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A common feature that is typical of the patients with neurodegenerative (ND) disease is the impairment of motor function, which
can interrupt the pathway from cerebrum to the muscle and thus cause movement disorders. For patients with amyotrophic lateral
sclerosis disease (ALS), the impairment is caused by the loss of motor neurons. While for patients with Parkinson’s disease (PD)
and Huntington’s disease (HD), it is related to the basal ganglia dysfunction. Previously studies have demonstrated the usage of
gait analysis in characterizing the ND patients for the purpose of disease management. However, most studies focus on extracting
characteristic features that can differentiate ND gait from normal gait. Few studies have demonstrated the feasibility of modelling
the nonlinear gait dynamics in characterizing the ND gait. Therefore, in this study, a novel approach based on an adaptive neuro-
fuzzy inference system (ANFIS) is presented for identification of the gait of patients with ND disease. The proposed ANFIS model
combines neural network adaptive capabilities and the fuzzy logic qualitative approach. Gait dynamics such as stride intervals,
stance intervals, and double support intervals were used as the input variables to the model. The particle swarm optimization
(PSO) algorithm was utilized to learn the parameters of the ANFIS model. The performance of the system was evaluated in terms
of sensitivity, specificity, and accuracy using the leave-one-out cross-validation method. The competitive classification results on
a dataset of 13 ALS patients, 15 PD patients, 20 HD patients, and 16 healthy control subjects indicated the effectiveness of our
approach in representing the gait characteristics of ND patients.

1. Introduction

Neurodegeneration is the progressive loss of structure or
function of neurons, including death of neurons. Many
neurodegenerative diseases, such as amyotrophic lateral
sclerosis (ALS), Parkinson’s disease (PD), and Huntington’s
disease (HD), occur as a result of neurodegenerative pro-
cesses. Such diseases are incurable, resulting in progressive
degeneration and/or death of neuron cells and producing
changes in altered neuromuscular control. Since flexion and
extension motions of two lower limbs are regulated by the
central nervous system, the gait of a patient with a neuro-
degenerative disorder would become abnormal due to de-
terioration of motor neurons [1]. PD and HD are two
neurodegenerative disorders of the basal ganglia, and the

ability to maintain a steady walk with small stride-to-stride
fluctuations is dramatically impaired [2]. Amyotrophic
lateral sclerosis (ALS), which is also referred to as Charcot’s
disease, is a progressive neuromuscular disease caused by the
destruction of motor neurons in the brain and spinal cord
[3]. This causes loss of nervous control of the voluntary
muscles, resulting in the degeneration and atrophy of the
muscles. At the early stage of ALS, weakness of lower motor
neurons would affect the movement function and may lead
to balanced impairment or altered gait rhythm [2, 4].
Therefore, analysis of gait cadence may help us to produce
automatic noninvasive detection of movement disorders
caused by the degeneration of motor neurons.

Several studies have analysed the impact of ND diseases
on the gait dynamics of the subjects. Hausdorff et al. [5]
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found that the ability to maintain a steady gait, with low
stride-to-stride variability of gait cycle timing and its sub-
phases, was diminished for both PD and HD, two typical
disorders of basal ganglia. Furthermore, they found that gait
speed was significantly lower in PD, but not in HD, and
average gait cycle duration and the time spent in many
subphases of the gait cycle were similar in control (CO)
subjects, HD subjects, and PD subjects. In another similar
study, Hausdorff et al. [2] studied the magnitude of the
stride-to-stride fluctuations and perturbations of the gait
rhythm in subjects with ALS disease in comparison with
healthy CO subjects and PD and HD patients. Their study
revealed a longer stride interval for ALS patients than all the
other three compared groups. They also found that patients
with ALS have less steady gait between successive stride
intervals in comparison with control subjects, using the
detrended fluctuation analysis technique.

In order to facilitate automated identification of neuro-
degenerative diseases like PD, HD, and ALS for the clinical
assistant purpose by using gait signals, different machine
learning tools have also been applied in previous studies.
Baratin et al. [6] introduced a wavelet-based scheme for ef-
fective characterization of gait associated with ALS patients.
They extracted features such as entropy that reflects the
regularity of gait and coherence between left and right limbs
from the wavelet approximation part of the raw gait signal.
Then, the classification of ALS gaits and normal gaits was
implemented with a linear discriminant analysis (LDA)
classifier. Wu et al. [7] quantified the gait variability in pa-
tients with PD by counting the signal turns. They found that
the signal turns in the stride interval time series presented
a significant difference between the healthy control subjects
and the PD patients. In another similar study by the same
authors [8], the nonparametric Parzen window method was
utilized to estimate the probability density functions (PDFs)
of gait stride interval time series, and then by computing the
mean of left foot stride interval time series and the modified
Kullback-Leibler divergence of the PDFs between left foot
and right foot as the two features, they realized the classifi-
cation of gait in subjects with ALS and normal subjects by
using the least squares support vector machines (LS-SVM).

These studies suggest that gait cadence exhibits complex
and nonlinear behaviour in both patients with ND diseases
and control (CO) subjects because of the nonlinear dy-
namics of the human system [9, 10]. However, due to the
presence of neurological disorders, the ND patients’ gait
rhythm manifests significant differences than that of the
healthy CO subjects, such as the magnitude of stride-to-
stride gait variability, gait speed [2], and the degree of
asymmetry in gait rhythm [11]. Previous evidence has shown
that discrimination between normal and abnormal gait
could be implemented by means of the statistical, nonlinear
computational method [1, 6, 8, 12]. ANFIS harnesses the
power of two paradigms, fuzzy logic and artificial neural
networks, which have shown significant results in modelling
nonlinear functions [13, 14]. In the ANFIS, the membership
function parameters are learned from a dataset that de-
scribes the system behaviour under the constraints of a given
error criterion [15, 16]. As far as we know, ANFIS has been
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successfully applied in biomedical engineering for different
tasks such as classification [17, 18] and data analysis [19].

In this study, a novel approach based on ANFIS is
presented for the classification of gait cadence between the
patients with ND disease and the healthy subjects. The
ANFIS model combined with the particle swarm optimi-
zation (PSO) algorithm is used to learn the nonlinear gait
dynamics by using five gait cadence signals as the input
variables, and then the classification between patients with
ALS disease and normal subjects is implemented with
a simple distance-based classifier by using the outputs of the
ANFIS model. This paper has been organized as follows: the
description of the gait dataset and an overview of our
proposed method are given in Section 2. The experimental
results and some discussions are presented in Section 3.
Finally, some conclusions are given in Section 4.

2. Methods

2.1. Description of Dataset. The gait dataset used in this study
was contributed by Hausdorft et al. [2], and it has been used
by several different studies [1, 6, 8] to investigate the gait
characteristics of the patients with neurodegenerative dis-
eases. To measure the gait signals, force-sensitive switches
were placed in the subject’s shoe. The gait signals were
sampled at 300 Hz via an onboard analog-to-digital converter
(12 bit). The experimental protocol required that each subject
should walk at their normal pace along a 77 m-long hallway
for 5 min. According to the descriptions in [2], the first 20 s of
the recorded data were excluded to eliminate the start-up
effects and a median filter was applied to remove data points
that had a standard deviation (SD) greater than 3 or were less
than the median value. As we had introduced in our previous
study [20], the gait dataset used in this study provides the
following seven gait parameters: left and right stride interval
(time from initial contact of one foot to the immediate
subsequent contact), left and right stance interval (amount of
time when one foot is on the ground), left and right swing
interval (amount of time when one foot is in the air), and
double support interval (time of bilateral foot contact).

Thirteen ALS patients, fifteen PD patients, and twenty
HD patients were recruited from the Neurology Outpatient
Clinic at Massachusetts General Hospital, Boston, MA, USA.
Also, another sixteen healthy CO subjects were enrolled to
conduct the comparative study. Each subject provided in-
formed consent as approved by the Institutional Review
Board of the Massachusetts General Hospital. There was no
significant difference between the weights and heights of the
CO subjects and the ND patients. The ND patients were not
using a wheelchair or assistive device for mobility and were
free of other ailments that might affect lower extremity
weakness. The presence or absence of symptoms that might
affect the gait was determined by a qualified physician. The
severity of ALS is represented by the time since the onset of
the disease. The Hoehn and Yahr (H&Y) scale [21] and the
total functional capacity (TFC) [22] are used to assess the
degree of neurologic impairment in PD and HD patients,
respectively. Basic information of all the subjects partici-
pated in this study has been listed in Table 1.
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TaBLE 1: Some information about the subjects participated in the experiments.
Mean + SD
Statistical parameter
CcO ALS HD PD
Age (year) 393 + 185 55.6 + 12.8 474 + 12.5 66.8 + 10.9
Height (m) 1.83 + 0.08 1.74 £ 0.10 1.84 £ 0.09 1.87 £ 0.15
Weight (kg) 66.81 = 11.08 7711 = 21.15 7347 + 16.23 75.07 £ 16.9
Gait speed (m/s) 1.35 + 0.16 1.05 + 0.22 1.15 + 0.35 1.0 + 0.2
Disease severity 0 18.3 + 17.8 6.79 £ 3.9 2.8 £ 0.86
2.2. Adaptive Neuro-Fuzzy Inference System (ANFIS) Layerl  Layer2  Layer3  Layer4 Layer 5
2.1.1. Architecture of ANFIS. The ANFIS is a useful neural
network method for the solution of function approximation
problems [23]. An ANFIS produces the mapping relation be-
tween the input and output data by using the hybrid learning Fout
method to determine the optimal distribution of membership
functions. It combines artificial neural network (ANN) and
fuzzy logic. Such a framework makes ANFIS modelling more
systematic and less reliant on expert knowledge. To present the
ANFIS architecture, for simplicity, two fuzzy if-then rules based
on a first-order Sugeno model [15] can be stated as
rulel: if x is A; and y is B, FIGURE 1: Architecture of the ANFIS with five layers.
then zis f,(x,y) = pix+q,y + 1}, "
rule2: if x is A, and y is B, .
O} = w; =y (%) - g (y) fori=12, (4)

then z is f,(x,y) = pyx+q,y +1,

where x and y are the inputs of ANFIS; A; and B; are the
tuzzy sets; f; (x, y) is a first-order polynomial and represents
the outputs of the first-order Sugeno fuzzy inference system;
and p;, g;, and r; are the design parameters that are de-
termined during the training process.

The architecture of ANFIS is shown in Figure 1, and the
node function in each layer is described below. Adaptive
nodes, denoted by squares, represent the parameter sets that
are adjustable in these nodes, whereas fixed nodes, denoted
by circles, represent the parameter sets that are fixed in the
system [23].

In the first layer, all the nodes are adaptive nodes. The
output can be specified as

O =py (), i=12,

,- | @
Oy =pg,_, (), =34

where y1, (x) and pp () can adopt any fuzzy membership
function. For instance, if the bell-shaped membership
function is applied, y, (x) is given by

1
1[G c)a )
where a.

:» b, and ¢; are the parameters set governing the bell-
shaped functions accordingly. These parameters are named
as premise parameters [23].

In the second layer, the nodes are fixed nodes marked by
a circle. They are labeled II, indicating that they serve as
multipliers. The output of this layer can be given as

Un,(x) = (3)

where the output w; represents the firing strength of a rule.
Every node in the third layer is also a fixed node marked

by a circle and labeled N, with the node function of nor-

malizing the firing strengths of the previous layer. The

outputs of this layer can be represented as

w; w;

L= ! fori=1,2.
YW Wt

Oy=w, = (5)
In the fourth layer, the nodes are adaptive nodes. The
output is simply calculated as

O,=w;- f; fori=1,2, (6)
where f, and f, are the fuzzy if-then rules mentioned before
and parameters p;, g;, and r; are also referred to as the
consequent parameters.

The single node in fifth layer is a fixed node. This node
performs the summation of all the incoming signals. The
overall output of ANFIS is given as

o"5=fomzzwi.fizw,

w, + w,

(7)

2.1.2. Learning Algorithm of ANFIS. The aim of the learning
algorithm for this architecture is to tune all the modifiable
parameters, including {a;,b;,¢;} and {p;,q; r;}, so as to
match the ANFIS output with the training data. In this study,
ANFIS employs particle swarm optimization (PSO) algo-
rithm to adjust the parameters of the membership functions
[24]. The PSO techniques have the advantage of being less



computationally expensive for a given size of network to-
pology [25].

PSO is a swarm intelligence technique first introduced
by Eberhart and Kennedy [26] that imitates the social
behaviour of groups of insects and animals such as swarms
of bees, flocks of birds, and shoals of fish [27]. Empirical
evidence has been accumulated to show that the PSO
algorithm is a useful tool for optimization, and it has been
applied to many optimization problems in engineering
[28, 29].

Suppose that the searching space is D-dimensional. A
swarm of N particles are initialized in which each particle is
assigned a random position in the D-dimensional hyper-
space. Let x denotes a particle’s position and v denotes the
particle’s flight velocity over a solution space.

The best historical position of a particle is Pbest. The
global best historical position among all particles in the
swarm is Gbest. Velocity and position of a particle are
updated by the following rules:

v, () = wv; (t = 1) + ¢; x rand, (+) X (Xppesti — X; (1))
+ ¢, x rand, () X (xgpese — i (1)), (8)

x; (1) =x;(t=1) + v, (1),

where w is the inertia weight; rand, () and rand, () are the
uniformly distributed random numbers between 0 and 1;
and ¢, and ¢, are the learning rates. In this work, constants c,
and c, are both set at 2.0, which was suggested in [24]. Also,
as suggested in the same work [24], an inertia correction
function called “inertia weight approach (IWA)” is applied.
During the IWA, the inertia weight w is modified according
to the following equation:

Wmax ~ Wmin Ttr
bl

w=w_. —
max Itl‘max (9)
where w,,,,, and w,;, are the initial and final inertia weights,
Itr_ .. is the maximum number of iteration, and Itr is the

max
current number of iteration.

The particle’s fitness is calculated by inputting its po-
sition into a designed objective function. In this study, the
optimization function to be minimized is root mean square
error (RMSE), defined by the following equation:

SN [2(K) - 2y ()] (10)
s ,

RMSE =

where z (k) is the kth actual sample value, z,, (k) is the target
output of the ANFIS model for the input features of the kth
sample, and N is the amount of training samples.

2.3. Performance Evaluation. In the classification stage, for
a test subject, a segment of gait dynamics is inputted to the
ANFIS model, which will produce the same length of
outputs. The average value of these outputs will be used to
predict the final label of the test subject, which is determined
according to the minimum distance of the average value to
the label of either patients or healthy CO subjects. In our
experiments, first each group of ND patients against the
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healthy CO subjects was evaluated, and then we evaluated all
groups of neurodegenerative diseases against the healthy CO
subjects. To validate the performance of the proposed
method, the leave-one-out cross-validation (LOOCYV)
method over the entire dataset was done. During LOOCYV,
one subject was left out at a time and used for testing, and
other remaining subjects were used as training data. The test
performance of the ANFIS model was evaluated by the
following statistical measures: specificity (S,), sensitivity
(S,), and classification accuracy (C,).

g - TP
7 TP+ FN’
TN
§ =—— 11
P TN + FP ()
TN + TP

@ TN+ TP + EN + FP’

where TP, TN, FP, and FN are true positives, true negatives,
false positives, and false negatives, respectively.

3. Results and Discussion

In our experiments, the following five different gait pa-
rameters are chosen as the inputs to the ANFIS system: left
and right stride interval, left and right stance interval, and
double support interval. Also, as mentioned before, there
are a few of walking turns that happened when the subjects
reached the end of the hallway. In this study, only the
longest time series segment between two adjacent walking
turns is utilized. And every gait record in such segment is
treated as an independent observation to be used as an
input for training the ANFIS system. The statistics of each
teature for different category of subjects is presented in
Table 2.

The final target outputs of ANFIS are designated as
0 and 4, indicating healthy CO subjects and ND patients,
respectively. With five input variables and two mem-
bership functions each, the number of rules reaches
2% = 32. As an example, the mean square error curve of
training the ANFIS model for classification between the
ALS patients and the CO subjects is shown in Figure 2.
The initial and final membership functions are shown in
Figure 3. Based on the analysis of membership functions
of each input feature, it was found that most of them have
considerable impact on the final identification of ALS
patient.

The classification results between the ALS patients and
the CO subjects are shown in Table 3. It can be observed
that only one ALS patient and one CO subject were
wrongly classified. Thus, the statistical measures of the
classification performance evaluated by the LOOCV
method are as follows: a specificity of 93.75%, a sensitivity
of 92.31%, and an accuracy of 93.10%. The classification
performances of PD patients vs. CO subjects and HD
patients vs. CO subjects are listed in Tables 4 and 5, re-
spectively. The accuracy for differentiating PD patients
from CO subjects is 90.32%, with two PD patients and one
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TaBLE 2: The statistics of each feature for different groups of subjects.
L Mean + SD
Feature description
ALS PD HD CO
Left stride interval (s) 1.520 + 0.093 1.173 + 0.052 1.146 + 0.093 1.112 + 0.083
Right stride interval (s) 1.520 + 0.095 1.173 + 0.046 1.146 + 0.093 1.112 + 0.077
Left stance interval (s) 1.043 + 0.092 0.788 + 0.047 0.763 + 0.072 0.737 + 0.073
Right stance interval (s) 1.023 + 0.078 0.814 + 0.052 0.800 + 0.066 0.720 + 0.060
Double support interval (s) 0.546 + 0.080 0.429 + 0.066 0.416 + 0.071 0.345 + 0.057
0.85 T T T T
0.8
g
S 075
g
=
7
= 0.7
g
=
0.65
0.6 1 1 1 1
0 100 200 300 400 500
Epochs
FIGURE 2: The curve of network error convergence of the ANFIS.
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FIGURE 3: Generalized bell-shaped membership before and after training.

CO subjects are wrongly classified. Similarly, in the ex-
periments of diagnosing HD patients, 19 out of 20 HD
patients and 15 out of 16 CO subjects are correctly

recognized, leading to an accuracy of 94.44%. Finally, the
results of all groups of neurodegenerative patients vs. CO
subjects are reported in Table 6, where a specificity of



TasLE 3: Confusion matrix for the classification performance of the
proposed system on differentiating ALS patients from the CO
subjects.

Positive Negative
class class Specificity  Sensitivity =~ Accuracy
(ALS) (CO) (Sp) (Sa) (N
TP FN TN FP
12 1 15 1 93.75% 92.31% 93.10%

TaBLE 4: Confusion matrix for the classification performance of the
proposed system on differentiating PD patients from the CO
subjects.

Positive Negative
class class Specificity ~ Sensitivity =~ Accuracy
(PD) (CO) (Sp) (Sn) (G
TP FN TN FP
13 2 15 1

93.75% 86.67% 90.32%

TasLE 5: Confusion matrix for the classification performance of the
proposed system on differentiating HD patients from the CO
subjects.

Positive Negative
class class Specificity ~ Sensitivity =~ Accuracy
(HD) (CO) (Sp) (Sn) (Cy)
TP FN TN FP
19 1 15 1 93.75% 95.00% 94.44%

TasLE 6: Confusion matrix for the classification performance of the
proposed system on differentiating ND patients from the CO
subjects.

Positive Negative
class class Specificity ~ Sensitivity =~ Accuracy
(ND) (CO) (Sp) (8n) (C)
TP FN TN FP
44 4 14 2

87.50% 91.67% 90.63%

87.50%, a sensitivity of 91.67% and an accuracy of 90.63%
are reported.

Furthermore, another experiment is performed to
explore the performance of the proposed method in
discriminating ND patients with different severity levels.
According to the dividing approach proposed in [2], the
ND gait data available in this study are broadly catego-
rized into two groups: mild lower extremity functional
impairment and more advanced functional impairment.
The severe group consists of 9 PD patients with the Hoehn
and Yahr score greater than or equal to 3, 9 HD patients
with their total functional capacity score less than or equal
to 5, and 9 ALS patients with stride time greater than 1.2 s.
The rest belongs to the group with mild impairment.
Discrimination accuracies were calculated for classifica-
tion between the CO group and the two ND groups. The
classification results are shown in Table 7. The best per-
formance (an accuracy of 100%) was obtained for the
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classification between the CO group and the severe ND
group. The accuracy for classifying the CO subjects and
the mild ND group is 86.49%. However, for the classifi-
cation between the two ND groups, i.e., mild ND group vs.
severe ND group, the statistical measures of the perfor-
mance of a sensitivity of 85.19%, a specificity of 80.95%,
and an accuracy of 83.33% were still very promising. Such
a result indicated that the proposed classification model
could be used as a potential technique for identifying ND
patients with different levels of severity.

The comparison of the classification performance
between the proposed algorithm in this study and several
state-of-the-art classification methods [1, 6, 7, 12, 30] on
the same dataset is tabulated in Table 8. It can be noted
that our proposed ANFIS-based method obtained the
most accurate classification results in most cases. For
example, for the purpose of identifying the ALS patients’
gaits from the normal gaits, Wu et al. [1] extracted features
like swing interval turns count and averaged stride in-
terval. By using the least squares support vector machine
(LS-SVM) as the classifier, they obtained an overall ac-
curacy of 89.66%, which is a bit lower than an accuracy of
93.10% obtained in the present study. Zeng and Wang [12]
modelled the gait dynamics with the radial basis function
(RBF) neural networks, and by using the model learned
via deterministic learning, they reported a classification
accuracy of 87.1% between PD patients and CO subjects,
while our method presented an accuracy of 90.32%. These
competitive results indicate that the proposed approach
can be effective for the classification of ND patients using
gait dynamics.

However, as a limitation of this study, current gait
dataset available at Physionet is small at its size. Therefore,
for actual clinical purposes, such as gait monitoring of
disease progression and evaluation of the response of
therapy, more ND patients at different severities and age
levels should be recruited into the database in the future
studies. When more ND patients and matched CO subjects
were enrolled into the study, the training of the ANFIS
model could be more effective, and thus the proposed system
would be more instructive for identifying the innate gait
differences between ND patients and CO subjects.

4. Conclusions

In this study, a new classification scheme has been proposed
for the purpose of classifying the gait of ND patients from
normal gait. The presented ANFIS model combines neural
network adaptive capabilities and the fuzzy logic qualitative
approach, which provides an ideal tool for modelling the
nonstationary human gait dynamics. Five gait cadence time
series: left stride interval, right stride interval, left stance
interval, right stance interval, and double support interval
were used as the input variables of the ANFIS model. When
evaluated with the LOOCV method, the classification ac-
curacies of the ANFIS model for discriminating ND vs. CO,
ALS vs. CO, PD vs. CO, and HD vs. CO groups were 90.63%,
93.10%, 90.22%, and 94.44%, respectively. By taking into
consideration the misclassification rates, the proposed
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TaBLE 7: Classification results between the CO group and the two ND groups.

Performance metrics
CO vs. mild ND

Results (negative vs. positive)

Mild ND vs. severe ND
CO vs. severe ND

Sensibility 18/21=85.71%
Specificity 14/16 = 87.50%
Accuracy 32/37=86.49%

27/27 =100%
16/16 =100%
43/43=100%

23/27 =85.19%
17/21=80.95%
40/48 =83.33%

TaBLE 8: Performance comparison of several state-of-the-art methods for discriminating ND gaits from normal gaits.

Features Classifier Evaluation method Overall accuracy (%)
Swing-interval turns count; averaged stride LS-SVM LOO 89.66
interval [1]
Entropy and coherence extracted from the
ALS vs.CO wavelet approximation of the gait signal [6] LDA LOo 86.2
ANFIS models for left and right stride interval,
left and right stance interval, and double Distance rule LOO 93.10
support interval (proposed)
Swing-interval turns count; gait rhythm LS-SVM LOO 90.32
standard deviation [7]
Constant RBF networks learned via .
PD vs.CO deterministic learning [12] Distance rule LOO 87.1
ANFIS models for left and right stride
interval, left and right stance interval, and Distance rule LOO 90.32
double support interval (proposed)
Entropy and cgher.ence extractefi from the LDA LOO 86.10
wavelet approximation of the gait signal [6]
Statistical features such as minimum, maximum, .
HD vs.CO average, and standard deviation [30] SVM Random subsampling 90.28
ANFIS models for left and right stride interval,
left and right stance interval, and double Distance rule LOO 94.44
support interval (proposed)
Entropy and Cf)her.ence extractefi fr.om the LDA LOO 804
wavelet approximation of the gait signal [6]
Constant RBF networks learned via .
ND vs.CO deterministic learning [12] Distance rule ATAT 9375
ANFIS models for left and right stride interval,
left and right stance interval, and double Distance rule LOO 90.63

support interval (proposed)

LS-SVM: least squares support vector machines. LDA: linear discriminant analysis. ATAT: all-training-all-testing. LOO: leave-one-out.

ANFIS model showed the potentials that help in identifying
patients with ND from CO subjects by analyzing the gait
data.
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