuckoo search, genetic algorithm, and
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whale optimization algorithm aimed at reducing the time

required to search a huge database during image retrieval.

This approach was compared with other popular classifi-

cation algorithms like KNN, NB, RF CatBoost, and many

more, considering recall, precision, error rate, and F-mea-

sure [118]. Isaac et al. [109] proposed a hybrid competitive

coevolution model for feature selection that utilized two

nature-inspired paddy field algorithm and spider monkey

optimization. This approach employed SVM as the clas-

sifier and was evaluated on two datasets, producing better

results than each algorithm individually. They applied the

efficacy of this hybridization to diagnose pulmonary

emphysema disease. Basu et al. [29] presented a combi-

nation of harmony search and adaptive hill climbing

approach to feature selection. The researchers used deep

learning based on CNNs—convolutional neural networks

to extract features. The performance was better than other

popular algorithms detecting the Covid-19 virus on CT

scan datasets.

6 Issues and challenges

Although metaheuristic algorithms have solved a series of

feature selection problems, there are still some noticeable

issues and challenges that we will discuss in this section.

6.1 Scalability and stability

In our world today, datasets are growing exponentially,

ranging from thousands to millions. The metaheuristic

algorithms developed in solving feature selection problems

must be scalable to handle the increasing volume of

selecting the best feature subsets from the high-dimen-

sional datasets available. The scalability of feature selec-

tion algorithms has been regarded as a great problem

requiring a sufficient number of samples to get accurate

statistics. Bolón-Canedo et al. [31] noted that little atten-

tion had been given to the scalability of the feature selec-

tion methods as against the training classifiers. The

classifier to be used by the algorithm must also be scalable.

Otherwise, it would not be able to handle the classification

task. Therefore, in designing an algorithm, we conclude

that scalability must be incorporated into the design of

algorithms from the start. Extra attention needs to be

assumed to the scalability of feature selection and classi-

fication to keep pace with the increasing growth of data.

The stability of designed algorithms is another vital

issue to be addressed. As defined by Aggarwal et al. [7],

stability is the sensitivity of the selection process to data

agitation in the training set. It was discovered that after the

perturbation is introduced to training samples, features with

shallow stability can be selected using common feature

selection techniques. In most cases, feature selection

algorithms do not find the same subset for various sample

datasets when attempting to obtain the best subsets clas-

sification. Alelyani et al. [15] discovered that the funda-

mental traits of data can significantly disturb an algorithm’s

stability. A stable feature selection algorithm is as vital as

classification accuracy. The authors in [31, 128, 246] pro-

posed some solutions to stabilize feature selection algo-

rithms. However, developing feature selection algorithms

for high precision and stability classification is still a

challenge.

6.2 Multiclass classifiers

The choice of an appropriate classifier for any feature

selection algorithm is key to its success in obtaining the

best solution. There are different proposed classifiers used

with metaheuristic algorithms to solve feature selection

problems, such as k-near neighborhood (KNN), support

vector machine (SVM), naive Bayesian (NB), artificial

neural network (ANN), random forest (RF), kernel extreme

learning machine (KELM), fuzzy rule-based (FR), C4.5,

ID3, optimum-path forest (OPF). KNN happens to be the

most popular classifier used in the literature, as indicated in

Fig. 7, and can be applied for large dimensional datasets.

SVM is the next most used classifier for feature selection

but mainly was applied to medical datasets like cancer

detection, artery diseases, and intrusion detection systems.

The role of the other classifiers is indicated in Fig. 7 to

describe the classifier for multiclass classification prob-

lems, Lin [140] presented an efficient classifier to deal with

the issue of continuous data explosion and computational

complexity, which has deteriorated the performance and

accuracy of the classification models by adopting multi-

variate statistical analyses. The study exploits the two

advantages of multivariate statistical analyses: their ability

to explore the relationships between variables and locate

the most illustrating features of the examined data and their

ability to solve problems that are stuck by high dimen-

sionality. The study applied the number one advantage to

select relevant feature subsets and the number two to

generate the multivariate classifier. The experimental

results indicated that their model could significantly

improve the classification training time and still maintain

accuracy in multi-class classification problems.

Also, their classifier’s discrimination degree outper-

formed other well-known classifiers. Additional studies

were done that modified or hybridized different classifiers

to practical multiclass feature selection problems. Among

these are [103] hybridized feature selection and SVM

recursive feature elimination (SVM-RFE) to examine

classification accuracy in multi-class problems on Derma-

tology and Zoo databases. Atallah et al. [26] whose work
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designed an intelligent kidney transplant prediction method

to solve the prediction problem by modifying the KNN. A

system that categorized the mammogram images into

malignant, benign, and normal was created by Punithavathi

and Devakumari [189]. The images were preprocessed and

extracted features from the region to train the modified

SVM and KNN classifier. Moreover, Ezenkwu et al. [69]

combined the SVM and random forest classifiers, and

Sesmero et al. [216] formalized and evaluated an ensemble

of classifiers designed to resolve multiclass problems.

In Yijing et al. [272], the study realized that recent work

found in the literature rarely focuses on imbalanced

learning situations in multiclass learning. However, more

attention was given to binary imbalance cases and balance

situations where the regular classifiers display their

strength. They believed that since imbalanced data differ in

their imbalance ratio, class numbers, and dimension, the

classifiers’ performances in learning from diverse datasets

are not the same. This motivated the proposal of a system

of manifold classifiers called adaptive multiclass classifier

system (AMCS), which can handle multiclass imbalanced

learning that can differentiate various types of imbalanced

data. They combined three major components in AMCS:

feature selection, ensemble learning, and resampling,

which were individually selected discriminatively for var-

ious imbalanced kinds of data. They applied the proposed

AMCS in recognition of oil-bearing reservoirs. The results

showed the accuracy of the AMCS in recognizing layers

characters of some good logging data. Mustaqeem et al.

[169] conducted a study to classify cardiac arrhythmia

disease into one of sixteen categories using a wrapper-

based feature selection method and SVM for multiclass

classification. Dataset from the ICU repository was

employed to test the performance of their approach, and

one-against-one and SVM techniques showed superiority

over other classifiers as they got the data accuracy of

81.11% on 80/20 and 92.07% on 90/10 data splits. In

Lausser et al. [137], the study incorporates feature selection

processes in multiclass classifiers considering low cardinal

high-dimensional datasets. Their feature selection method

does not precisely fit into wrapper, filter, and embedded

categories. They saw their two feature selection network

examples as lightly related to the multiclass classifier

system’s structure applied to diagnostic phenotype pre-

diction. They evaluated the performance ability of this

approach using RD, SVM, and KNN on some multiclass

microarray datasets, which proved superior to other

methods on most of the datasets used.

6.3 Datasets

In proving the performance of a metaheuristic algorithm

for feature selection problems, choosing the

suitable datasets is key in selecting the best optima subsets

for the classification and training of classifiers. The datasets

provide a set of scientifically proven data from diverse

application areas for the performance evaluation of any

algorithm. We found that most researchers employed the

various datasets, for example, Iris, Wine, Breast Cancer,

and Heart disease, from the UCI machine learning repos-

itory for performance evaluation from the literature

reviewed. Only a few studies employed datasets from other

warehouses, such as [63, 149], whose work employed

microarray datasets [226], utilized the Kyoto 2006?

datasets [229], tested their approach using JAFFE database

and the Cohn–Kanade, [179] experimented using datasets

from both UCI and NTL datasets, Dey et al. [52] conducted

the performance evaluation of their hybrid approach using

speech emotion recognition (SER) datasets in Surrey

Audio-Visual Expressed Emotion (SAVEE) and Emotional

DB (EmoDB). Sometimes, there is a benchmark challenge

because the performance evaluation depends on a particu-

lar dataset, classes, and classifiers. Comparing feature

selection metaheuristic algorithms with a single dataset and

the same kind of classifiers is better. However, some

classifiers are renowned for multiclass feature selection

problems, while others a suitable for binary issues. Table 6

presents a summary of commonly used datasets for feature

selection problems, references of research work that used

them, and the dataset’s attributes or resource location for

their attributes.

6.4 Objective function construction

A wrapper-based algorithm optimizes a particular objective

function in selecting the best feature subset(s). Due to the

high number of binary feature selection-related work in the

literature, the objective function formulated includes either

classification accuracy maximization or minimization of

the number of subsets selected. Moreover, to combine the

conflicting objectives, most works in the literature con-

structed multi-objective functions to solve feature selection

issues [9, 62, 65, 146, 223, 277] and converted the multi-

objective problem into a single objective problem through

the application of weights on both objectives then per-

formed the algorithm learning. This method has effectively

and efficiently optimized the fitness function and located

the optimal feature subset within particular datasets. This

method has efficiently and effectively optimized the fitness

function and located the optimal feature subset within

specific datasets.

Mathematically, the objective function can be repre-

sented as Z ¼ axþ by where a & b are constraints, x & y

are variables, and Z is the objective function that can either

be minimized or maximized. Any problem that pursues

minimizing or maximizing a linear function depending on
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some constraints determined by any set of linear inequal-

ities is said to be an optimization problem. It can be a

single objective or multi-objective optimization problem.

A generic multi-objective optimization problem [86] can

formally be expressed as:

minimize

xð Þ
: f1 xð Þ; f2 xð Þ; . . .; fM xð Þð Þ

Subject to : xL � x� xU

ga xð Þ� 0; a ¼ 1; . . .; p

hb xð Þ� 0; a ¼ 1; . . .; p

ð8Þ

Here, x 2 RD, D being the number of problem’s variables,

xL and xU represent the lower bound and the upper bound

of the variables, respectively f1; f2; . . .; fM represent the

objective function of M to be optimized, which depends on

p & q, inequality & equality constraints, respectively. To

extend the population-based optimization problems to

multi-objective problems, the authors [82] used three broad

categories of methodologies, which are discussed below:

1. Pareto-based method These methods utilize Pareto-

dominance relations to assess the population’s quality.

Methods here are still in use today; however, it seems

that their ability to solve problems that are more than

three objectives (many-objective) is somehow inade-

quate [110]. Fonseca & Fleming [76] first used the

Pareto dominance relation in a multi-objective genetic

algorithm. The individuals in the population were

ranked using Eq. 9 after evaluating the objective

function.

r1 ¼ 1 þ pi; ð9Þ

where pi represent the number of dominating individ-

uals of the decision vector xi.

2. Decomposition-based methods These methods use

vector weighting and a scalarizing function to break

down a multi-objective problem into smaller subprob-

lems that are single-objective. When these subproblem

sets are solved, it is assumed that a decent estimate of

the Pareto front is attained. Available evidence

suggests that this way of dealing with multi-objective

problems is greatly scalable for multiple objectives

problems. However, difficulties still exist in resolving

this form of method [82].

3. Indicator-based methods This kind of procedure for

solving multi-objective problems is considered promis-

ing, as in [251], which is dependent on developed

metrics in measuring the quality of the set of solutions

gotten from a population-based optimization technique.

The hypervolume is the most notable of these many

indicators presented in the multi-objective optimization

setting [292]. Zitzler et al. [291] noted that the need to

compare analysis relating to the strength and

Table 6 Summary of commonly used datasets for feature selection problems

Datasets Dataset

characteristics

Attribute Associated

tasks

Instances Attributes Missing

values

Authors

Iris Multivariate Real Classification 150 4 No Chaudhary et al. [37], Bhardwaj et al. [30],

Khamees and Rashed [129], Mousavirad

and Ebrahimpour-Komleh [166], Sadat and

Saniee [204], Sánchez-Maroño et al. [211],

Shunmugapriya and Kanmani [221], Xue

et al. [262]

Breast

Cancer

Wisconsin

Multivariate Real Classification 569 32 No Allam and Nandhini [17], Jeyasingh and

Veluchamy [116], Medjahed et al. [149],

Sadat and Saniee [204]

Wine Classification Integer, real Classification 178 13 No Farhad et al. [71], Hegazy et al. [96], Mafarja

et al. [144], Mohmmadzadeh [164], Wu

et al. [255], Xu [259], Zhang et al. [286]

Zoo Multivariate Categorical,

integer

Classification 101 17 No Chantar et al. [36], Huang et al. [103],

Mafarja and Mirjalili [145], Mafarja and

Mirjalili [146],Mohmmadzadeh [164],

Pourpanah et al. [71] , Yijing et al. [272],

Zawbaa et al. [277]

Pima Indian

Diabetics

Multivariate,

time series

Categorical,

integer

N/A N/A 20 N/A Aljarah et al. [16], Jeyasingh and Veluchamy

[116], Mousavirad and Ebrahimpour-

Komleh [166], Shunmugapriya and

Kanmani [221]

Neural Computing and Applications (2022) 34:19751–19790 19777

123



weaknesses of various algorithms birthed the introduc-

tion of these many indicators.

In Mirjalili et al. [158], the researchers applied the

multi-objective optimization problem to solve the design of

engineering problems. The equation in their study without

losing generality is given as:

Minimize:F x~ð Þ ¼ f1 x~ð Þ; f1 x~ð Þ; . . .; fo x~ð Þf g
Subject to : gi x~ð Þ� 0; i ¼ 1; 2; . . .;m

hi x~ð Þ� 0; a ¼ 1; 2; . . .; p

lbi � ubi; i ¼ 1; 2; . . .; n

ð10Þ

where o represent the objectives’ number, m and p,

inequality and equality constraints, respectively, and lbi &

ubi are upper & lower bounds of the ith variables.

6.5 Evaluation criteria for performance checking

Assessing a model’s performance reveals how well it

performs on hidden data. In the practical sense, making

predictions data for the future is the essence of the model.

Hence, it is a significant problem that predictive models

intend to solve. As a result, there is a serious need to

comprehend the context before deciding on a suit-

able metric. Each model tries to address a difficulty with an

objective using a separate dataset [5]. Numerous evaluation

metrics are used in the literature in assessing the perfor-

mance of wrapper-based feature selection metaheuristic

algorithms. The recall and precision were in data classifi-

cation in computer science; area under curve (AUC) was

employed in radar signals; specificity and sensitivity were

used in medical classification. There are other means to

measure the performance of algorithms, and a few of the

well-known performance metrics are discussed here which

were not reviewed in [8]:

1. Standard deviation (SD) This measures the similarity

between various solutions run. A high SD shows

substantial changes in the solution as the function

executes iteratively. It can be mathematically formu-

lated as:

r j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼0 S j

i � l
� �2

N

s

ð11Þ

2. Average of solution This is the ratio of the selected

features and the overall number of features in the

original dataset. It can be mathematically represented

as:

l j ¼
PN

i¼0 S
j
i

N
ð12Þ

7 Application area

Multiclass feature selection has been applied in different

areas of human endeavors. This section details the diverse

application areas of multiclass feature selection. Moreover,

a few studies combined feature selection methods with

deep learning and ML approaches and are applied in some

real-world scenarios, which are as well mentioned in this

section.

The major areas of multiclass feature selection found in

the literature include facial expression classification [229],

cancer diagnosis or detection [66, 116, 149, 187], network

intrusion detection [80, 194, 215, 262], text classification

[132, 148, 265], classification and detection of other dis-

eases [37, 113, 196, 206], image retrieval [118, 120]. Other

application areas include oil-bearing recognition [169],

cardiac arrhythmia disease detection [169], phenotype

diagnosis [137], classification of power quality disturbance

[150], human activity recognition [98], network traffic

classification [30, 70, 219], emotion detection from speech

signals [273], and sentiment classification [84].

In Bhardwaj et al. [30] and Shi et al. [219], robust

techniques were proposed to solve traffic classification

challenges in the imbalance dataset, although both studies

employed different approaches. The former is called their

method global optimization approach (GOA), which

selects the best features and recognizes stable ones. This

method combined various popular feature selection meth-

ods to get optimal feature subsets using different traffic

datasets to solve network traffic problems. They proposed a

novel goodness measure inside the random forest, outper-

forming the well-known feature selection methods in traffic

classification. While the latter adopted feature selection

and deep learning approaches, which proved to have a

better outcome in overcoming the negative effect of mul-

ticlass imbalance and concept drift issues associated with

the machine learning methods. This approach utilized three

main phases: to begin with, useless features were taken out

using symmetric uncertainty, after which deep learning was

introduced to the already selected features to reduce

dimensionality and generate features, and lastly, the

removal of redundant features, which was done by

weighted symmetric uncertainty (WSU). In [34, 83], an

approach was proposed to use radiographic or X-tray

images to detect the Covid-19 virus using the combination

of feature selection techniques with deep learning models,

i.e., CNN and deep neural network, respectively. The latter
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study was carried out in Pakistan with an outstanding

result, which has been adopted for use in the Pakistan

radiology department. Both studies showed more than a

98% accuracy rate, suggesting that combining deep learn-

ing and feature selection techniques could produce a high

accuracy rate. Figure 8 shows the areas of application of

multiclass feature selection in various fields of human

endeavor. Recent research works were conducted to

improve the model’s accuracy.

8 Discussion and future directions

This survey presents a study on various multiclass feature

selection techniques that exist in the literature that have

been applied to high-dimensional dataset classification.

This study revealed the strength and weaknesses of feature

selection metaheuristic algorithms discussed in this section,

given some gaps for future research in this domain.

Furthermore, we found that several metaheuristic algo-

rithms’ variants have not been developed to solve multi-

class feature selection problems. These algorithms include

AAA, ACS, BCO, BMO, CGS, CHIO, CSO, EMA EPC,

EVOA, ES, FBIO, GbSA, HSO, HGSO, LCA, MBA, PFA,

SFL, SSA, SSDO, TCO, TGSR, VCS, VPL, WSA, WSO,

and many more. These algorithms will advance classifi-

cation when their binary and multiclass versions are

developed. Several existing methods could also be

advanced to solve real-world feature selection problems

that are often multiclass. The literature shows that

researchers have faced challenges in obtaining the classi-

fication problem’s best subset.

Although, all metaheuristic algorithms perform differ-

ently in different datasets and problems. However, some of

them have the following strengths:

1. Ability to converge to a true global optimum.

2. Good exploration and exploitation.

3. Ease of implementation.

4. Ability to perform a local and global search.

5. It is suitable for dynamic applications since some can

quickly adapt to change.

The limitations of some of them and possible solutions

include:

1. Existing methods are unscalable and are usually

unstable when dealing with multiple class and higher-

dimensional datasets.

2. Fewer or limited multiclass classifiers exist in the

literature compared with binary ones. The strategy for

tackling multiclass problems could include using a

limited multiclass classifier or decomposing them into

multiple binary forms and solving them iteratively

using a binary classifier, which may be computation-

ally costly.

3. Existing algorithms suffer from slow convergence rates

due to random generation of movement.

4. They are prone to get trapped in local optima or

premature convergence. Certainly, metaheuristic algo-

rithms’ use in feature selection is evolving. Upcoming

research work can concentrate on combining

Fig. 8 Multiclass feature

selection application areas
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metaheuristic algorithms to prevent the shortcomings

of single ones. Although developing this framework

may be demanding, it will present more effective and

satisfactory results.

5. They contain complex operators for selection and

crossover.

6. High computational time. Most of the alerts generated

by algorithms in intrusion detection systems tend to be

fault alarm rates which increases the detection rate due

to unrelated & incomplete features and duplication in

the intrusion detection systems’ datasets. To overcome

these challenges and ensure the development of more

accurate and efficient IDS models, some researchers

have utilized preprocessing methods such as feature

selection, normalization, and hybrid modeling tech-

niques that were usually applied. Therefore, we

recommend more future work hybridizing IDS models

with algorithms to create the feature selection for IDS

with higher predictive capacity. Also, IDS should be

modeled as multiclass problems where detection is

classified into severe, mild, high, medium, or low.

Moreover, future work should reduce the false alert

rate of the metaheuristic feature selection methods.

7. They must tune many metaheuristic algorithms’ hyper-

parameter values, leading to premature convergence.

Future research should be directed toward verifying the

control parameters for metaheuristic algorithms. Few

works found in the literature explore that particular

area(s). The area that can help is hyperparameters for

metaheuristic algorithms in different control parame-

ters test values during the evaluation stage of assessing

the algorithm’s practicality. The accuracy of the

network for a precise duty depends on the parameters’

structure.

8. Many of the algorithms were designed for binary or

real search space only.

Due to the limitations identified, we, therefore, propose

that instead of presenting new algorithms belonging to the

swarm and physics-based methods, emphasis should be

placed on improving and hybridizing the existing meta-

heuristic algorithms in these areas to minimize the identi-

fied disadvantages and are directly applied to solving

multiclass feature selection problems. Although, limited

algorithms have been proposed in evolutionary and human-

based categories. We, therefore, suggest more novel work

in evolution and human-based metaheuristic algorithms to

solve feature selection difficulties that are particularly

multiclass since there is still a significant gap in the

development of metaheuristic algorithms specifically for

multiclass classification methods. Many techniques in the

literature used for multiclass problems combined two or

more existing binary methods or hybridization of other

forms; however, little or nothing was done mainly for

multiclass problems.

The literature moreover revealed that researchers had

faced diverse challenges in obtaining the best-selected

feature sets in multiclass classification problems as single

classifiers seem not to be as effective as combining more

than one, which can take advantage of the strengths of

those classifiers into one improved approach. The litera-

ture’s most utilized classifiers for feature selection prob-

lems are KNN and SVM, which implies that future studies

can be done considering other classifiers. Some classifiers

have attracted less usage in classification issues. Further-

more, we found from the literature that more work was

done in applying feature selection problems to areas like

intrusion detection systems, cancer detection, image clas-

sification, multimedia, text classification [139] and many

more, but little or no work was done in drug classification,

theft detection, and weather prediction. These can be good

areas of application for researchers in this domain to

explore.

Finally, few works were found in the literature where

deep learning models combined with feature selection

techniques proved highly accurate in classification accu-

racy of not below 98% [34, 83, 219]. Therefore, we con-

clude that future studies can be undertaken to harness the

deep learning approach in combination with feature

selection techniques. Also, our study discovered that this

hybrid approach had been conducted and applied to disease

diagnosis or detection only, which particularly influences

the medical science field. In future research, this can also

be extended to other real-world situations such as the field

of technology (spam mail detection, security threat classi-

fication) and the industry—customer purchase behavioral

prediction, and more, not just to solve medical problems

that currently dominate the research endeavors. The future

development of heuristic or metaheuristic approaches may

tend toward the use of other classifiers popular, creation of

more hybrid local search techniques with metaheuristic

methods for more accurate prediction as studied in

[20, 36, 60, 136], multi-objective binary techniques cre-

ation, application to solving medical diagnosis challenges

[180], hybridized wrapper–filter approaches are expected

to be developed, and more real-world application areas

would be embarked upon [184].

9 Conclusion

The current value of data for knowledge discovery in the

digital world has positioned feature selection in an active

and evolving mode. The choice of meaningful data helps

humans remove noisy or useless data subsets from an

original dataset. These assist the different machine learning
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models in learning from a meaningful set of data for pre-

diction and solving real-life problems. Moreover, the rise

in the quantity of digital data from various sources like web

pages, image repositories, databases, social media plat-

forms, and many more indicates the improvement in data

classification.

The recent rapid data creation, exchange, and sharing of

data make data analysis, extraction, and knowledge

retrieval a very daunting task. First, there is a need to

reduce the dimensionality of the available irrelevant or

redundant data to excerpt knowledge and obtain insight

from such data. The feature selection process is a crucial

data preprocessing stage that helps minimize the predictive

model’s data dimension. Though this is a very complicated

and demanding task in terms of computation, if not done

correctly, it may defeat the purpose of removing relevant

feature subsets and the suitability of any predictive model

in real life.

Feature selection is essential in enabling any model’s

faster performance, eradicating loud, less useful data,

improving the model’s accuracy and precision, removing

unwanted features, and increasing the data testing gener-

alization. Although the traditional feature selection meth-

ods have been adopted for classification tasks, these

approaches have failed to significantly reduce the high

dimension of the feature space, producing inaccurate and

inefficient prediction models. An evolving method like

metaheuristic optimization has provided an immerging

standard for feature selection as they yield exciting results

that are precise for best classification as again the tradi-

tional approaches. Metaheuristic techniques have the

inherent ability to effectively improve the accuracy of

computational demands, storage, and categorization.

Therefore, metaheuristics have been applied more and

more in different fields. Nevertheless, a small detail about

best practices for case-by-case usage of these evolving

feature selection approaches is known. The findings in the

literature continue to reveal the most effective ways(s) that,

if not accurately performed, may alter the predictive

model’s real-world application, precision, and

performance.

Based on the reviewed literature, feature selection in

machine learning has attracted much attention. A system-

atic review was conducted in this paper, emphasizing

wrapper-based metaheuristic algorithms to solve multiclass

feature selection problems with metaheuristic algorithms.

Other studies were done in this area center on binary issues,

text classification, multi-objective feature selection by

introducing reliability to cater for missing data, smarm-

based approach, evolutionary-based approach, and many

more, but we found no work in the literature on multiclass

feature selection problems considering the four categories

earlier mentioned. Several techniques aimed at improving

the performance of metaheuristics have been considered.

The little work done in multiclass feature selection as

found in the literature combined two or more binary

approaches to help in multiclass situations. However, some

metaheuristic algorithms can present a higher performance

than others to solve feature selection difficulties in high-

dimensional datasets.
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A swarm optimization algorithm inspired in the behavior of the

social-spider. Expert Syst Appl 40(16):6374–6384. https://doi.

org/10.1016/j.eswa.2013.05.041

47. Cuevas E, Oliva D, Zaldivar D, Pérez-Cisneros M, Sossa H
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159. Mirkhan A, Çelebi N (2021) Finding the optimal features reduct,

a hybrid model of rough set and polar bear optimization. In:

Kahraman C, Onar SC, Oztaysi B, Sari IU, Cebi S, Tolga AC

(eds) Intelligent and fuzzy techniques: smart and innovative

solutions. Springer International Publishing, Cham,

pp 1596–1603

160. Mitra P, Murthy CA, Pal SK (2002) Unsupervised feature

selection using feature similarity. IEEE Trans Pattern Anal

Mach Intell 24(3):301–312. https://doi.org/10.1109/34.990133
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