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Purpose: The purpose of this study was to accurately forecast future reliable visual field
(VF) mean deviation (MD) values by correcting for poor reliability.

Methods: Four linear regression techniques (standard, unfiltered, corrected, and
weighted) were fit to VF data from 5939 eyes with a final reliable VF. For each eye, all VFs,
except the final one, were used to fit the models. Then, the difference between the final
VF MD value and each model’s estimate for the final VF MD value was used to calculate
model error. We aggregated the error for each model across all eyes to compare model
performance. The results were further broken down into eye-level reliability subgroups
to track performance as reliability levels fluctuate.

Results: The standard method, used in the Humphrey Field Analyzer (HFA), was the
worst performing model with an average residual that was 0.69 dB higher than the
average from the unfiltered method, and 0.79 dB higher than that of the weighted and
correctedmethods. The weightedmethod was the best performingmodel, beating the
standard model by as much as 1.75 dB in the 40% to 50% eye-level reliability subgroup.
However, its average 95% prediction interval was relatively large at 7.67 dB.

Conclusions: Including all VFs in the trend estimation has more predictive power for
future reliable VFs than excluding unreliable VFs. Correcting for VF reliability further
improves model accuracy.

Translational Relevance: The VF correctionmethods described in this papermay allow
clinicians to catch VF worsening at an earlier stage.

Introduction

Automated visual field (VF) tests play a key role in
the diagnosis of glaucoma and assessment of disease
worsening.1–4 WhereasVF tests help cliniciansmonitor
longitudinal changes in glaucoma disease trajectory,
they are associated with known variability, making
interpretation of changes difficult.5 There is growing
evidence that mean deviation (MD) values depend on
reliability indices, such as false positive (FP) percent-

ages, false negative (FN) percentages, and test duration.
Worse levels of these reliability metrics make the deter-
mination of change over time more challenging.6 By
correcting for the effects of these reliability indices on
algorithms used to determine change, it may be possi-
ble to more accurately identify disease worsening and
improve patient care accordingly.

Our prior work has shown that increases in FPs,
FNs, and test duration have effects on the MD value
depending on the stage of glaucoma and the values
of the reliability indices (Table 1).7 In general, as
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Table 1. Correction Chart for MD Values

Effect of 1% Increase of False
Positives on Mean Deviation, dB

Effect of 1% increase of false
negatives on Mean Deviation, dB

0% ≤ FP%
≤ 20% 20% ≤ FP%

0% ≤ FN%
≤ 20% 20% ≤ FN%

Effect of 1 Minute
Increment of Test
Duration on Mean

Deviation, dB

Mild/suspect 0.042 0.157 −0.007 −0.127 −0.400
Moderate 0.073 0.206 −0.014 −0.053 −0.350
Advanced 0.066 0.353 0.029 −0.051 −0.380

unreliability increases, the measured MD value
deviates further from the trueMDvalue. False positives
have the largest effect on this MD error, followed by
FNs and test duration. TheGuided Progression Analy-
sis (GPA) used in the Humphrey Field Analyzer (HFA)
displays a linear regression for MD values over time
that does not “correct” for poor reliability.8 Rather, the
GPA model – henceforth called the “standard model”
– simply excludes “unreliable” VF MD values, defined
as VFs with more than 20% fixation losses or 15%
FPs, from the MD values over time regression in order
to better predict future MD values from past reliable
VFs.9

Here, we attempt to improve the accuracy of
forecasting future MD values by applying three differ-
ent techniques to linear regression: (1) including all
available tests (i.e. not excluding data from “unreli-
able” VFs), (2) correcting the unreliable VFs MD
values using results from our previous study,7 and
(3) weighting MD values by their reliability. We
compare the performance of these three models –
henceforth referred to as “unfiltered,” “corrected,”
and “weighted,” respectively – to the performance
of the “standard” model (used in GPA) by predict-
ing MD values of future reliable VFs. Because we
wish to forecast MD values which are as close
to a true MD value as possible and in order to
compare our results to the standard model and
other models used for MD forecasting,10–14 we
restrict our analysis to forecasting future reliable
VFs.

Methods

Institutional review board approval was obtained
at the Johns Hopkins University School of Medicine
and at the centers contributing data to the Glaucoma
Research Network. The study adhered to the tenets of
the Declaration of Helsinki.

Study Participants

We included 3614 participants from the Glaucoma
Research Network dataset. Data were collected over
a period of 21 years starting from 1996. In order to
improve the accuracy of estimation of disease progres-
sion with linear regression, we adapted previous work
and chose to study eyes with at least five VFs.15 Specif-
ically, we included eyes which had five or more VFs
obtained with the Humphrey Field Analyzer (HFA II;
Carl ZeissMeditec Inc., Dublin, CA) using the Swedish
Interactive Threshold Algorithm (SITA) Standard test
protocol and the 24-2 pattern. Patients could have
either one or both eyes included in the analyses.

VF and Clinical Data Collection

For each eye, disease severity at baseline was calcu-
lated by taking the average MD value for the first
two VFs. Baseline MD > −6 dB was categorized as
mild/suspect disease, baseline− 6 dB≥MD ≥ −12 dB
was categorized as moderate disease, and the remain-
ing eyes withMD < −12 dBwere considered advanced
glaucoma using established guidelines.16

Each VF contains reliability indices, such as the
percentage of FPs, the percentage of FNs, and the
test duration. With these reliability indices, we can
compute a measure of how unreliable the MD is based
on a previous study which we modeled the differ-
ence between predicted MD values and observed MD
values as a function of these reliability indices.7 Table 1
provides the average effect that each reliability index
has on�MD = measuredMD − trueMD.To predict
“trueMD”frommeasuredMD values, we used Table 1
to add up the effects of FP, FN, and test duration.
Fixation loss percentages were also available, but they
were not used to estimate the level of unreliability as
they have been shown to not significantly affect theMD
values.7 For example, an eye with moderate glaucoma
that had 10% FPs, 0% FNs, and a duration that was
30 seconds longer than the average for moderate eyes
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would have an expected�MD = 10 × 0.073+ 0.5 ×
− 0.35 = 0.55 dB. Assuming the measured MD value
was − 8.25 dB, we would expect that the true value is
trueMD = measuredMD − �MD = −8.25 − 0.55 =
−8.80 dB.

In a clinical setting, a 1 dB error in MD can be
considered an acceptable level of error.7 Because we are
primarily interested in predicting future reliable VFs,
we restricted the error threshold that defines reliabil-
ity even further. Thus, we only included eyes in the
analysis where the final VF was a “gold standard VF”
defined as having an error less than 0.25 dB (i.e. |�MD|
≤ 0.25 dB). For each eye, we calculated the percent-
age of VFs which were labeled as unreliable (|�MD| >
0.25 dB). Then, we divided eyes into subgroups based
on the percentage of visits with unreliable VFs. The
subgroupswere: 0%unreliable, 0% to 10%, 10% to 20%,
20% to 30%, 30% to 40%, 40% to 50%, and eyes with
more than 50% unreliable VFs.

Modeling MD Values Over Time

The same set of eyes was used to test all models,
that is, each eye had at least five VFs with the last
VF being reliable (|�MD| ≤ 0.25 dB). For each eye,
four linear regression models were fit using all VF
visits except the final visit. For all four models, the
date of the VF was the independent variable. For
the standard model, the measured MD value was the
dependent variable; however, only VFs which met the
HFA reliability criteria (cutoff of less than 20% FLs
and 15% FPs) were included in the regression.9 The
unfiltered model also used measured MD values as the
dependent variables but did not exclude any points for
the regression. The corrected model used “corrected
MD” (i.e. measuredMD − �MD) as the dependent
variable; individual MD values were first corrected
and then fit with a regression line. The weighted
model used measured MD values as the dependent

variables but weighed MD values by their reliability.
The precise form of the weight for the ith MD value
is weight of MDi = γ

γ+|�MDi|ρ where γ and ρ were
optimized to fit the data using a 2D grid search over
the entire dataset. That is, we searched over a large
range of non-negative values and chose the γ and ρ,
which minimized the average difference between the
measuredMDvalues for the final VF and the estimated
MD values from the weighted model, across all
eyes.

Once we determined the optimal model fit using
these four approaches, for each eye, we used the date
of the most recent VF to predict an MD value for each
model at that date. We then calculated the magnitude
of the residual (i.e. the absolute value of the difference
between predicted MD and measured MD values).
We will refer to the magnitudes of these residuals as
the “standard residual magnitude,” “unfiltered resid-
ual magnitude,” “corrected residual magnitude,” and
“weighted residual magnitude.” This entire process is
depicted in Figure 1.

Following these residual calculations, the distri-
bution of the standard residual magnitudes was
compared to the distribution of the unfiltered,
corrected, and weighted residual magnitudes. Note,
these distributions were not normally shaped, so a
parametric statistical test which assumes normal-
ity would not be valid for comparison. In order to
compare the distributions with a statistical test, we
performed a Wilcoxon signed-rank test across each
pair of distributions generated when comparing two
models to test the hypothesis that the means of the
magnitudes of the residuals were significantly differ-
ent.17 This procedure was repeated for each reliability
subgroup as well as for the overall dataset. Last, we
performed the same regressions and residual calcu-
lations/comparisons for subsets of the dataset with
varying upper bounds of percentage unreliability. All
analysis was done using Python version 3.7.

Figure 1. The first plot shows the corrected andmeasured mean deviation (MD) values for each visual field (VF) of a random eye. The final
visual field is marked with an “x” to distinguish it from the others. The fourth MD value is hollow to indicate that the standard model would
consider this VF unreliable, thereby excluding it in its regression. In the second plot, the unfiltered, corrected and weighted regression lines
are fit using the first four MD values. The standard regression line is fit using only the first three MD values. In the final plot, the residuals for
the most recent VF are calculated as the true MDminus the point-wise estimates from the regression fits.



Visual Field Reliability Correction Forecasting TVST | May 2022 | Vol. 11 | No. 5 | Article 27 | 4

Results

Demographics and Ocular Characteristics

A total of 41,120 VFs from 5939 eyes across 3614
patients were included in this study (Table 2). Themean
time interval between VFs was 355 days. The mean
age was 62.25 (SD = 12.94). The largest proportion
of eyes (35.78%) included in the study had 0 unreli-
able VFs over time (see Table 2). There were 15.44% of
the eyes that had more than 50% unreliable VFs over
time, making this the next largest eye-level reliability
subgroup. Roughly half of all eyes had between 0% and
under 50% unreliable VFs.

Modeling Results

The major finding, as presented in Table 3
and Figure 2, is that the standard model performed
worse than all other models, with the average of the
standard residual magnitudes being higher than that

of any other model (0.69 dB higher than the unfil-
tered model and 0.79 dB higher than the weighted
and corrected models). The best performing model,
measured by having the smallest average of the
residual magnitudes across all the data, was the
weighted model. We searched over a wide range of
non-negative values to find the optimal γ and ρ

parameters in the weighted regression and found the
optimal parameters to be γ = 0.23 and ρ = 1.32.
The weighted model narrowly beat the corrected
model (0.006 dB, P < 10−16), whereas both were
roughly 0.13 dB better (P < 10−16 in both cases)
than the unfiltered model. However, a shortcoming
of the weighted model is the need to optimize the γ

and ρ parameters to derive weights of the weighted
regression.

The Wilcoxon signed-rank test on the distributions
of the residuals found all the means for three of our
approaches to be significantly better with α = 0.05
compared to the standard model. The same applies to
each difference marked with an asterisk in Table 3. We
found the mean of the weighted residual magnitudes to

Table 2. Demographics

Mild/Suspect Moderate Advanced Overall
(n = 4383) (n = 908) (n = 648) (n = 5939)

Mean age, y (SD) 61.09 (12.70) 65.64 (12.81) 65.30 (13.41) 62.25 (12.94)
Mean MD, dB (SD) −1.74 (2.16) −8.56 (3.07) −17.37 (5.15) −4.49 (5.83)
Mean number of VFs (SD) 6.91 (2.37) 7.03 (2.39) 6.89 (2.36) 6.92 (2.37)
Mean unfiltered MD slope, dB/y (SD) −0.07 (1.55) −0.16 (1.46) −0.07 (1.52) −0.08 (1.54)
Mean corrected MD slope, dB/y (SD) −0.07 (1.53) −0.16 (1.42) −0.07 (1.46) −0.08 (1.50)
Mean weighted MD slope, dB/y (SD) −0.07 (1.46) −0.20 (1.43) −0.17 (1.27) −0.10 (1.43)
Mean standard MD slope, dB/y (SD) 0.01 (3.18) −0.12 (2.44) 0.05 (5.19) −0.01 (3.36)
Mean FP percentage (SD) 3.05 (4.94) 2.72 (3.83) 2.32 (4.43) 2.92 (4.74)
Mean FN percentage (SD) 2.96 (4.73) 7.31 (8.14) 11.02 (18.93) 4.51 (8.56)
Mean duration, s (SD) 338 (57) 433 (68) 447 (65) 364 (74)
Age brackets
5<50 695 (15.86%) 87 (9.58%) 75 (11.57%) 857 (14.43%)
50–59 1032 (23.55%) 140 (15.42%) 102 (15.74%) 1274 (21.45%)
60–69 1405 (32.06%) 291 (32.05%) 185 (28.55%) 1881 (31.67%)
70–79 1019 (23.25%) 265 (29.19%) 201 (31.02%) 1485 (25.00%)
80–89 221 (5.04%) 117 (12.89%) 81 (12.50%) 419 (7.06%)
≥90 11 (0.25%) 8 (0.88%) 4 (0.62%) 23 (0.39%)

Percent unreliable
0% 1824 (41.62%) 228 (25.11%) 73 (11.27%) 2125 (35.78%)
(0%, 10%]) 83 (1.89%) 14 (1.54%) 2 (0.31%) 99 (1.67%)
(10%, 20%]) 686 (15.65%) 141 (15.53%) 68 (10.49%) 895 (15.07%)
(20%, 30%]) 584 (13.32%) 131 (14.43%) 81 (12.50%) 796 (13.40%)
(30%, 40%]) 320 (7.30%) 83 (9.14%) 92 (14.20%) 495 (8.33%)
(40%, 50%]) 376 (8.58%) 126 (13.88%) 110 (16.98%) 612 (10.30%)
> 50% 510 (11.64%) 185 (20.37%) 222 (34.26%) 917 (15.44%)
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Table 3. Difference in Residuals for Each Eye-Level Reliability Subgroup
Percentage of VFs Unreliable

x = 0 0 < x ≤ 10 10 < x ≤ 20 20 < x ≤ 30 30 < x ≤ 40 40 < x ≤ 50 50 < x Overall

Difference in residual (standard - unfiltered), dB 0.34* 0.20* 0.35* 0.65* 0.54* 1.57* 1.43* 0.69*
Difference in residual (standard - corrected), dB 0.35* 0.23* 0.41* 0.74* 0.68* 1.71* 1.73* 0.79*
Difference in residual (standard - weighted), dB 0.34* 0.25* 0.44* 0.81* 0.70* 1.75* 1.65* 0.79*
N 2125 99 895 796 495 612 917 5939

Significance using Wilcoxon signed-rank test: * ≡ p < 0.05.

Figure 2. Mean magnitude of residuals (left) and their standard deviations (right) are shown for the standard, unfiltered, corrected and
weighted models as a function of the percentage of maximum eye-level unreliability (x-axis). Each point P on the x-axis includes all eyes
were at most P% of the VFs were unreliable.

be smaller than the means of the unfiltered, corrected,
and standard residual magnitudes.

Inspecting the eye-level reliability subgroups
in Table 3 reveals that some subgroups performed
best using the corrected model. Those were eyes with
no unreliable VFs and eyes with greater than 50%
unreliable VFs. Although, the improvement gained by
using the corrected model over the weighted model is
minimal. For all subgroups, the mean of the magni-
tudes of the unfiltered, corrected, and weighted resid-
uals was significantly smaller than that of the standard
residuals. The largest differences in the mean of the
standard residual magnitudes versus the mean of the
weighted residual magnitudes occurs in the 40% to
50% eye-level reliability subgroup, in which the average
of the weighted residual magnitudes is 1.75 dB smaller
than the average of the standard residual magnitudes.
The biggest difference in performance between the
standard and corrected models (1.73 dB) occurs in the
greater than 50% unreliable VF subgroup.

Figure 2 shows the mean magnitudes of standard,
unfiltered, corrected, and weighted residuals as a
function of the percentage of maximum eye-level
unreliability – each point P on the x-axis includes all
eyes were at most P% of their VFs were marked as

unreliable. Note, as the percentage of maximum unreli-
ability increased, the differences between each regres-
sion method widened. For eyes with no unreliabil-
ity, the corrected regression performed slightly better
than the weighted and unfiltered regressions. Yet, as
more unreliability is introduced, the weighted regres-
sion begins to outperform the corrected and unfiltered
regressions. The standard deviation graph shows that
as more unreliable VFs are included in the analysis,
the distribution of the weighted regression experiences
the smallest variance. This signifies that as unreliability
increases, the residuals are growing in magnitude and
experiencing more variance across all eyes. Even so, the
weighted regression has stronger predictive power than
both the corrected and unfiltered regression methods.
The weighted model also exhibited greater precision
in its estimates. The average size of the 95% predic-
tion interval for the weightedmodel was 7.67 compared
to 8.70 for the corrected model and 8.80 for unfiltered
linear regression.

Sensitivity Analysis

Our analysis required the final VF for each eye to
be marked as reliable with |�MD| ≤ 0.25 dB. Recall,
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this final VF is not used in the model fit and is reserved
for measuring predictive power of the model. Other
error thresholds were tested, including 0.5 dB, 0.75
dB, and 1 dB. Compared to 5939 eyes with a 0.25 dB
threshold, there were 7235 eyes with a 0.5 dB thresh-
old, 7531 eyes with a 0.75 dB threshold, and 7652

eyes with a 1 dB threshold. The γ and ρ parame-
ters for the weights on the weighted regression were
optimized for each set of data, respectively. In all
analyses, the three approaches beat the standard model
and the corrected and weighted models outperformed
the unfiltered model. Within each of these threshold

Figure 3. Mean magnitude of residuals (left column) and their standard deviations (right column) are shown for the standard, unfiltered,
corrected, and weighted models as a function of the percentage of maximum eye-level unreliability (x-axis) and different error cutoffs for
the last VF: 0.5 dB (top row), 0.75 dB (middle row), and 1.0 dB (bottom row).
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analyses, the corrected model had the lowest mean
magnitude of the residuals, although only marginally
better than the weighted model.

Using the various error cutoffs for the last VF
described above (0.25 dB, 0.5 dB, etc.), we explored
the effect of eye-level reliability on the residual of the
model prediction (Fig. 3). As unreliability increased,
the difference between the mean magnitude of the
standard residuals and those of the other methods
increased. The largest difference in the means occurred
in the 1 dB cutoff group, where the corrected model
performed 1.13 dB better than the standard model.
Moreover, the mean residuals for all methods grew
as unreliability increased. This is as expected because
more unreliable VFs were included in the analysis, so
the model was not as good at estimating the future
gold-standard MD values. For example, in the 0.25 dB
group, the mean of the magnitude of corrected resid-
uals was 1.70 dB, followed by 1.79 dB, 1.85 dB, and
1.87 dB in the 0.5 dB, 0.75 dB, and 1 dB cutoff groups,
respectively.

Last, we wanted to test the generalizability of
the optimal weighted regression parameters for other
thresholds. First, we wanted to see if the optimal γ

and ρ parameters used for the 0.25 dB error thresh-
old achieved similar levels of error for other thresholds.
After running the weighted regression with the 0.25
dB parameters on the other thresholds, we determined
the results were comparable to the original thresh-
old. Theweightedmodel consistently performedwithin
0.02 dB of the corrected model and consistently beat
the standard model by 1 dB or more. Thus, our analy-
sis suggests that the parameters obtained using the 0.25
dB threshold (γ = 0.23 and ρ = 1.32) are applicable
to other thresholds without a meaningful change in
model error. Second, we wanted to see if in the 0.25
dB error threshold, there was high variability as the γ

and ρ parameters fluctuated. We ran the same analy-
sis using 121 combinations of the γ and ρ parameters
within a 0.1 dB range from the optimal.We found there
was a negligible difference in performance on the order
of 0.0001 dB for mean magnitude of residuals. Third,
we wanted to see how sensitive the predictions of the
weighted model were to the training set. We compared
the mean magnitude of residuals when using 50% of
the data as the training set and 50% as the test set —
model parameters were optimized based on a randomly
chosen 50% of the data — to the mean magnitude
of residuals without splitting the data. The standard
deviation of the difference in residuals between the
train/test split weighted model and the weighted model
without the train/split was 0.013 dB over 100 simula-
tions, which is larger than the 0.006 dB difference
between the non-split weighted and corrected models.

Thus, the statistically significant difference between
the weighted and corrected models may not necessar-
ily hold with different datasets. However, it is likely
that the difference between the weighted and standard
models remains statistically significant.

Discussion

The results of this study suggest that all three
approaches – unfiltered, corrected, and weighted
models – outperform the standardmodel for predicting
future VF changes. Importantly, using all the VF data
(including data that is labeled by the HFA as unreli-
able) results inmore accurate predictions of futureMD
values as demonstrated by the unfilteredmodel improv-
ing upon the standard model by 0.69 dB. Correct-
ing MD values for poor reliability using either an
arithmetic approach (corrected model) or weighted
regression approach (weightedmodel) results in further
improvements (on the order of 0.1dB) in predicting
future VF change.

To the best of our knowledge, no other study
has tried to correct for poor reliability when build-
ing predictive models for VF change. Although, other
groups have tried to forecast VF change with novel
algorithms as well. Notably, JCWen et al. (2019) exper-
imented with various machine learning algorithms to
predict future VFs using early VF data.18 Their exper-
iment design was different in that their models used
the entire VF as input with the goal of predicting a
future VF. After testing hundreds of models, their best
performing model achieved a mean MD difference of
+0.41 dB.Note, this value appears to reflect the average
of the raw residuals in the forecasting model. Our
reported results look at magnitudes of the residuals
which are likely superior for calculating model error, as
magnitude of error could be large, but if it is perfectly
symmetrical then the average raw residual would be 0
dB which is uninformative. If we were to compare our
mean raw residuals, our corrected and weightedmodels
achieve a mean MD difference of +0.01 dB and −0.02
dB, respectively. Garcia et al. (2019) usedKalman filter-
ing to predict MD values 5 years into the future and
were able to predict within 2.5 dB for the majority of
eyes.12 Although the prediction time interval is much
wider than in our study (most of the MD values we
predict in our analysis were 1 year into the future), our
model performance was better in terms of MD error.

The reliability subgroup analysis depicted
in Figure 2 demonstrates that, as more unreliable
VGs are introduced into the regression to predict
future MD, the performance gap between the standard
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model and our three models widens. That is, the more
unreliable a patient is at taking VF tests, the better
our models become at predicting future VF change
compared to the standard approach (GPA) used in
the HFA. Granted, the predictions are still not as
good when more unreliability is introduced. Specifi-
cally, the weighted and corrected models achieve their
greatest performance improvement over the standard
model when roughly half of an eye’s VFs are unreli-
able. Moreover, as the reliability error threshold gold
standard increased (as is done in the sensitivity analy-
sis), the performance gap between the best performing
(corrected and weighted model) and worse perform-
ing models (standard model) widened further. This
once again suggests that our models tend to make a
larger impact on correctly predicting future VF change
when there is a larger amount of unreliability. The
sensitivity analysis suggests that the corrected and
weighted models should be used for predicting future
reliable VFs over the standard model, as across levels
of unreliability, their performance surpasses that of
the standard model.

Our study has several limitations. First, our analy-
sis was limited to eyes with at least one reliable VF.
Therefore, the results of this study cannot be general-
ized to eyes where all the VFs are unreliable. Second,
as stated previously, the weighted model’s parameters
were optimized for the dataset used in the analysis;
yet we demonstrated in the sensitivity analysis that
the chosen parameters generalized to different error
thresholds and even maintained comparable perfor-
mance when the parameters themselves fluctuated.
However, the statistically significant difference between
the weighted and corrected models may not necessar-
ily generalize. Third, the model performance is subject
to the inclusion criteria. Whereas the proposed three
approaches outperformed the standard model across
all tested error thresholds (0.25 dB, 0.5 dB, 0.75 dB,
and 1 dB), we have not compared the model perfor-
mance for larger thresholds; however, as the thresh-
old increases, the VF is considered less reliable, and
we anticipate the gap in performance between the
weighted and corrected models would widen. Fourth,
defining “gold standard” VFs based on a threshold
error (e.g. 0.25 dB) compared to a linear regression
model artificially selects eyes where linear regression is
more accurate. An alternative is to select eyes based on
reliability indices alone, for example, where the final VF
had <5% FNs and FPs. It turns out these two sets are
highly similar, with 97.4% of all eyes with <5% FNs
and FPs being in the 0.25 dB set. The 0.25 dB set was
also the larger superset: 16.2% of eyes in the 0.25 dB
set were not in the <5% FN and FP set, whereas only
2.6% in the<5%FN and FP set were not in the 0.25 dB

set. Fifth, by default, the GPA performs a regression of
visual field index (VFI) over time, although many clini-
cians will use the MD value over time trend instead,9
as there is practically no difference in trend estimation
(VFI versus MD over time) for most eyes.19 Finally, we
note that the 95% prediction interval (PI) for all models
were relatively large, which means that these models
may not be very useful for predicting future measure-
ments.

In conclusion, we found the standard modeling
approach built into the HFA perimetry to be the worst-
performing for this analysis, as it excludes eyes with
unreliable data. By excluding these data, the regres-
sion is unable to fit as well to the eye’s overall VF
MD value trend, resulting in a less accurate predic-
tion of future VF change. By the same token, we found
including all data, even unreliable points, allows one to
more accurately predict future VF results, and in turn
better assess change. Finally, we verified that correct-
ing for unreliability and weighting by reliability further
increases the accuracy of future VF prediction, which
is likely to better facilitate the accuracy of progression
judgments.
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