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ABSTRACT

Subcellular localization of messenger RNAs (mR-
NAs), as a prevalent mechanism, gives precise and
efficient control for the translation process. There
is mounting evidence for the important roles of this
process in a variety of cellular events. Computa-
tional methods for mRNA subcellular localization
prediction provide a useful approach for studying
mRNA functions. However, few computational meth-
ods were designed for mRNA subcellular localiza-
tion prediction and their performance have room for
improvement. Especially, there is still no available
tool to predict for mRNAs that have multiple localiza-
tion annotations. In this paper, we propose a multi-
head self-attention method, DM3Loc, for multi-label
mRNA subcellular localization prediction. Evalua-
tion results show that DM3Loc outperforms existing
methods and tools in general. Furthermore, DM3Loc
has the interpretation ability to analyze RNA-binding
protein motifs and key signals on mRNAs for sub-
cellular localization. Our analyses found hundreds
of instances of mRNA isoform-specific subcellular
localizations and many significantly enriched gene
functions for mRNAs in different subcellular local-
izations.

INTRODUCTION

Subcellular localization of messenger RNAs (mRNAs) has
proven to be a prevalent mechanism used in a variety of
cell types in animal development (1). Particularly in highly
complex cells, mRNAs are not distributed homogeneously

throughout cells but are localized in specific cellular com-
partments. Besides localized protection from degradation
and diffusion-coupled local entrapment, the predominant
mechanism of mRNA localization is the directed trans-
port of transcripts along with a polarized cytoskeletal net-
work (1,2). First, the cis-regulatory elements presented in
RNA molecules are recognized by diverse trans-regulatory
factors, called RNA-binding proteins (RBPs). These cis-
regulatory elements, known as zipcodes, are often but not
exclusively found in 3′ untranslated regions (UTRs), for me-
diating the asymmetric localization of specific transcripts.
Then, with the recruitment of the destination-specific pro-
teins and adaptor proteins, the localization-competent ri-
bonucleoprotein (RNP) complex is assembled. With the
help of molecular motors, mRNA is transported along
the cytoskeleton to the ultimate destination and anchored.
Finally, spatially restricted protein synthesis is achieved
through translational regulation (1,3–5). mRNA localiza-
tion to distinct cellular compartments gives precise and ef-
ficient control over the translation process (6). There are
some advantages to transporting mRNAs rather than pro-
teins, such as low transport costs, preventing proteins from
acting ectopically during translocation, and rapid local re-
sponses to extrinsic cues (7–9). There is mounting evidence
supporting the important roles of the subcellular localiza-
tion of mRNAs in a variety of cellular events, and a grow-
ing number of studies suggest that the aberrant regulation
of mRNA localization can contribute significantly to hu-
man disease pathogenesis (10–12). For instance, mutations
in genes involved in mRNA localization at the synapse have
been linked to several human neurological diseases, includ-
ing Fragile X syndrome (13).

In recent years, studies of the complex spatial distribution
of mRNA within cells have generated a number of meth-
ods, many of which have been applied to improve classical
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in situ hybridization (ISH) and high-throughput RNA se-
quencing to detect and track single RNA subcellular local-
ization in living cells (14–17). All of these novel techniques
have advantages, but also costly. Therefore, computational
methods are in demand as a complementary approach. The
first computational predictor for mRNA subcellular local-
ization was the RNATracker (18), which applied deep re-
current neural networks for predictions from raw sequences
and provided a method to detect the candidate zipcodes by
masking 100 nt of the sequence each time to evaluate its im-
pact for prediction. With the accumulation of RNA local-
ization data, Zhang et al. (19) proposed a machine-learning-
based tool, named iLoc-mRNA that focused on the mRNA
subcellular localization prediction of Homo sapiens, where
a support vector machine (SVM) was applied to a com-
bination of optimally preselected features. Recently, mR-
NALoc was developed to provide predictions for five sub-
cellular locations of eukaryotic mRNAs using SVM on the
pseudo K-tuple nucleotide composition features (20). In the
real transcriptome world, mRNAs are localized in multiple
compartments, as shown by data in an RNA subcellular lo-
calization database (21), in a way similar to that of about
half of the proteins each localized in multiple compartments
(22). However, none of the computational methods were de-
signed for the multi-label subcellular localization prediction
at the mRNA level.

To meet the need for multiple mRNA subcellular lo-
calization predictions, we proposed DM3LOC, a deep-
learning method with multi-head self-attention, to pre-
dict mRNA subcellular localizations in multiple compart-
ments. Different from previous predictors, which only con-
sider mRNA localization in a single compartment, our
task is much more challenging. Compared with traditional
machine-learning methods like SVM, the deep-learning
based methods, such as RNATracker, are considered more
advanced and can provide a more biologically meaning-
ful interpretation (23–25). In the deep-learning application
for classical sequence-based prediction, the combination of
convolutional neural networks (CNNs) and bi-directional
long short-term memory (BLSTM) is a popular architec-
ture, which was applied in (26) for DNA function predic-
tion. After applying the combined CNNs and BLSTM, the
attention mechanism was introduced on top of this hybrid
architecture in DeepLoc (27) for protein subcellular local-
ization prediction. The RNATracker applied an architec-
ture similar to DeepLoc. In such an architecture, CNN is
used to automatically extract features or motifs from se-
quences, BLSTM is used to consider the orientations and
spatial distances between the features, and the subsequent
attention layer is used to make the predictor attend to
prediction-related regions by assigning high weights to sig-
nificant regions automatically. Such an attention mecha-
nism is referred to as single-head attention since only one
attention-weight vector is applied. The single-head atten-
tion mechanism gives the model some intelligence for model
interpretation; however, in some cases, the prediction per-
formance was negatively affected. For example, in a study of
protein subcellular localization prediction (28), the single-
head attention mechanism showed poorer prediction per-
formance than the non-attention architecture. The single-
head attention may also experience some drawbacks in the

interpretation power, which may be induced by the weighted
sum of hidden states derived from previous layers with its
single attention-weight vector. For example, multiple ele-
ments, which may be separated by relatively long segments,
in an mRNA sequence can work together for the local-
ization, whereas such synergistic effects may be missed by
single-head attention.

To address the issue of the single-head attention mecha-
nism, we applied a combination of CNN and multi-head
self-attention architecture. Multi-head self-attention was
first introduced in (29) for sentence embedding, which was
used to characterize the multiple components in a sentence
that together forms the overall semantics of the whole sen-
tence. Later, the multi-head self-attention presented power-
ful advantages in the state-of-the-art natural language pro-
cessing architectures, such as the Transformer (30) and Bert
(31). Because the multiple heads attend to multiple subcellu-
lar elements simultaneously and characterize the global fea-
tures formed from multiple elements of a sequence (multi-
body effects), BLSTM becomes less important and can be
removed. In addition, the recurrent model is computation-
ally expensive, while the multi-head self-attention, basically
composed of fully connected neurons, is computationally
effective and facilitates more parallelization during training
computations, especially for long sequences. Notably, multi-
head self-attention architecture showed good results in our
study. Evaluations on two independent benchmark datasets
showed that DM3Loc outperformed RNATracker in both
accuracy and speed. And, after a comparison with all the
existing tools, DM3Loc in general obtained superior per-
formance.

Besides the prediction, we demonstrate that DM3Loc has
some benefits in the biological interpretation. Our study
shows that DM3Loc is capable of generating sequence mo-
tifs, many of which can be matched to existing motifs of
RNA binding proteins (RBPs). DM3Loc also has the abil-
ity to assess the contribution of nucleotides in an input
mRNA sequence to subcellular localization at a useful res-
olution, which is consistent with known zipcode regions.
Furthermore, from the prediction of all human mRNAs,
we found hundreds of mRNA isoform-specific subcellular
localization instances, which demonstrated the concept of
isoform-specific mRNA subcellular localization on a large
scale. We also conducted gene enrichment analyses for the
mRNA subcellular localization groups and found signifi-
cantly enriched gene ontology (GO) terms, many of which
are consistent with existing knowledge. We also believe that
our proposed approach could be useful for other sequence-
based analyses. All the services and the standalone tool
of DM3Loc can be freely accessed at the webserver http:
//dm3loc.lin-group.cn.

MATERIALS AND METHODS

Benchmark dataset

In this study, we assembled a benchmark dataset for mRNA
subcellular localizations from the RNALocate database
(21). Specifically, the RNALocate subcellular localization
data in the EXCEL format were obtained from RNALo-
cate in February 2020. The original complete sequences
of mRNAs were downloaded from GenBank (https://
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www.ncbi.nlm.nih.gov/genbank/) (32), and the mRNA se-
quence data in the FASTA format were obtained from
the NCBI in February 2020 (https://www.ncbi.nlm.nih.gov/
sites/batchentrez). RNALocate collected the subcellular lo-
calization data from the literature, covering different cell
types and conditions. In the RNALocate database, if there is
any experimental evidence of one particular localization for
one mRNA in the literature, the localization annotation will
be assigned to the mRNA. For one mRNA, if it has mul-
tiple localization annotations, we combined them and as-
signed the mRNA with multi-labels. Our assembled bench-
mark dataset contains a total of 17 870 mRNAs and they
are localized in six subcellular compartments: nucleus, exo-
some, cytosol, ribosome, membrane and endoplasmic retic-
ulum (ER) which with experimentally verified multiple sub-
cellular localizations in Homo sapiens. The distribution of
this benchmark dataset is shown in Figure 1A. The number
of mRNAs with localization at different compartments are
12 089 for nucleus, 17 704 for exosome, 2344 for cytosol,
5293 for ribosome, 3256 for membrane and 1996 for ER.
Since an mRNA can localize at multiple compartments and
we are considering six compartments, a total of 64 (26) pos-
sible combinations of mRNA localizations exist in theory;
yet, only 40 localization combinations had mRNA sam-
ples in our data, as shown in Figure 1B. From this figure,
we can say that the majority of the mRNAs in our dataset
have multiple localization annotations. We analyzed the se-
quence length distribution for six subcellular localizations,
which is shown in Figure 1C. The lengths of the mRNA se-
quences varied from ∼200 nt to ∼30 000 nt, in which the
majority are shorter than 4000 nt. We also built a nonre-
dundant dataset by removing the redundant sequences with
a cut-off of 80% sequence similarity through CD-HIT-EST
(33), which contains 17 023 mRNAs in total. For the per-
formance evaluation, the nonredundant dataset was used
to construct a 5-fold cross-validation dataset. Specifically,
the nonredundant dataset was split into five folds and each
fold had a similar distribution of subcellular localization
categories. The 5-fold cross-validation dataset can be used
directly to compare with other methods. All the data (the
benchmark dataset with all the mRNAs, the nonredun-
dant benchmark dataset, and the 5-fold cross-validation
dataset) are freely available at the DM3Loc web server. In
RNALocate, there are a large number (8846) of mRNAs lo-
calized in cytoplasm. However, because of ambiguous an-
notations of cytoplasm in early literature, which could in-
clude various compartments (such as ER), we only focus
on the prediction of cytosol in this paper. Considering the
number of cytoplasm mRNAs in RNALocate, although we
did not provide a prediction for cytoplasm as the output
of our tool, we still used the data to help with the train-
ing of the model by treating cytoplasm as an additional
class.

DM3Loc framework

The framework of DM3Loc is presented in Figure 2. The
model accepts mRNA sequences at variant lengths. We en-
coded the mRNA sequences using one-hot encoding for
four types of nucleotides where T and U share the same
coding. In our collected data, the length of the mRNA se-

quence varied from ∼200 nt to ∼30 000 nt, and the majority
of mRNA sequences are shorter than ∼4000 nt. To take ad-
vantage of the mini-batch techniques for training and pre-
diction, the length of input sequences was fixed at 8000 nt by
extracting sequences from both ends or by padding. Specif-
ically, for sequences longer than 8000 nt, we extracted 4000
nt from each end and concatenated these end sequences
into 8000 nt; for sequences shorter than 8000 nt, we kept
the whole sequences and right padded them with zero cod-
ing. Thus, the input sequences with variant lengths were
encoded using a one-hot representation into a fixed-length
matrix (4 × T, T = 8000) and fed into the input layer.
To characterize the localization signals at variant lengths,
a multiscale CNN was applied. The multiscale CNN con-
sists of three different filter lengths, 9, 20 and 49, specifi-
cally, in three paths, each of which contains two convolu-
tional layers followed by a max-pooling layer. Particularly,
in the first convolutional layers, there are 64 9-length filters,
64 20-length filters and 32 49-length filters, while in the sec-
ond convolutional layers, each type of filter contained 32 fil-
ters. After the max-pooling process, only the highest value
of every eight continuous hidden neurons (pooling length
= 8 and pooling stride = 8) from the last convolutional
layer was kept, resulting in length T’ = T/8. In this frame-
work, the multi-head self-attention mechanism is used to
assess the contribution of sequence regions for localization
by multiple heads (head = 5), which has the ability to fur-
ther detect localization zipcodes during the prediction. The
outputs of the multi-head self-attention are the multi-head
attention weights and context embedding. To be consistent
with the multi-scale CNN, three multi-head self-attention
layers are separately applied to the output states of the three
paths of CNN filters. Because the two convolutional layers
and the following max-pooling layers, the nearby informa-
tion of a nucleotide is convolved and pooled to some extent,
our model cannot assess the contribution to localization at
the single-nucleotide resolution per se, but it can reach a
reasonable resolution. The filter length is 49 for each con-
volutional layer at most and the pooling stride is 8 for the
max-pooling layer, as a result, the upper limit resolution of
the attention weights is within 49 + 49 + 8 = 106 nt. Then,
the outputs from the three multi-head self-attention layers
are concatenated and fully connected to the output layer,
which contains six neurons for six localization categories.
We used the sigmoid activation function on the output layer,
which makes the prediction values for each category in the
range between 0 and 1. During the prediction, the attention
weights of the CNN output layers are normalized and then
converted back to the same length of the input sequence to
analyze the localization zipcodes.

Multi-head self-attention

Bengio et al. (29) proposed that the overall semantics of a
sentence is formed by multiple components in it. Therefore,
they proposed a multi-head self-attention mechanism to fo-
cus on different parts of a sentence. In this work, we bor-
rowed this idea and made some modifications to the orig-
inal mechanism, including a Mask operation for padding
regions, smoothing the attention weights and normalizing
the attention weights according to the effective length. To
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Figure 1. Statistics of mRNA subcellular localization benchmark data. (A) shows the number of mRNAs for six subcellular compartments. Each bar
represents one compartment and the height represents the number of samples. For each bar, from the bottom to the top represent the number of mRNAs
with six localization annotations to the number of mRNAs with a unique localization label, respectively. The total number of mRNAs in each compartment
in (A) is labeled on the top. (B) An upset plot, which shows the detailed number of mRNA sequences in each intersection group. The intersection group
is presented in the order of the compartment numbers (from left to right). The upper bar plot presents the number of mRNAs in each intersection group,
while the bottom dots show the components of each group. (C) The distribution of sequence length for six subcellular localization compartments.

calculate the attention weights, we first need to calculate the
energy score matrix E, as defined in Equation (1).

E = Mask(Ws2 tanh (Ws1 H)) (1)

Here, H is the 32-by-T’ hidden neurons output from each
CNN path. Ws1 is a weight matrix with a shape of da-by-32,
and da is the attention-dimension hyperparameter, which is
80. Ws2 is a matrix of parameters with shape head-by-da,
where head indicates the number of attention heads, which
is 5. To overcome the overfitting and to get sparse energy
scores, the L1-norm regularization is applied to Ws1 and
Ws2 with the same loss weights of 0.001. Because we know
where the paddings of the input sequences are during the
model training, we can mask the padding regions for atten-
tion. The Mask operation works by adding an exceptionally
large penalty (–10 000) to each position in the padding re-
gions, which draws attention away from those regions.

After the Mask operation, in the original multi-head self-
attention paper, the softmax activation function was ap-

plied to the energy matrix to make the attention weights into
probability values. We modified the original softmax func-
tion using a smoothing approach (34), which can aggregate
selections from multiple top-scored regions. In the smooth-
ing, the unbounded exponential function of the softmax
function is replaced with the bounded logistic sigmoid func-
tion. The attention weight matrix A is calculated as:

A : ai, j = sigmoid
(
ei, j

)
∑T

j=1 sigmoid(ei, j )
(2)

where ai, j is the element of matrix A, and ei, j is the element
of the energy matrix E.

Because the Mask operation results in a variant effec-
tive length for the attention mechanism, the final attention
weights should be normalized according to the ratio be-
tween the effective length without padding and the input
length for the attention model, which is T’ (T′ = T/8), as
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Figure 2. DM3Loc framework. The input of the model is an mRNA sequence of any length; then, it is one-hot encoded into a fixed-length matrix (4 × T,
T = 8000). There are two outputs of the DM3Loc model; one is the prediction scores for six localization categories and the other is the attention weights,
which have the same length as the input sequence. The regions with high attention weights indicate the zipcode regions. The DM3Loc model mainly consists
of multiscale CNN filters and multi-head self-attention layers. The multiscale CNN is used to capture the localization signals at variant lengths, and the
multi-head self-attention is used to make the model attend more to the important sequence regions for localization.

shown in Equation (3).

A = A∗ e f f ective length/T′ (3)

The final context embedding M is calculated as the con-
catenation of each hidden neuron output from each CNN
path, is defined as:

M = concatenate (AH) (4)

where A is the head-by-T’ attention matrix from each CNN
path, and H is the T’-by-32 hidden neurons output from
each CNN path. The weighted sum was attained by multi-
plying A and H in each CNN model, which was concate-
nated along the second dimension (32 + 32 + 32), resulting
in a head-by-96 embedding tensor.

To encourage the different attention heads to focus on
different parts of an mRNA sequence, the penalization term
is also applied and defined as:

P = ∥∥(
AAT − I

)∥∥2
F (5)

where A is the attention matrix, I is an identity matrix, and
‖ · ‖F represents the Frobenius norm of a matrix. The more
similarity between the two attention vectors, the higher the
loss will be. The loss weight of the penalization term is
0.001.

Extracting attention weights

From the multi-head self-attention model, the attention ma-
trix A of each of the three CNN paths is generated, which
yields three independent 5-by-T’ weight matrices. For real
applications, we need an overall attention-weight vector
that has the same length as the input sequence to assess
the contribution of each base in the mRNA sequence. To
get such overall attention weights, we first normalize the at-
tention signals for each head in each CNN path through a
z-score, respectively, and then we averaged all the z-score
values along T’, resulting in an attention weight vector for
each input sequence with length T’. Finally, the length T’
should be converted back to the original length T by first
replicating eight times (because the pooling stride = 8 in the
max-pooling layers) for each element in the normalized at-
tention signals (resulted length T). We then remove the zero
paddings for sequences shorter than T or add zero paddings
for sequences longer than T to make the length the same as
the original sequence length.

Extracting sequence binding motifs from CNN filters

The CNN filters can be used to build position-weight ma-
trices (PWM) of sequence binding motifs. We applied a
method similar to that of Alipanahi et al. (35) but modified
the position-weight calculation. In particular, we scanned
all the mRNA sequences in the benchmark data against the



e46 Nucleic Acids Research, 2021, Vol. 49, No. 8 PAGE 6 OF 15

three types of CNN filters (the 9-length, 20-length and 49-
length filters). For each of the CNN kernels, only one frag-
ment was kept per sequence, which had to have the maxi-
mum response value (the value must > 0) of that CNN ker-
nel. Thus, one fragment per sequence was needed to cal-
culate the PWM of the CNN kernel. For each CNN ker-
nel, we obtained a set of sequence fragments, which had the
same length as the kernel after the scan. Instead of adding
a value of 1 for all the effective positions, we calculated the
PWM by adding the response values of the corresponding
CNN feature maps for each position of the extracted frag-
ments. Finally, for each of the CNN kernels, we obtained
one PWM. Specifically, we obtained 64 PWMs for 9-length
CNN, 64 PWMs for 20-length CNN filters, and 32 PWMs
for 49-length CNN filters. We can use the PWMs to draw
sequence logos to represent the sequence binding motifs.

Model training and testing

For a classification problem, the target of the training is to
make the difference between the prediction vector and the
true label vector as small as possible. We denote the predic-
tion for the i th mRNA sample as xi and its corresponding
true label vector as yi . Each element of y is a binary value,
denoted as yi j , j ∈ [1, 2, . . . 6], which indicates whether that
mRNA sample belongs to a certain localization category or
not. If yi j is 1, the xi belongs to the class j, 0 otherwise. The
binary cross-entropy loss function was applied to treat each
category independently. The loss of sample xi is defined as
below:

Lossi =
6∑

1

yi j · log pi j + (
1 − yi j

) · log(1 − pi j ) (6)

where pi j ∈ [0, 1] is the element of pi , which represents the
prediction vector of the sample xi . Since there are six local-
ization categories and we treated them independently, the
loss of sample xi is the sum of the loss of individual local-
ization categories.

Because we treated cytoplasm as an additional class and
used the cytoplasm data to help train the model, we actu-
ally have seven independent classes during the training. We
applied different class weights for different localization cat-
egories to overcome the unbalanced training data problem.
The class weight was calculated as the ratio of total train-
ing samples to the number of samples in each category. In
particular, the class weights for nucleus, exosome, cytosol,
ribosome, membrane, ER and cytoplasm are 1, 1, 7, 3, 5, 8
and 1, respectively. We used the Adam stochastic optimiza-
tion method (36) with a learning rate of 0.001, and a learn-
ing rate decay of 5e–5. The deep-learning model was imple-
mented using TensorFlow 1.12.0 and Keras 2.2.4. Model
training and testing were performed with GPU Nvidia TI-
TAN RTX. For the hyperparameter selection, such as the
number of CNN filters and the number of CNN layers,
we applied the GpyOpt package (https://sheffieldml.github.
io/GPyOpt/), which implements one Bayesian optimization
method on a small sample of data to find the hyperparam-
eters with the global optimum solution.

For the performance evaluation, the model was trained
and evaluated by a 5-fold cross-validation dataset. To use as

much as possible training data, the prediction model used
by the DM3Loc webserver was trained by a nested 8-fold
cross-validation on the dataset before removing the redun-
dant sequences. In particular, for each fold, we used 7 folds
of the data to train the model and evaluated the last fold of
data. We repeated this procedure eight times, before finally
obtaining eight classifiers. When predicting the localization
for an mRNA sequence, the average value obtained from
the eight classifiers was used as the final prediction score.
In the final prediction result, for each mRNA sequence, six
prediction scores for the corresponding localization cate-
gories are provided (the cytoplasm category is not consid-
ered in the prediction) and the ones that have prediction
scores higher than the pre-defined cutoffs are output as the
localizations. We defined a series of cutoffs for each local-
ization class according to their maximum MCC values with
continuous cutoffs on the 8-fold cross-validation data. Ac-
cording to the MCC values along the continuous cutoffs
(see Additional File1: Supplementary Figure S1), the de-
fault cutoffs were set as 0.68 for nucleus, 0.98 for exosome,
0.20 for cytosol, 0.39 for ribosome, 0.24 for membrane and
0.22 for ER.

RESULTS

Comparing DM3Loc with existing methods and tools

We compared the prediction performance of DM3Loc with
existing methods and tools on the 5-fold cross-validation
benchmark data. Here, we compared DM3Loc with the
RNATracker from the deep-learning method perspective,
where the same dataset was used to train and test these
two methods, and both used the 8846 cytoplasm mR-
NAs to assist the training; and we compared DM3Loc
with mRNALoc and iLoc-mRNA from the tool perspec-
tive, where the five folds of test data from the 5-fold
cross-validation benchmark data were used to test these
tools.

To make a fair comparison with the RNATracker on the
multi-label classification problem, we modified the original
code of the RNATracker to make all the settings identical
to the DM3Loc. In particular, we replaced the softmax ac-
tivation function and the Kullback-Leibler divergence loss
function with the sigmoid activation function and the bi-
nary cross-entropy loss function in the RNATracker, respec-
tively. Furthermore, since we also found localization sig-
nals in the 5′ end, we trained our model and the RNA-
Tracker model by truncating the whole sequences from both
ends (4000 nt in each end). Although mRNALoc and iLoc-
mRNA were not designed as multi-label predictors, both
of them provide the prediction scores for each localization
compartment; hence, we can extract the intermediate pre-
diction scores for each compartment and evaluate their pre-
dictions of the localization on our dataset. Although dif-
ferent training sets were used, all the methods and tools
were tested on the same five folds of test data for compar-
ison. We used the area under the receiver operating char-
acteristic (ROC), the precision-recall (PR) curves, and the
Matthews correlation coefficient (MCC) to evaluate their
performance. The average results of the five folds of test data
are shown in Table 1, which shows that our method outper-
formed these methods and tools in most of the cases. It is

https://sheffieldml.github.io/GPyOpt/
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Table 1. Performance comparison with existing methods and tools

Method Compartment
Average area
under ROC

Average area
under PR MCC

DM3Loc Nucleus 0.7725 0.8765 0.3859
Exosome 0.7233 0.9964 0.0736
Cytosol 0.7406 0.3193 0.2872

Ribosome 0.7589 0.5478 0.3550
Membrane 0.7558 0.4472 0.3115

ER 0.6981 0.2502 0.2048
RNATracker Nucleus 0.7531 0.8601 0.3450

Exosome 0.7533 0.9970 0.0000
Cytosol 0.7331 0.3176 0.1383

Ribosome 0.7447 0.5365 0.2697
Membrane 0.7386 0.4051 0.1927

ER 0.6265 0.1880 0.0000
mRNALoc Nucleus 0.6075 0.7655 0.1501

Exosome 0.4065 0.9887 -0.0294
Cytosol 0.4529 0.1177 -0.0134

ER 0.3729 0.1402 -0.1479
iLoc-mRNA Nucleus 0.5186 0.7200 0.0516

Cytosol 0.5310 0.1339 0.0253
Ribosome 0.7940 0.6634 0.3899

ER 0.8100 0.5702 0.3762

The results presented in Table 1 are the averages of the five folds of test data. To calculate the MCC, DM3Loc used the pre-defined default cutoffs;
RNATracker used cutoff 0.5; mRNALoc used cutoff 0.1; iLoc-mRNA used cutoff 0.5.

worth mentioning that the test data has a performance bias
towards mRNALoc and iLoc-mRNA since they both ex-
tracted the data from the same source (RNALocate) as we
did for our methods; thus, some of our test data could be
used to train their tools, while these test data were not seen
during the training process of DM3Loc and RNATracker.

To demonstrate the effect of the 5′ end, we retrained
our model with sequences only extracted from the 5′ end
and compared it with the RNATracker on the 5-fold cross-
validation benchmark data. According to the length analy-
ses in Figure 1B, 4000 nt can cover the majority of the mR-
NAs. Therefore, in this comparison, we only extracted 2000
nt at most to exclude the effect of the 5′ end region to some
extent. The performance of the 5-fold cross-validation (see
Additional File 1: Supplementary Table S1) is much lower
than the current performance as shown in Table 1, which
indicates the important roles of 5′ end in subcellular local-
ization.

We conducted another comparison with RNATracker on
the CeFra-Seq dataset provided by Yan et al. (18). Because
the RNATracker used expression levels to estimate the lo-
calization likelihood, their model is a regression model. To
make our model suitable for a regression problem, we re-
placed the output layer with the softmax activation func-
tion and the loss function with the Kullback-Leibler diver-
gence, which is the same as the original RNATracker model.
We evaluated our model and the RNATracker model by
training and testing on 10-fold cross-validation data gener-
ated by us from the CeFra-Seq dataset. The performance
was presented as the Pearson correlation coefficients be-
tween the experimental and predicted localization values
of the combined folds. According to the performance (see
Additional File 1: Supplementary Table S2), although our
model was not tuned and designed for the regression prob-
lem, our performance was still superior to RNATracker,
which demonstrated the benefit of the proposed architec-
ture for sequence-based prediction. Another benefit of the

proposed framework is the lower training time compared
with RNATracker, which is 15s versus 107s per epoch. The
increased training efficiency was mainly due to our omission
of a recurrent model in our method. Recurrent models re-
quire much more computing time for such long sequences.
Also, by utilizing this benefit, we could use advanced hy-
perparameter selection tools to tune more optimal model
structures for this problem.

Application of DM3Loc on independent datasets

To further evaluate the performance of the DM3Loc pre-
dictor trained on the RNALocate dataset, we conducted
the following two tests of DM3Loc on two independent
datasets, i.e. the multiplexed error-robust FISH (MER-
FISH) dataset (37) and the APEX-Seq dataset (17). By
combining the MERFISH approach with cellular structure
imaging, Xia et al. (37) identified RNA species enriched in
two subcellular compartments, which are the ER and nu-
cleus from the ∼10 000 genes. The APEX-Seq dataset has
8 mRNA localization categories by the APEX-Seq tech-
niques. By merging ERM and ER lumen as ER (used the
maximum log2 fold-change as the merged value), there are
three localization compartments in common to our cate-
gories, i.e., nucleus, cytosol, and ER. By matching the genes
to the RefSeq database (38) and selecting one of the repre-
sentative mRNAs (the mRNA isoform with the longest se-
quence) from the MERFISH dataset, we found 559 mRNA
sequences enriched in ER and 864 mRNA sequences en-
riched in nucleus from 6526 mRNAs in total. By select-
ing one representative mRNA for a given ENSEMBL gene
from the APEX-Seq dataset using the recommended log2
fold-change cutoff of 0.75 proposed by the authors, we
found 1010 mRNAs enriched in the nucleus category, 1604
mRNAs enriched in the cytosol category and 173 mRNAs
enriched in the ER category from 3219 mRNAs in total. We
applied DM3Loc on the two mRNA datasets and showed
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Figure 3. Applying DM3Loc to predict localization for all the human mRNAs (genome GRCh38). (A) The mRNA subcellular localization label distribu-
tion in benchmark and prediction pie charts. The left pie chart shows the label distribution of mRNAs in the benchmark dataset. The right pie chart shows
the predicted label distribution of mRNAs in the GRCh38 human reference genome. The label distributions include a unique subcellular localization label,
two labels, . . . , and six labels. (B) Prediction for isoforms of gene ZNF419. Each bar represents the prediction scores for the six subcellular localizations
of each isoform; the predicted labels whose scores were higher than the default threshold are labels are on the top. The prediction scores of all the other
isoforms are similar, except for isoform NM 001291745, which is predicted to be localized in the ribosome.

the comparison between our predictions and the annota-
tions of the two datasets in Venn plots (Additional File 1:
Supplementary Figure S2). The statistical significance (P-
value) of the observed overlapped mRNAs was calculated
by a permutation test. Specifically, the distribution of the
number of overlapping mRNAs was assumed to follow a
hypergeometric distribution. The background distribution
of the overlapping mRNAs was randomly drawn from the
hypergeometric distribution for 10 000 times (left grey his-
tograms in Supplementary Figure S2). The observed num-
ber of overlapping mRNAs of the corresponding localiza-
tion compartment labelled from each dataset was shown as
a red vertical line. According to the results, we found that
all the observed numbers of overlapping mRNAs are sig-
nificantly away from the random background distributions
(P-values < 0.005). Please note that both MERFISH and
APEX-Seq datasets were generated using only one cell line,
while DM3Loc was trained on the data from different cell
types under different conditions, which are unlikely to ex-

actly match. However, our predictions still overlap well with
the subcellular localization annotations from independent
datasets.

Application of DM3Loc on the human transcriptome

We applied DM3Loc to make localization predictions for
all the human mRNAs. We collected all the mRNA se-
quences for the GRCh38 human reference genome, which
was downloaded from the RefSeq database (38). There are
57 091 mRNAs in total from the 18 964 genes in the col-
lected data after removing the predicted ones. The predic-
tion results of DM3Loc for these mRNAs can be found in
Additional File 2. We compared the distribution of mRNAs
predicted as a single label, two labels, . . . , and up to six la-
bels with the distribution in our benchmark dataset. The
comparison is displayed in two pie charts, as shown in Fig-
ure 3A. From the result, we see that the predicted subcellu-
lar localization labels have a similar distribution to the one
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Figure 4. Visualization of representative CNN motifs mapped to known RBPs. The known RBPs (top rows) are from (41). The CNN motifs (bottom rows)
were generated from different CNN filters with the filter index labeled below.

in the benchmark dataset. This collected mRNA data con-
tains mRNA isoforms of the same genes. We analyzed the
prediction results of these isoforms and found that a small
number of isoforms of the same genes were predicted to
have different subcellular localizations. In the analysis, for
each isoform pair of the same gene, we considered that iso-
forms have significantly different subcellular localizations
when for at least one compartment, it satisfies: (i) the pre-
dicted label is different (one isoform passes the default label
cutoff and the other does not); (ii) the difference between
their prediction scores is higher than 0.4. In total, 496 genes
have at least one isoform pair satisfying this criterion, as
shown in Additional File 3. For instance, as shown in Fig-
ure 3B, all the other isoforms of gene ZNF419, the zinc fin-
ger protein 419, were predicted to be localized in exosome,
while the isoform NM 001291745 was predicted to be local-
ized in ribosome. The concept of an isoform-specific mRNA
subcellular localization is not new, i.e. it has been found in
neural projections (39). In this paper, we demonstrate this
phenomenon through the prediction method and provide a
potential list of isoform-specific mRNA subcellular local-
izations.

Analysis of CNN motifs

The CNN filters can be used to build position-weight ma-
trices (PWM) of sequence binding motifs, which achieves
the nucleotide-level resolution (see MATERIAL AND
METHODS). Our model contains multiscale CNN filters,
which include three different filter lengths, i.e. 9-length, 20-
length and 49-length, resulting in independent PWMs from
those three scales. The PWMs were used to represent the
sequence binding motifs. We used TOMTOM (40) to map
the learned motifs separately from each scale to the known
RNA binding motifs of RBP (Homo sapiens has 102 in
(41)). A total of 62 out of 64 9-length CNN motifs, 63
out of 20-length CNN motifs, and 32 out of 32 49-length
CNN motifs were found to match the known motifs with
P-value < 0.05, covering 99 out of 102 known RBP motifs.
In contrast, only nine of the 30 CNN motifs were found
to match in the RNATracker recently introduced by Yan
et al. (18). The complete result can be found in Additional
File 4. Some of the representative motifs were shown in
Figure 4, where RNCMPT00026 (HNRNPK) matches to
filter 12, RNCMPT00032 (HuR) matches to filter 5, and

RNCMPT00044 (PCBP2) matches to filter 30 in the 9-
length filter.

Visualization of attention weights on sequences

In this work, the attention weights generated along with
the prediction can be used to monitor important mRNA
sequence regions to the subcellular localization prediction.
Here, we visualized the attention weights that vary along
the sequences to investigate the impact of different sequence
regions on subcellular localizations. In this experiment, we
only used mRNAs longer than 5000 nt. Specifically, we
truncated all the sequences from the center and aligned the
left part of the attention weights to the 5′ end and the right
part of the attention weights to the 3′ end, with each end’s
length set at 2500 nt. The resulting attention weights of
length 2500 nt from each end is shown as the blue lines in
Figure 5A. We also conducted an ablation test by randomly
permuting the nucleotides of mRNAs to train a baseline
model and present the attention weights of these permu-
tated sequences, which is shown as the red lines in Figure
5A. We can clearly see from these results that both the 3′
end and 5′ end have high attention weights concentrated in
real mRNAs, while all the attention weights are very low for
the random sequences. The high peaks precisely located at
the 5′ end and 3′ end may be introduced by artificial effects
because of the end-effect of the CNN kernels. Except that,
the attention weights may come from the localization reg-
ulatory elements located in both 5′ and 3′ UTR (42,43). A
drop in the attention weights is near the 3′ end, which may
be due to the poly(A) tails presented on most of the mRNA
sequences; these poly(A) tails may not be useful for subcel-
lular localization. Yan et al. (18) also drew attention weights
for RNA localization; however, their method only focused
on the 3′ end and used zero paddings at the 5′ end, making
the 5′ end generally less informative; thus, the high attention
weights were only presented in the 3′ end regions (Figure 5
in (18)). In our work, since all the mRNAs were longer than
5000 nt, the concentration of high attention weights on both
ends of the mRNA is not introduced by the zero-padding of
shorter sequences.

Mapping attention weights to localization zipcode

To investigate the mapping of attention weights to a known
localization zipcode, we conducted the following proof-of-



e46 Nucleic Acids Research, 2021, Vol. 49, No. 8 PAGE 10 OF 15

Figure 5. Visualization of attention weights. (A) Attention weights for a set of mRNA sequences from the 5′ to the 3′ end. Only sequences longer than
5000 nt were used to draw this plot; therefore, all the positions have equal coverage of the bases. The black solid lines represent the attention weights for
real mRNAs while the orange dashed lines represent the attention weights obtained from random models trained by permuted mRNA sequences. (B)
Mapping attention weights to human �-actin localization zipcode. The x-axis represents the sequence position from the 5′ to 3′ end; the y-axis represents
the attention weights, and the starting point of the zipcode region is indicated with a red vertical line. We designated the nucleotides’ location from the
zipcode starting point to the position with the highest attention weight, where the zipcode region are in red and the non-zipcode nucleotides are in black.

concept experiment. In theory, the attention weights vary
along sequences and can be used to assess the contribu-
tions of each region to a subcellular localization predic-
tion, which can be directly used to infer localization zip-
codes. However, to validate its effectiveness in real mRNA
sequences is extremely difficult, since there are only dozens
of well-characterized localization zipcodes and even fewer
in the species (human) studied in this work. In addition,
many localization signals operate at levels of both pri-
mary and secondary structures. We were able to find only
one known zipcode that is markedly related to our data,
which is the beta-actin mRNA in chicken embryo fibrob-
lasts (CEFs), which localizes near an actin-rich region of
cytoplasm. This localization is mediated by a 54-nt-long
zipcode in the 3′-UTR sequence region and can be inhib-
ited by anti-zipcode oligodeoxynucleotides (ODNs) (44). A
homologous region of this zipcode is in the human �-actin
sequence (52 nt). Because our model is trained on the hu-
man sequence, we used a human �-actin transcript sequence
to test the mapping of attention weights in the human �-

actin zipcode region. The human �-actin mRNA sequence
is extracted from NC 000007.14, in which the localization
zipcode starts at position 2855. Given the mRNA sequence
of NC 000007.14, the attention weights are generated, as
shown in Figure 5B. We can see from this figure that the po-
sition of the sequence with the highest attention weight is
next to the starting point of the zipcode, which is within a
reasonable distance under resolution 106 nt (see Materials
and Methods) of our attention weights.

Gene enrichment analysis

To further understand the functional roles behind the sub-
cellular localization of mRNAs, the functional enrichment
analysis of gene ontology (GO) (45) was performed on the
mRNA genes and their coding proteins for an analysis of
their biological processes (BP), molecular functions (MFs),
and cellular components (CCs) using the R package cluster-
Profiler (46). Since few mRNAs localize a single compart-
ment in our study, we selected mRNAs that can transport



PAGE 11 OF 15 Nucleic Acids Research, 2021, Vol. 49, No. 8 e46

to no more than two compartments to make the enrichment
analyses more focused for each of the six localization com-
partments. We also conducted enrichment analyses for mR-
NAs that can localize in all six compartments (ALL-SIX).
In total, we carried out functional enrichment analyses for
seven compartment groups. From the enrichment results,
each of the compartment groups had some significantly en-
riched GO terms, which are described in more detail in the
following summary.

The mRNAs localize in ribosome are functionally en-
riched in GO terms ‘prostate gland development’ and ‘mi-
tochondrial ribosome’ (Figure 6A). We found that the genes
that were involved in GO term ‘prostate gland morphogen-
esis’ and encode the ribosome mRNAs are all related to
different diseases or cancers, which is consistent with the
known relationships between ribosome mRNAs and hu-
man maladies, including cancer (10,11). We investigated the
genes that encode the mitochondrial ribosome, and found
that all of these genes are located in the nuclear chro-
mosome instead of the mitochondrial chromosome. Most
of them are translated into mitochondrial ribosomal pro-
teins, which help protein synthesis within mitochondrion.
The widely accepted notion for protein transport to mito-
chondria is that the import occurs post-translationally af-
ter the protein is fully synthesized in the cytosol (47); how-
ever, mounting evidence also supports a co-translational
import of some proteins into the mitochondria. Specifically,
polysomes, a group of the mitochondrial ribosomes bound
to an mRNA molecule were shown to be associated with
the mitochondrial surface, and proteins synthesized from
that polysome are imported co-translationally (48–50). The
ribosome mRNAs enriched in the mitochondrial ribosome
may have a similar mechanism where they form polysomes
and are then imported into mitochondria co-translationally.
mRNAs localized in ER are mainly enriched in GO terms
‘acute inflammatory response’, ‘immune-related processes’
and ‘synaptic membrane’ (Figure 6B), which is consistent
with early observations noting that the transport of some
ER mRNAs plays an important role in the inflammatory
response and synaptic transmission (51,52). Taken together,
these ER mRNAs reflect the important relationship be-
tween ER and inflammatory response within the central
nervous system (12).

Interestingly, mRNAs that can localize in all six compart-
ments are mainly involved in GO terms ‘response to an un-
folded protein,’ ‘ER stress,’ and ‘misfolded protein binding.’
We found that most of the gene functions of these ALL-SIX
mRNAs are associated with ER. Some of the genes belong
to the heat shock protein family, which perform chaperone
functions, and some are associated with the regulation of
apoptosis. It is known that the unfolded protein response
(UPR) as a cellular stress response related to ER stress ini-
tially tries to restore normal functions of the proteins and
then aims towards apoptosis if all attempts fail within a
certain time span. Although the functions of the ALL-SIX
mRNAs in these enriched terms were found to be associated
with ER, none of these significantly enriched GO terms, i.e.
‘response to unfolded proteins,’ ‘response to topologically
incorrect proteins,’ and ‘endoplasmic reticulum stress’ were
found significantly enriched (P-adjust value ≤ 0.05) in mR-
NAs localized in ER specifically, which indicates the unique

functions of ALL-SIX mRNAs. We assume that for an effi-
cient response to UPR or ER stress, these mRNAs should
be able to present anywhere in the cell.

mRNAs localized in other compartments are also signifi-
cantly enriched with some GO terms. For example, mRNAs
localized in the nucleus are mainly involved in the ribonu-
cleotide catabolic process and channel activity (Additional
File 1: Supplementary Figure S3), indicating the key roles
of these mRNAs in ribonucleotide degradation and in the
exporting of the nucleus. mRNAs localized in exosomes are
mainly involved in cell adhesion, ion channel complex activ-
ity, receptor-ligand activity, and transporter activity (Addi-
tional File 1: Supplementary Figure S4), which exemplify
the roles of exosome RNAs in intercellular communica-
tion (53). RNAs localized in cytosol are mainly involved in
transport processes, such as the carboxylic acid transport
and organic acid transport, as well as in the eating behav-
ior and sialyltransferase activity (Additional File 1: Supple-
mentary Figure S5). mRNAs localized in membranes are
enriched to GO terms ‘NLS-bearing protein import into
nucleus’, ‘lung epithelium development’, and ‘Ran GTPase
binding’ (Additional File 1: Supplementary Figure S6). Al-
together, these gene enrichment analyses suggest that the
subcellular location of mRNA is tightly associated with its
function. In this study, we provide a detailed gene list cor-
responding to the enriched terms, as shown in Additional
File 5.

The DM3Loc web server

We developed a user-friendly web server, http://dm3loc.lin-
group.cn, for easy access to the services of DM3Loc. Users
can paste up to five mRNA sequences in the paste mode
or upload a FASTA format file up to 5MB (∼1500 mRNA
sequences) to the server through the upload mode. After
the prediction, for each sequence, the prediction results and
the attention weights along the sequence will be presented
in the output panel. Users can visualize them or download
them to local files. All the successfully submitted jobs will
be saved in the users’ personal space on our server, allow-
ing users to manage their jobs conveniently. Some of the ex-
isting mRNA localization methods also offer web servers,
like the iLoc-mRNA. DM3Loc has some unique features,
which compare with these other servers. In particular, this
is the only web server that can predict mRNAs to multiple
compartments; it is the only web server that provides visu-
alization of the estimated contribution for each base to lo-
calization in the name of attention weights; and it provides
larger sequence submission (up to a 5-MB file). We are con-
fident that DM3Loc is a useful tool for studying mRNA
subcellular localization.

DISCUSSION

Subcellular localization of mRNAs, as a prevalent mech-
anism, gives precise and efficient control over the transla-
tion process. Mounting evidence supports the important
roles of this process in a variety of cellular events. Computa-
tional methods for mRNA subcellular localization predic-
tion provide a useful approach to studying mRNA localiza-
tion. However, few computational methods are designed for

http://dm3loc.lin-group.cn
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Figure 6. Top 20 enrichment terms of mRNAs localized in ribosome, ER, and in all six of the compartments. (A) Ribosome, (B) ER, and (C) all six
compartments.

this purpose, and their performance has room for improve-
ment. One notable deficiency is the lack of a tool to predict
multiple localization annotations for mRNAs. In this work,
we developed DM3Loc based on multi-head self-attention
for multi-label subcellular localization prediction. DM3Loc
provides prediction scores for all six of the subcellular local-
izations and gives the final predicted subcellular localiza-
tions that pass the pre-defined thresholds, which could be
single or multiple localizations

The combination of CNN and BLSTM is still a pop-
ular architecture in the application of deep-learning for
sequence-based prediction. Many attempts have been made
to add attention mechanisms to this hybrid architecture.
However, the single-head attention mechanism hardly im-
proves the performance from the prediction perspective
(28,54). We believe the bottleneck of the single-head atten-
tion is the reduced representation power by the compressed
feature space. For example, before the regular attention, the
dimension of the embedding layer is T (T = 8000) multi-
plied by the embedding size. After the single-head attention,
the dimension becomes just the embedding size, which re-
duces the dimension of the context embedding layer by T
times. The single-head attention only has one weight vec-
tor; thus, a single value is assigned for each base to assess
its contribution for the subcellular localization that cannot
well characterize the cases when the localization is deter-
mined by multiple elements combinatorically. In contrast,
the multi-head self-attention introduces the multiple head
design, which increases the dimension of the context em-

bedding to an embedding size multiplied by the head num-
ber, making it possible to estimate the contribution of mul-
tiple elements for subcellular localization prediction inde-
pendently and combinatorically. In summary, the advan-
tage of applying the combination of CNN and multi-head
self-attention in our DM3Loc model are 2-fold: (i) mul-
tiple heads can look into multiple regions simultaneously
and independently, thereby enabling a more comprehensive
assessment of the contributions for each element to sub-
cellular localization; (ii) the replacement of the recurrent
model facilitates more parallelization during training and
prediction, which makes DM3Loc more computationally
efficient. The advantages of such a multi-head self-attention
have been demonstrated by the comparison of DM3Loc
with the RNATracker method on two independent bench-
mark datasets.

To deal with the multi-label classification problem,
DM3Loc treats the six subcellular localizations indepen-
dently by applying a sigmoid activation function on the out-
put layer and using the binary cross-entropy loss function
(refer to Equation (6)). It is interesting to consider the re-
lationship between different labels by designing a new loss
function for the multi-label classification problem, as pro-
posed by Zou et al. (55). In the future, if we have more re-
liable and diverse mRNA subcellular localization data, we
could utilize this method to explore the relationship among
different localization categories.

While most of the existing localization cis-regulatory el-
ements are observed to be localized in the 3′ UTR, some
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regulatory elements also reside in the 5′ UTR or coding re-
gion of the mRNA (42,43). Thus, only using the sequences
from 3′ UTR will miss some key information for localiza-
tion prediction. From our experiment results (Additional
File 1: Supplementary Table S1), the model trained by se-
quences extracted from the 3′ end only obtained poorer pre-
diction performance than the model trained by sequences
extracted from both ends. Also, from the visualization of
the attention weights along sequences from the 5′ to 3′ end,
we found both ends contain peak regions that are impor-
tant for subcellular localization prediction (Figure 5A). All
of these findings confirmed the important role of the ele-
ments on the 5′ end for subcellular localization.

Our study confirmed some early studies and suggested
some interesting biological implications. We conducted
functional enrichment analyses for seven compartment
groups and from the results, each of the compartment
groups has an amount of significantly enriched GO terms,
most of which have consistent evidence for the putative
functions to the localization of the corresponding com-
partment. Our study provides more mRNA lists for these
functions. As an example, mRNA localizations play im-
portant roles in synapse formation and plasticity associ-
ated with neurological diseases (1,13,56). It is also known
that ER stress has the potential to elicit aberrant inflam-
matory signaling and facilitate cell death within the central
nervous system (12). Our GO enrichment analysis found
that mRNAs that are localized in ER were mainly enriched
to ‘modulation of chemical synaptic transmission,’ ‘com-
ponent of synaptic membrane’ and ‘acute inflammatory re-
sponse’. We hypothesize that for an acute inflammatory re-
sponse and other stimuli, these mRNAs may rapidly accu-
mulate in ER for proteins to synthesize locally and facili-
tate the synapse membrane insertion. Moreover, mutations
in these mRNAs may result in human neurological disease,
such as the Fragile X syndrome resulting from mutations
in genes related to dendritic mRNA targeting (13). We also
found that 65% of those ER mRNAs contain ‘membrane’ in
their CC terms, indicating that the localization of these ER
mRNAs is mainly for local synthesizing membrane proteins
as a lower-cost transport than the post-translational trans-
port. Another intriguing enrichment result is that the mR-
NAs can localize in all the compartments. They are mainly
involved in the ‘response to unfolded protein,’ ‘endoplas-
mic reticulum stress,’ and ‘misfolded protein binding.’ Al-
though most functions of the proteins translated from these
mRNAs are found to be associated with ER, none of these
GO terms were significantly enriched in ER mRNAs (P-
adjust value < 0.05), which indicated a unique function for
these ALL-SIX mRNAs. Our hypothesis for these mRNAs
is that these mRNAs are present all over the cell and can
be quickly translated into proteins locally upon ER stress.
Some of these proteins function as molecular chaperones,
such as the heat shock proteins, and some of these proteins
can activate the apoptosis process when the chaperones fail.

CONCLUSIONS

In this study, we assembled a benchmark dataset for six
mRNA subcellular localization compartments in Homo
sapiens, in which each of the samples had single or multi-

ple experimentally verified subcellular localization annota-
tions. From the benchmark dataset, we built a nonredun-
dant dataset and a 5-fold cross-validation dataset, which
can be used directly to compare with other methods. We
proposed DM3Loc, a multi-label deep-learning-based ap-
proach to predict mRNA subcellular localizations at mul-
tiple compartments from the raw sequence of mRNA. The
DM3Loc applied a novel multi-head self-attention mecha-
nism on top of the CNN models. The DM3Loc proved ca-
pable of generating sequence motifs, the majority of which
can be matched to existing motifs of RNA binding proteins.
DM3Loc has the ability to assess the segment-level contri-
bution of the input sequence for subcellular localization di-
rectly through the multi-head self-attention at a useful res-
olution. Evaluations on independent benchmark datasets
show that DM3Loc outperforms another deep-learning-
based method RNATracker in both accuracy and speed,
and in general, outperforms other existing tools for mRNA
subcellular localization predictions. By applying DM3Loc
to the human transcriptome, we found hundreds of mRNA
isoform-specific subcellular localization predictions, which
supports the existence of general isoform-specific mRNA
subcellular localization from a computational perspective.
The isoforms provided in this paper should be further vali-
dated through experimental methods, such as Fluorescence
In Situ Hybridization (FISH). Through gene enrichment
analyses, we found many significantly enriched gene ontol-
ogy terms for mRNAs from different subcellular localiza-
tion groups through functional enrichment analyses. These
results extend existing knowledge about the functions of
mRNAs involved in subcellular localization. All the services
and the standalone tool of DM3Loc can be freely accessed
at the webserver http://dm3loc.lin-group.cn. The proposed
approach in this study provides a demonstration of how a
deep-learning model with a multi-head self-attention mech-
anism facilitates the mRNA sequence analyses in the appli-
cation of subcellular localization; our research also substan-
tiated our line of reasoning, which presents the proposed
deep-learning model as a useful tool for other sequence-
based analyses.

The development of mRNA subcellular localization pre-
dictor is still at the early stage. The accuracy of DM3Loc
is currently limited by the annotations in the RNALocate
dataset. With mRNA subcellular localization becoming a
more and more important topic, new techniques and di-
verse datasets will rapidly become available, and DM3Loc
will have the ability to catch up with these new data for more
accurate and comprehensive predictions.

DATA AVAILABILITY

The benchmark dataset with all the mRNAs, the nonre-
dundant benchmark dataset, and the 5-fold cross-validation
dataset are available on the DM3Loc webserver, http://
dm3loc.lin-group.cn/ (under the menu Download/data).
The 5-fold cross-validation dataset is also available in
the GitHub repository, https://github.com/duolinwang/
DM3Loc/tree/master/testdata. The DM3Loc web server
can be accessed at http://dm3loc.lin-group.cn/. The stand-
alone tool for locally using DM3Loc and source code

http://dm3loc.lin-group.cn
http://dm3loc.lin-group.cn/
https://github.com/duolinwang/DM3Loc/tree/master/testdata
http://dm3loc.lin-group.cn/
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are available in the GitHub repository, https://github.com/
duolinwang/DM3Loc.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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