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SUMMARY

One-stage meta-analysis of individual participant data (IPD) poses several statistical and computational
challenges. For time-to-event outcomes, the approach requires the estimation of complicated nonlinear
mixed-effects models that are flexible enough to realistically capture the most important characteristics
of the IPD. We present a model class that incorporates general normally distributed random effects into
linear transformation models. We discuss extensions to model between-study heterogeneity in baseline
risks and covariate effects and also relax the assumption of proportional hazards. Within the proposed
framework, data with arbitrary random censoring patterns can be handled. The accompanying R package
tramME utilizes the Laplace approximation and automatic differentiation to perform efficient maximum
likelihood estimation and inference in mixed-effects transformation models. We compare several variants
of our model to predict the survival of patients with chronic obstructive pulmonary disease using a large
data set of prognostic studies. Finally, a simulation study is presented that verifies the correctness of the
implementation and highlights its efficiency compared to an alternative approach.
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1. INTRODUCTION

In evidence synthesis, individual participant data (IPD) meta-analysis has several advantages over tra-
ditional meta-analytic approaches based on aggregated study-level statistics. Using individual-level data
allows detailed data checking and transformations, verification and harmonization of variables and model
parameterizations, as well as the application of more appropriate analytic methods, which in turn improve
both the quality of the data and the analysis.

Stewart and others (2012) compare one-stage and two-stage IPD meta-analytic approaches, that is, ana-
lyzing the data in one joint model or aggregating study-level information and combining these aggregated
statistics using conventional meta-analytic methods, respectively. They highlight that one of the main
advantages of a one-stage approach is that it allows the various modeling assumptions to be formulated
precisely and explicitly. Although Burke and others (2017) note that, when all methodological details are
handled properly, one-stage and two-stages techniques should give similar results, one-stage IPD meta-
analysis leads to increased power, handles missing observations more naturally, and takes the correlations
among model parameters properly into account. The main disadvantages of a one-stage approach are the
increased complexity of the statistical model and the potential computational issues with the estimation.

Although many applications focus on synthesizing findings of intervention studies, IPD meta-analysis
can also be used in prognostic and diagnostic settings. Debray and others (2015) compare the main
differences between IPD meta-analysis in intervention research and prognostic/diagnostic studies in their
aims, approaches, and challenges. Debray and others (2013) demonstrate the importance of investigating
the degree of variation of prognostic effects across studies and point out that using average effects when
the heterogeneity is substantial, can be detrimental to the prediction performance.

The focus here is to develop a statistical model based on the mixed-effects extension of the trans-
formation model framework by Hothorn and others (2018) tailored to one-stage IPD meta-analysis of a
collection of prognostic studies. Specifically, we apply our model on a large-scale data set of prognostic
studies focusing on survival prediction of patients with chronic obstructive pulmonary disease (COPD),
provided by the COPD Cohorts Collaborative InternationalAssessment (3CIA, Soriano and others, 2015).
We assess the study-level heterogeneity in the effects of the prognostic factors on the survival of COPD
patients. Additionally, we derive individual-level predictions and compare different variants of our model
based on their predictive performances. Extensions of the “global” prediction model, that is, a fixed-effects
setting, with a single set of coefficients of the prognostic factors that is expected to apply broadly (see
Steyerberg, 2019, Chapter 14), are considered. Our approach is capable of incorporating the most relevant
features of the data for IPD meta-analysis, namely, study-level clustering of observations, heterogeneous
effect sizes, time-to-event outcomes with interval censoring, and the possible presence of non-proportional
hazards.

2. IPD META-ANALYSIS WITH MIXED-EFFECTS MODELS

Combining data of individuals from different studies, which investigate different populations and have
distinctive study characteristics, leads to clusters of correlated observations. A correct statistical model to
analyze such data should account for the correlation structure of the grouped observations in order to draw
valid inferences. Mixed-effects models provide a theoretically attractive approach to model the distribution
of the outcome of interest conditionally on common study-specific characteristics in a one-stage IPD
meta-analysis (Debray and others, 2013).

The heterogeneity in the effects of covariates across various studies can also be assessed and prop-
erly accounted for using mixed-effects models in an IPD meta-analysis (Tudur Smith and others,
2005; Steyerberg and others, 2019). Capturing the various sources of variability correctly is espe-
cially important in prognostic modeling, where external validity of the prognostic model is of primary
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concern (Steyerberg, 2019). In mixed-effects models, multivariate random effects can represent study-level
heterogeneity in baseline risks as well as in the prognostic factor effects.

The estimation of regression models for time-to-event outcomes introduces specific challenges. First,
the presence of various forms of censoring is typical in such settings. Although interval-censoring, due
to periodic follow-up of the patients’ status, is very common in practice, most of the currently available
software implementations of mixed-effects models either only allow for random right-censoring or provide
limited random-effects capability in the case of interval-censored observations (Rondeau and others, 2012;
Therneau, 2020).

There are differences in how various regression models for time-to-event outcomes handle the baseline
hazard rates of the study population. The most popular approach is the Cox proportional hazards model—
and its mixed-effects or “frailty” extensions—, which treats the baseline hazards as nuisance parameters
and maximize the partial likelihood. However, in certain situations, for example, when the primary interest
is to predict the absolute risks for the individual participants, models that aim to describe the full survival
distributions are more appealing. Flexible parametric survival models have been proposed that approximate
the baseline hazards by using spline functions either on the log-hazard scale (Crowther and Lambert, 2014)
or on the log-cumulative hazard scale (Royston and Parmar, 2002; Crowther and others, 2014).

Another important aspect of IPD meta-analysis of time-to-event outcomes is how to account for hetero-
geneities in the baseline risks of different study populations. Prognostic models for IPD should allow for
between-study differences in the outcome distributions, for the same values of the prognostic factors. A
common approach of adjusting for baseline differences is by stratifying for studies, that is, by estimating
a model with separate baseline hazard functions for each study but with common covariate effects in a
proportional hazards setting (Michiels and others, 2005; Tudur Smith and others, 2005). Although this
approach provides great flexibility in accounting for heterogeneities in unobserved characteristics, the
estimation of large number of parameters can pose computational challenges. For this reason, several
authors (Tudur Smith and others, 2005) considered models with frailty terms, that is, random effects that
capture individual baseline characteristics, under the assumption of proportionality to a common baseline
risk.

Violations of the proportional hazards (PH) assumption are common in meta-analyses of survival
outcomes. A common way of relaxing the PH assumption is to allow for time-varying effects of the
covariates. The time-dependent hazard or cumulative hazard ratios can then be estimated, for example,
parametrically by using spline basis functions (Royston and Parmar, 2002; Crowther and others, 2014).

The validation of prognostic models is an integral part of the model-building process. As Steyerberg
and Harrell (2016) emphasize, the evaluation of a prognostic model should address its external validity.
In the context of prognostic models based on IPD from multiple studies, an “internal–external” validation
scheme can be applied to gauge the predictive performance of the model on previously unseen data from
a new study (Royston and others, 2004).

The aim of this article is to introduce the class of mixed-effects transformation models for individual
participant data meta-analysis, and to provide an assessment of the approach in a prognostic setting
based on data from multiple studies. The random effects account for the correlation structure among
the observations in the same study. The heterogeneity in baseline risks as well as in the effects of the
covariates are captured either by stratification or by including multivariate random effects. Moreover,
within this model class, randomly censored observations can be naturally integrated under various forms
of censoring. Greater flexibility may be achieved by introducing time-varying effects for the covariates.
The likelihood-based estimation and inference can be carried out in the R add-on package tramME
(Tamási and Hothorn, 2021a). The estimation procedure is based on the Laplace approximation of the
log-likelihood function, and the gradients are calculated with automatic differentiation (Kristensen and
others, 2016), which makes our approach very efficient in terms of computational speed compared to
alternatives.
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3. METHODS

3.1. Mixed-effects transformation models

Our general statistical framework for one-stage IPD meta-analysis with time-to-event outcomes is moti-
vated as an extension of linear transformation models (Box and Cox, 1964; Cheng and others, 1995) with
multivariate random effects. The transformation functions are estimated from the data using the specific
parameterization proposed by Hothorn and others (2018). In its general form, the regression model for
i = 1, 2, . . . , I studies, j = 1, 2, . . . , ni participants in study i, with q prognostic factors, xij, and individual
survival time outcomes denoted by tij can be written as

P(Tij ≤ tij | X ij = xij, Bi = bi) = 1 − exp
[− exp

{
hi(tij | xij)

}]
(3.1)

hi(tij | xij) = hi(tij) + x�
ij (β(tij) + bi), (3.2)

with normal random effects Bi ∼ Nq(0, �). The transformation model of the conditional distribution
of the outcome in (3.1) is defined by an inverse link function and a conditional transformation function
hi. In our specific application, the inverse link function is set to the cumulative distribution function of
the minimum extreme value distribution, that is, F(z) = 1 − exp(− exp(z)), which leads to the time-
varying extension of the proportional hazards model. The choice of the inverse link function corresponds
to parameterizing the log-cumulative hazard function hi. In an alternative approach for a similar setting,
Garcia and others (2019) use the distribution function of the standard logistic distribution to arrive at
a time-varying extension of the proportional odds model. In general, all real distribution functions with
log-concave density are applicable as inverse link functions (Hothorn and others, 2018). McLain and
Ghosh (2013) discuss that the proportional hazards model and the proportional odds model represent two
special cases in a continuum of transformation models with individual-level gamma-distributed frailty.
In theory, it is possible to estimate the frailty parameter of this term, but in practice it is often unfeasible
(Aalen and others, 2008, Section 6.4.4).

In (3.2), we split up the conditional transformation function (hi) into two parts: the first part, hi(tij),
captures the study-specific baseline risk and the second part, x�

ij (β(tij) + bi), models the—possibly time-
varying—study-specific effects. In this latter part, we already introduced several assumptions: First, the
effects of the covariates are additive to the baseline risks on the transformation scale. Second, at a given
survival time (tij), the effects are linear, and third, the random coefficients (aka “random slopes”) of the
covariates (bi) are time-independent. In certain cases, the random slopes are omitted, which corresponds
to assuming homogeneity in the effects across studies. In the models presented in Section 4, we do not
assume a specific structure for the covariance matrix of the random effects (�), which means that we
estimate q(q + 1)/2 variance–covariance parameters.

The study-level baseline transformation function (hi(tij)), is equal to the log-cumulative baseline hazard
when the inverse link is the minimum extreme value distribution function. Following the parameterization
proposed by Hothorn and others (2018), the baseline transformation and the time-varying fixed effects
β(tij), are approximated with general smooth functions as h(tij) = a(tij)

�ϑ0, with the help of a basis
function a() and the corresponding vector of parameters ϑ0. Section A.1 of the Supplementary material
available at Biostatistics online provides more information on this basis. The approach of approximating the
baseline transformation function with flexible parametric methods is conceptually similar to the model
by Royston and Parmar (2002) or the approach by Liu and others (2016, 2017), with some important
differences in the computational details. Our parameterization relies on polynomials in Bernstein form,
as first suggested by McLain and Ghosh (2013).

The different specifications for IPD meta-analysis examined in this study represent further simplifica-
tions of the fairly general model described in (3.1) and (3.2). The general, study-specific transformation

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
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Table 1. Alternative specifications of the mixed-effects transformation model for IPD meta-analysis.
Specification Properties

Model 1

P
(
Tij ≤ tij | X ij = xij , B�

i = (ai , b�
i )�

) = F
(

h(tij) + ai + x�
ij (β + bi)

)
,

B�
i ∼ Nq+1(0, ��)

• Proportional baseline risks
• Proportional hazards
• Random slopes

Model 2

P
(
Tij ≤ tij | X ij = xij , Bi = bi

) = F
(

hi(tij) + x�
ij (β + bi)

)
,

Bi ∼ Nq(0, �)

• Stratified baseline risks
• Proportional hazards
• Random slopes

Model 3

P
(
Tij ≤ tij | X ij = xij , B�

i = (ai , b�
i )�

) = F
(

h(tij) + ai + x�
ij (β(tij) + bi)

)
,

B�
i ∼ Nq+1(0, ��)

• Proportional baseline risks
• Nonproportional hazards
• Random slopes

Model 4

P
(
Tij ≤ tij | X ij = xij , Bi = bi

) = F
(

hi(tij) + x�
ij (β(tij) + bi)

)
,

Bi ∼ Nq(0, �)

• Stratified baseline risks
• Nonproportional hazards
• Random slopes

Model 5

P
(
Tij ≤ tij | X ij = xij

) = F
(

hi(tij) + x�
ij β

) • Stratified baseline risks
• Proportional hazards
• Fixed effects only

Model 6

P
(
Tij ≤ tij | X ij = xij

) = F
(

hi(tij) + x�
ij β(tij)

) • Stratified baseline risks
• Nonproportional hazards
• Fixed effects only

functions can be simplified as hi(tij) = h(tij) + ai with the extended vector of random effects,(Ai, B�
i

)� = B�
i ∼ Nq+1(0, ��), that is assumed to be the sum of a common baseline risk function

and an additive (on the transformation scale), normally distributed random frailty term. Additionally,
time-independent fixed effects of the covariates can be assumed β(tij) = β, and we can even exclude the
random slopes from our model.

Table 1 summarizes the various versions of the model defined by (3.1) and (3.2) that we estimate in
Section 4. These models differ in whether they assume PH for the covariate effects, in how they handle
the heterogeneity of the baseline risks, and whether they allow for study-level variability of the prognostic
factor effects.

Models 1 and 2 are PH mixed-effects specifications, where the effects of the prognostic factors are
assumed to be constant over time. Moreover, Model 1 captures the differences among study-level baseline
risks using a random frailty term, proportional to a common baseline cumulative hazard function, whereas
Model 2 estimates a separate function for each study in the data set.

Models 3 and 4 include time-varying fixed effects of the covariates, approximated with the use basis
transformations (see Section A.1 of the Supplementary material available at Biostatistics online). These
specifications relax the PH assumption of the previous two variants. Similar to Model 1, Model 3 assumes
proportionality in the baseline risks and introduces an additional random intercept. By contrast, Model 4,
just as Model 2, is stratified for studies for estimating baseline differences in a more flexible way.

Specifications Models 5 and 6 represent a fixed-effects only approach of IPD meta-analysis, to be
compared with the more complex mixed-effects models. These models can be regarded as fully parametric

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
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versions of the Cox regression, both stratified for studies to capture differences in baseline risks. Model 6
allows non-PH, by including time-varying effects.

3.2. Estimation

The parameter vector ϑ = (
ϑ�

0 , β�)�
collects the fixed-effects parameters (either fixed over time or

time-varying, approximated with the help of basis transformations), denoted by β, and the coefficients of
the basis approximation of the (possibly stratified) baseline transformation function, ϑ0. Moreover, the
vector of unobservable random effects (random slopes and intercepts, wherever they are necessary) is
denoted by bi; its normal distribution is parameterized by �. We can write then the likelihood function of
the mixed-effects transformation models as

L (ϑ , �) =
I∏

i=1

∫
bi∈Rq

Li(ϑ , �, bi) dbi =
I∏

i=1

∫
bi∈Rq

ni∏
j=1

Lij(ϑ | bi)φ(bi; �) dbi, (3.3)

where Li(ϑ , �, bi) stands for the joint likelihood function of study i, and Lij(ϑ | bi) is the conditional
likelihood contribution of a participant j in study i, while φ(bi; �) is the multivariate density function of
Nq(0, �). The observations are assumed to be conditionally independent. The likelihood functions of the
fixed effects only specifications (Models 5 and 6) are given in Hothorn and others (2018).

Because the mixed-effects transformation model introduced above parameterizes the conditional dis-
tribution function of the outcome directly, the likelihood contributions of the individual observations
(survival times, defined on tij ∈ [0, ∞)) for exactly observed event times are

Lij(ϑ | bi) = f (hi(tij) + x�
ij (β(tij) + bi))(h

′
i(tij) + x�

ij β
′(tij)), (3.4)

where f , h′, β ′ are the derivative functions of F , h, β, respectively. Under random censoring, the likelihood
contributions can be expressed as

Lij(ϑ | bi) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 − F(hi(tij) + x�
ij (β(tij) + bi)) y ∈ (tij, ∞) “right censored”

F(hi(t̄ij) + x�
ij (β(t̄ij) + bi)) y ∈ (0, t̄ij] “left censored”

F(hi(t̄ij) + x�
ij (β(t̄ij) + bi))

− F(hi(tij) + x�
ij (β(tij) + bi))

y ∈ (tij, t̄ij] “interval censored”.

(3.5)

The maximum likelihood estimates of ϑ and � are obtained by maximizing the natural logarithm
of (3.3),

�(ϑ , �) =
I∑

i=1

log
∫

bi∈Rq
Li(ϑ , �, bi) dbi, (3.6)

with a set of linear constraints that ensure that hi(tij | xij) are monotonically increasing in tij, to guarantee
in turn that the conditional distribution functions are also nondecreasing (see Hothorn and others, 2018).

There are several ways of numerically evaluating the multivariate integral in the log-likelihood function
(Pinheiro and Bates, 1995). The adaptive Gauss–Hermite quadrature gives accurate approximations with
large enough number of quadrature points but becomes infeasible when the dimension of the random-
effect vector is large. In our approach, the integral in (3.6) is approximated with Laplace’s method (see
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Kristensen and others, 2016, and Section A.1 of the Supplementary material available at Biostatistics
online), which can be efficiently implemented even for high-dimensional problems.

Automatic differentiation is used, in conjunction with the Laplace approximation, to efficiently calculate
the exact derivatives of the log-likelihood function (Skaug, 2002). Our approach builds on the Template
Model Builder (TMB, Kristensen and others, 2016), which implements automatic differentiation and
Laplace approximation to perform the maximum likelihood estimation of non-linear latent variable mod-
els. Asymptotic inference can be undertaken utilizing the automatic gradients and the Hessian of the
log-likelihood function (Tamási and Hothorn, 2021a).

4. APPLICATION: IPD META-ANALYSIS OF PROGNOSTIC STUDIES OF COPD PATIENTS

4.1. Description of the study

The large-scale data set provided by the COPD Cohorts Collaborative International Assessment (3CIA,
Soriano and others, 2015) contains 17 843 patients (with 4852 deaths and 91 576 person-years of follow-
up) from a set of 25 cohort studies. The cohorts are very heterogeneous concerning patient characteristics,
geographic location, study sizes, and observed events. Soriano and others (2015) provide additional
information on the search protocol and inclusion/exclusion criteria of the studies in the data set. Bellou
and others (2019) conducted a formal systematic review of prognostic models for COPD outcomes. Using
the PROBAST methodology (Wolff and others, 2019), they identified several prognostic models for COPD
mortality prediction as low risk of bias. All of these models were, at least in part, developed or validated
on subsets of the 3CIA data set.

The outcome of interest is the time to death of patients with COPD. In several cohorts of the data set,
as the patients were followed up monthly, the event-times were rounded to whole months. This kind of
inexactness in event times, that is, time of death only can be ascertained up to an interval of months, is
very common in practice. Although it is done very rarely in applications, the statistical approach should
address this interval-censored nature of the outcome.

Of the available prognostic factors in the 3CIA data set, we used three covariates for our modeling
purposes: age, FEV1, and the modified Medical Research Council (mMRC) dyspnea score. The choice
of focusing on this subset of predictors in the 3CIA data set is motivated by previous results that demon-
strated their use in similar settings (Puhan and others, 2012). The covariates are well defined and their
measurement is standardized, and, as a result, they are routinely included in various prognostic indices
(Bellou and others, 2019). Consequently, these variables were recorded in almost every COPD cohort.
This in turn reduces the risk of problems stemming from inconsistent variable definitions among studies.
Section B of the Supplementary material available at Biostatistics online presents properties of the data
(distribution, missingness, censoring) and explores the between-study heterogeneity in the 3CIA data set.

4.2. IPD meta-analysis with transformation models

The six models specified in Table 1 are estimated on the 3CIA data set using maximum likelihood (see
Section 3). The log-likelihood values of the various specifications are listed in Table 2. As the results
show, the versions with stratified baseline risks, that is, a separate log-cumulative baseline hazard function
estimated for each cohort, result in improved model fits at the expense of considerably larger number
of parameters. Moreover, including random prognostic factor effects and time-varying fixed effects also
increase the value of the log-likelihood.

The estimated values of the mean prognostic factor effects are similar across the six model specifications.
Figure 1 compares the estimates of the fixed effects from the six models, along with their 95% pointwise
confidence intervals, plotted against time. According to the results, all three prognostic factors have
significant effects on the survival of COPD patients on the presented time interval. By construction

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
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Table 2. Summary measures of in-sample fit, model complexity, and out-of-sample predictive per-
formance of the six model variants.

∑
i �

C-OOS
i denotes the aggregated centered out-of-sample

log-likelihood values.The last column shows the order of the models in terms of out-of-sample predictive
performance

Number of parameters Log-likelihood
∑

i �
C-OOS
i Rank

Model 1 18 −27 552.10 1269.16 3
Model 2 124 −27 380.48 1277.59 2
Model 3 30 −27 533.83 1219.42 4
Model 4 136 −27 370.06 1289.83 1
Model 5 118 −27 444.18 1180.41 6
Model 6 130 −27 415.24 1199.27 5

0 50 100 150 200 250

0.04

0.06

0.08

0.10

0.12

Age

Time (in months)

Lo
g−

cu
m

ul
at

iv
e 

ha
za

rd
 r

at
io

A

0 50 100 150 200 250

−0.1

0.0

0.1

0.2

0.3

0.4

mMRC

Time (in months)

Lo
g−

cu
m

ul
at

iv
e 

ha
za

rd
 r

at
io

B

0 50 100 150 200 250

−0.04

−0.03

−0.02

−0.01

FEV1

Time (in months)

Lo
g−

cu
m

ul
at

iv
e 

ha
za

rd
 r

at
io

C

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6

Fig. 1. Conditional mean effects of the prognostic factors and their 95% pointwise confidence intervals.

Models 1, 2, and 5 have time-constant effects, while the other three specifications allow the (conditional)
mean effect sizes to vary over time. Although the models that allow for non-PH indicate some degree of
time-dependence in the prognostic factor effects, especially in the case of age and mMRC, these deviations
are, in general, mild and the various models seem to agree on the magnitudes of the effect sizes.
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Fig. 2. Model 4: 95% pointwise confidence intervals and predictive intervals of the prognostic factor effects on the
log-cumulative hazard scale.

From the results of the mixed-effects models for IPD meta-analysis, we can calculate predictive intervals
for the prognostic factor effects. These intervals provide ranges for effect sizes to be expected for a new,
yet unseen, study. We can approximate these intervals using the asymptotic distribution of the maximum

likelihood estimates as β(t)k ∼ N
(
β̂(t)k , ω̂2

β̂(t)k
+ σ̂ 2

k

)
, where β̂(t)k denotes the maximum likelihood

estimate of the (possibly time-varying) effect of covariate k , ω̂2
β̂(t)k

is its variance, which is calculated

from the asymptotic distribution of the raw model parameters using the delta method, and σ̂ 2
k stands for

the estimated variance of the corresponding random slope. It should be noted that this approach ignores
the uncertainty about the within-study and between-study estimates of the variability in the covariate
effects, hence the true finite-sample predictive distribution is likely to have heavier tails than the normal
approximation.

Figure 2 compares the prediction and confidence intervals for the prognostic factors estimated with
Model 4. The differences between the prediction intervals and the confidence intervals reflect the between-
study heterogeneity in the prognostic factor effects. The results of the figure are presented on the scale of
log-cumulative hazard ratios, which is the scale of the linear predictor in our specifications. The prediction
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intervals for age and FEV1 do not include 0 on the log-cumulative hazard scale, which indicates that a new
study will find prognostic value of these variables with a probability of at least 0.95. Moreover, while the
effect of FEV1, appears to be fixed over time, the negative effect of age on the survival of COPD patients
becomes more pronounced with time. By contrast, the predictive interval for the effect of the dyspnea
score (mMRC) contains 0 at most of the time points presented in Figure 2B, which suggests that a larger
proportion of future studies will not find relevant effects for this factor.

The posterior mode predictions of the random effects also give a sense of the between-study heterogene-
ity in the prognostic factor effects. These and the baseline log-cumulative hazard curves from Models 1
to 6 are presented in Section C of the Supplementary material available at Biostatistics online.

We validated the proposed models and the implementation by comparing our results to estimates from
the flexible parametric PH model developed by Crowther and others (2014) and implemented in the
Stata package merlin (Crowther, 2020). Although the two approaches are formally very similar, there are
important computational differences, which are summarized in Section A.2 of the Supplementary material
available at Biostatistics online. The estimation of the mixed-effects specifications with tramME is 100+
times faster, emphasizing the importance of the developments presented herein, namely, using the Laplace
approximation and automatic differentiation.

4.3. Internal–external validation of predictive performance

We finally assess the predictive performance of the proposed models. Our primary focus here is on
ordering the different specifications (Models 1–6 in Table 1) based on how well their results can be
generalized to future studies. For this reason, we adopt an internal–external validation strategy (Steyerberg
and Harrell, 2016), splitting the sample by studies. In this approach, we essentially perform leave-one-out
cross-validation on the level of studies, and calculate a measure of predictive performance by comparing
predictions to the actual values in the omitted studies.

We compare the model specifications based on their out-of-sample log-likelihood values in a validation
set. The out-of-sample log-likelihood (logarithmic score) is a proper scoring rule that takes the predictive
distribution, not just point predictions, into account (Held and Sabanés Bové, 2014, Chapter 9). Unlike
other traditional measures of discrimination and calibration, the out-of-sample log-likelihoods are easy to
evaluate under various forms of (random) censoring.

A technical difficulty arises from the differences in the extent to which the various model specifications
are applicable in a prognostic setting. In models expressing baseline risks proportional to a common
baseline hazard and capturing differences in study-level baseline characteristics with normally distributed
random intercepts (Models 1 and 3, in Table 1), predictive distributions of survival times can be calculated
by integrating over the distribution of the random effects. In contrast, models with stratified baseline
log-cumulative hazards by cohorts (Models 2, 4, 5, and 6) do not pool information on baseline risks across
studies, and thus additional assumptions have to be introduced to make them suitable to predict absolute
risks, that is, survival probabilities, for observations in a potentially new study. Debray and others (2013)
and Steyerberg and others (2019) outline strategies for dealing with predictions in the case of stratified
baseline risks. In our assessment of predictive performances, we re-estimate the baseline log-cumulative
hazards from the IPD of the validation set. This way, our evaluation concentrates on the generalizability
of the effects of the prognostic factors on individual predictions, and the uncertainties around them, as
captured by the various models.

To make models with stratified and proportional random baseline risks comparable in an internal–
external cross-validation scheme based on out-of-sample log likelihoods, we need to use auxiliary models
that approximate the baseline risks in the validation set, while using the prognostic index estimates
(Royston and Altman, 2013) from the estimation set. Formally, we separate the parameter vector ϑ to the
fixed effects parameters and the coefficients of the basis function that approximates the baseline risks:

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
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ϑ = (ϑ�
0 , β�)�. We then estimate the parameters β(−i) and �(−i) by maximizing the logarithm of the

likelihood, �−i(ϑ
(−i)
0 , β(−i), �(−i)),

�−i(ϑ
(−i)
0 , β(−i), �(−i)) =

∑
ı∈{1,...,I }\i

log
∫

bı∈Rq
Lı

(
(ϑ

(−i)
0

�
, β(−i)�)�, �(−i), bı

)
dbı ,

described in (3.3), leaving the ith cohort out of the sample. In the next step, we fit an auxiliary model
to the validation set by plugging in the maximum likelihood estimates of the prognostic factor effects

and the random-effect covariance matrices, denoted by β̂
(−i)

and �̂
(−i)

, respectively. Finally, to remove
the effect of study-level differences in baseline risks, and make the measure comparable across cohorts,
we center it with the value of the log-likelihood of an unconditional model, fitted to the validation set,

P(Tij ≤ tij) = 1−exp
[
− exp

{
hi

(
tij; ϑ

(i)
0

)}]
. Putting these elements together, the centered out-of-sample

log-likelihood in the ith cohort is calculated as �C-OOS
i = sup

ϑ
(i)
0

�i

(
ϑ

(i)
0 , β̂

(−i)
, �̂

(−i)
)

− sup
ϑ

(i)
0

�0
i

(
ϑ

(i)
0

)
.

Table 2 summarizes the centered log-likelihood values across the cohorts in the 3CIA data set. Based on
these results, the most complex model (Model 4), that is, the model with stratified baseline risks, random
slopes, and time-dependent fixed effects, has the best overall predictive performance. In general, the mixed-
effects specifications resulted in higher out-of-sample log-likelihood values, compared to the fixed-effects
only models. Moreover, stratification (Models 2 and 4) has led to improved predictive performance in our
comparisons relative to the random intercepts alternatives. Finally, models that relax the PH assumption
with time-varying effects tend to have slightly better predictive performance in the data set.

There seem to be substantial differences in the predictive performances of the various models, but it
should be noted that it is hard to interpret these differences on the log-likelihood scale.Although there exist
more traditional measures of predictive performance that are easier to interpret (most notably the c-index),
the out of sample log-likelihood provides a proper alternative for probability forecasts (as opposed to point
predictions) in the presence of interval-censoring and time-dependent effects. Moreover, the study-level
predictive results are clearly not independent, hence the estimation of the variability around the aggregated
out-of-sample log-likelihood values is complicated and beyond the scope of this study.

5. SIMULATION STUDY

We conduct a simulation study to empirically evaluate our proposed model and the estimation method.
Our goals are 2-fold: First, we confirm that our implementation of the mixed-effects transformation model
is correct, and second, we compare the results from our approach to an alternative procedure introduced
by Garcia and others (2019).

In this simulation exercise, we simulate new survival times from a model presented in Section 4.
The time-varying PH specification of Model 3 contains 4D random effects, a frailty term to capture
heterogeneities in the baseline risk across studies and three random slopes for the covariates. Departures
from the PH assumptions are allowed in this model due to the time-varying mean prognostic factor effects.
The conditional distribution function implied by the model can be written as

P
(
Tij ≤ tij | X ij = xij , B�

i = (ai, b�
i )�) = 1 − exp

[− exp
{
h(tij) + ai + x�

ij (β(tij) + bi)
}]

, (5.7)

with B�
i ∼ Nq+1(0, ��). Because (5.7) is a fully specified probabilistic model, we can draw random

samples by the golden rule.
Garcia and others (2019) present an estimation procedure for time-varying proportional odds mixed-

effects models and apply it to perform IPD meta-analysis of clustered time-to-event data. Their approach
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Fig. 3. Comparison of the distribution of the time-varying fixed-effects estimates from the simulation study (500
iterations). (A) The log-cumulative baseline hazard is presented, while (B–D) depict the time-dependent conditional
mean effects of the three covariates.

is based on cutting the observations at distinct time points, and sequentially estimating binary outcome
mixed-effects logistic regression models for each of these splits. As mentioned in the original article, by
setting the link function to a complementary log–log transformation, instead of the logit function, we can
easily modify the procedure to the time-varying PH model (5.7). Although the estimation can be done with
standard software, the procedure is computationally demanding, because we have to estimate one binary
outcome mixed-effects model for each time point at which we wish to evaluate the distribution function.

In the simulation we present below, we generate 500 random samples from the model defined by (5.7),
using the data structure and covariate values of the 3CIA data set, as well as the estimated parameters
we obtained in Section 4. We then re-estimate the mixed-effects transformation model and fit the time-
varying PH mixed-effects model using the procedure by Garcia and others (2019) at the time points t =
30, 50, 90, 120, 150 (t denotes months in the original data set). For simplicity and fairness of comparison,
we do not simulate censored observations and focus on exactly observed event times only.

Figure 3 presents the distribution of the time-varying fixed effects estimates from the two approaches
evaluated at five time points. As the results show, both methods give essentially unbiased estimates for
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the baseline log-cumulative hazard function as well as the time-dependent effects of the three covariates.
Slightly smaller variabilities can be observed in the case of the mixed-effects transformation model,
especially for smaller values of t. Further results of the simulation experiment (variance components,
predictions for study-level effects) are presented in Section D of the Supplementary material available at
Biostatistics online.

In summary, the results demonstrate that our implementation of mixed-effects transformation
models in package tramME correctly recovers the parameters of the true model. A direct com-
parison with the estimation procedure by Garcia and others (2019) shows that the two approaches
are comparable in terms of the estimated fixed effects (for the same individual time points) and
the variance components. However, the simultaneous estimation procedure leads to slightly smaller
variability, especially for smaller values of the outcome. The differences are more pronounced and
show an advantage of the simultaneous estimation when we compare the predictions of the ran-
dom effects. Moreover, the computational efforts of fitting the model simultaneously is about the
same as estimating a mixed-effects regression with a dichotomous outcome at a single sample split.
While fitting the mixed-effects transformation model required on average 40.65 s (median = 39.25,
25th and 75th percentiles = [34.42, 45.28], with a single nonconvergent case), the five model fits
of the sample-splitting approach took 363.49 s (median = 345.46, 25th and 75th percentiles =
[295.73, 409.27]). Consequently, our approach requires less computational resources and scales better,
when we aim to evaluate the model at many values of the outcome.

We run a separate simulation experiment on the effect of misspecifying the inverse link function in a
mixed-effects transformation model. Section D of the Supplementary material available at Biostatistics
online presents results on the bias of the estimated covariate effects in the presence of a misspecified
inverse link function.

6. DISCUSSION

In this article, we proposed mixed-effects transformation models for the analysis clustered data and applied
the method to IPD meta-analysis for time-to-event outcomes in a prognostic setting. We demonstrated
that the model class is suitable for specifying and estimating model variants that are particularly useful
in meta-analysis. Study-level heterogeneity is captured with general multi-dimensional random effects.
Nonproportionality can be incorporated with the use of time-varying prognostic factor effects. Baseline
patient characteristics can be modeled either by using stratified models or by introducing random frailty
terms. Moreover, mixed-effects transformation models can be easily estimated in the presence of various
forms of random censoring and truncation, which makes the approach attractive in many applied settings.

In the analysis of the 3CIA data set, we relied exclusively on the log-likelihood values (both in-sample
and out-of-sample) as main tools of model selection. Other popular model selection criteria (AIC or
BIC) are problematic in the case of mixed-effects transformation models because the parameter space is
restricted to ensure the monotonicity of the conditional distribution function. In our experience, ignoring
that the degrees of freedom are smaller than the number of parameters, for example, when choosing the
polynomial orders, could lead to selecting the incorrect model. Developing tools for model selection in
the class of transformation models is left for future research.

Nonlinear relationships between the outcome and the covariates are common, and several approaches
have been suggested to model these in a IPD meta-analysis context (Sauerbrei and Royston, 2011; White
and others, 2018). Our model could be extended to incorporate such effects for example by using basis
transformations the same way we captured the baseline cumulative hazards or the time-varying effects
(see Liu and others, 2017, for a similar approach). An interesting, although technically more challenging
extension could be a model that includes nonlinear time-varying prognostic factor effects in the form of
2D smooths.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab045#supplementary-data
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It should be emphasized that the potential applications of our proposed model go far beyond the
IPD meta-analysis with survival outcomes presented in this article. In fact, mixed-effects transformation
models can be estimated with any, at least ordered, outcomes. Moreover, due to the modular structure
of the transformation model framework, our approach is easily modifiable and extensible for specific
applications (for some examples, see Hothorn, 2020; Siegfried and Hothorn, 2020). The R package for
maximum likelihood estimation of mixed-effects transformation models (tramME, Tamási and Hothorn,
2021b) readily implements the most important functionality for IPD meta-analysis, with several other
additions planned for the near future.

7. SOFTWARE

The software is available as an R package (Tamási and Hothorn, 2021b), which contains a demo for
estimating the models presented in this article. The R code for replicating the simulation study and
the Stata do file for fitting the models with merlin (Crowther, 2020, version 1.2.0) is available at
https://github.com/btamasi/tramme-ipd-ma.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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