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Recently, accumulating laboratorial studies have indicated that plenty of long noncoding RNAs (lncRNAs) play important roles in
various biological processes and are associatedwith many complex human diseases.Therefore, developing powerful computational
models to predict correlation between lncRNAs and diseases based on heterogeneous biological datasets will be important.
However, there are few approaches to calculating and analyzing lncRNA-disease associations on the basis of information about
miRNAs. In this article, a new computational method based on distance correlation set is developed to predict lncRNA-disease
associations (DCSLDA). Comparing with existing state-of-the-artmethods, we found that the major novelty of DCSLDA lies in the
introduction of lncRNA-miRNA-disease network and distance correlation set; thus DCSLDA can be applied to predict potential
lncRNA-disease associations without requiring any known disease-lncRNA associations. Simulation results show that DCSLDA
can significantly improve previous existing models with reliable AUC of 0.8517 in the leave-one-out cross-validation. Furthermore,
while implementing DCSLDA to prioritize candidate lncRNAs for three important cancers, in the first 0.5% of forecast results, 17
predicted associations are verified by other independent studies and biological experimental studies. Hence, it is anticipated that
DCSLDA could be a great addition to the biomedical research field.

1. Introduction

For long time, RNA was just considered to be transcriptional
noise and intermediary between a DNA sequence and its
encoded protein [1, 2]. However, sequence analyses point out
that more than 98% of the human genome does not encode
protein sequences [3]. Furthermore, increasing studies based
on biological experiments have indicated that ncRNAs play
important roles in numerous critical biological processes
such as chromosome dosage compensation, epigenetic reg-
ulation, and cell growth [4]. In particular, the lncRNAs, as
a class of important ncRNAs with a length more than 200
nucleotides [5], have been found to be associated with a
wide range of human diseases, such as breast cancer [6],
colorectal cancer [7], lung cancer [8], and cardiovascular
diseases [9]. Hence, the study of finding novel disease-
lncRNA associations has captured the attention of a lot of

researchers and has been considered as one of the hottest
topics in the research fields of diseases and lncRNAs. The
identification of disease-lncRNA association can not only
accelerate the understanding of human complex disease
mechanism at the lncRNA level, but also serve as a biomarker
identification for human disease diagnosis, treatment, and
prevention [10]. So far, a lot of studies have generated a large
amount of lncRNAs related biological data about sequence,
expression, function, and so on [11–13]. However, compared
with the rapidly increasing number of newly discovered
lncRNAs, only few known lncRNA-disease associations have
been reported. Hence, it is challenging and urgently needed
to develop efficient and successful computational approaches
to predict potential lncRNA-disease associations. In recent
years, some computational methods have been proposed to
predict novel lncRNA-disease associations, which can signif-
icantly decrease the time and cost of biological experiments
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by calculating the association probability of lncRNA-disease
pairs. For example, ChenGet al. presented the first prediction
method (genomic locus based) and constructed a lncRNA-
disease association database as well [14]. Liang et al. proposed
a genetic mediator and key regulator model to unveil the
subtle relationships between lncRNAs and lung cancer. Liu
et al. developed a computational framework to accomplish
this by combining human lncRNA expression profiles, gene
expression profiles, and human disease-associated gene data.
Applying this framework to available human long intergenic
noncoding RNAs (lincRNAs) expression data, Chen et al.
developed a semi-supervised learning method based on
framework of Laplacian Regularized Least Squares, LRL-
SLDA, to infer potential lncRNA-disease associations which
did not need negative samples and could obtain a reliable
AUC of 0.7760 in the leave-one-out cross-validations [15]. In
2014, Sun et al. constructed a lncRNA functional similarity
network and applied random walk with restart (RWR) to
infer potential lncRNA-disease associations [16]. In the same
year, Li et al. presented a bioinformatics method based
on genomic location to predict the lncRNAs associated
with vascular disease [17]. Then, Zhao et al. developed a
computational method based on the näıve Bayesian classifier
to identify cancer-related lncRNAs by integrating genome,
regulome, and transcriptome data [18]. In 2015 Zhou et al.
proposed a novel rank-based method named RWRHLDA to
prioritize candidate lncRNA-disease associations by integrat-
ing miRNA-associated lncRNA-lncRNA crosstalk network,
disease-disease similarity network, and known lncRNA-
disease association network into a heterogeneous network
and implemented a random walk with restart on the newly
generated heterogeneous network [19].

Nowadays, with advent of many biological datasets, such
as LncRNADisease [14], lncRNAdb [20], and NONCODE
[13], the number of lncRNA-disease associations is still very
limited. In 2015, Chen developed a method, named HGLDA,
based on the information of miRNA [21], which predicted
lncRNA-disease associations by integrating disease-miRNA
associations with lncRNA-miRNA interactions and did not
rely on known lncRNA-disease associations. Different from
the method of HGLDA proposed by Chen et al., in this
article, on the basis of experimentally reported lncRNA-
disease associations collected from the HMDD database
[22] and miRNA-lncRNA associations collected from the
starBase database [23], a novel model based on distance
correlation set is developed to predict potential lncRNA-
disease associations by integrating known lncRNA-miRNA
associations and known miRNA-disease associations. Com-
pared with HGLDA, the advantage of DCSLDA lies in the
introduction of the similarity of disease pairs and lncRNA
pairs and distance correlation set. In addition, to optimize
the prediction performance of DCSLDA, new methods to
calculate the similarity of disease-disease pairs and lncRNA-
lncRNA pairs are developed simultaneously. Finally, to eval-
uate the prediction performance of DCSLDA, LOOCV is
implemented on the basis of the known lncRNA-disease
associations and known lncRNA-cancer associations sepa-
rately, and simulation results demonstrate that DCSLDA is
superior to the state-of-the-art methods and can achieve a

reliable AUC of 0.8517 in the LOOCV when the pregiven
threshold parameter 𝑟 is set at 6. Additionally, to further
evaluate the prediction performance of DCSLDA, case stud-
ies of breast cancer, colorectal cancer, and lung cancer are
implemented forDCSLDA; as a result, among the first 0.5%of
predictive results, 9, 6, and 2 predicted potential associations
are confirmed by recent experimental reports, respectively.
Hence, considering the excellent prediction performance
of DCSLDA, it is obvious that DSCLDA can become
a useful and efficient computational tool for biomedical
researches.

2. Materials and Methods

2.1. Disease-miRNA Associations. We downloaded known
disease-miRNA associations from the Human MicroRNA
Disease Database (HMDD) in July 2017 (see Supplemen-
tary file 1), which included 10381 experimentally verified
disease-miRNA associations (including 572miRNAs and 383
diseases). After merging miRNAs which produce the same
mature miRNA and eliminating duplicate data, we obtained
dataset1 including 5430 disease-miRNA associations (includ-
ing 383 human diseases and 495 lncRNAs). Let 𝐷 be the
number of different diseases and M1 be the number of
different miRNAs collected from the dataset1, respectively,
𝑆𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝐷} represent the set of these 𝐷 different
diseases, and 𝑆𝑀1 = {𝑚1𝐷+1, 𝑚1𝐷+2, . . . , 𝑚1𝐷+𝑀1} represent
the set of these M1 different miRNAs; then for any given
𝑑𝑖 ∈ 𝑆𝐷 and 𝑚1𝑗 ∈ 𝑆𝑀1, we can define the Association Strong
Correlation (ASC1) between 𝑑𝑖 and 𝑚1𝑗 as follows:

𝐴𝑆𝐶1 (𝑑𝑖, 𝑚1𝑗)

= {
{{

1, If 𝑑𝑖 𝑖𝑠 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜 𝑚1𝑗 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(1)

2.2. miRNA-lncRNA Associations. We downloaded known
miRNA-lncRNA associations dataset from starBase v2.0
dataset in July 2017, which provided the most comprehen-
sive experimentally confirmed lncRNA-miRNA interactions
based on large scale CLIP-seq data. After data preprocess-
ing (including elimination of duplicate values, erroneous
data, disorganized data, and so on), dataset2 (including
10195 lncRNA-miRNA associations, 275 miRNAs, and 1127
lncRNAs) was obtained from the starBase v2.0 (see Sup-
plementary file 2). Let M2 be the number of different
miRNAs and 𝐿 be the number of different lncRNAs col-
lected from the dataset2, 𝑆𝑀2 = {𝑚21, 𝑚22, . . . , 𝑚2𝑀2}
represent the set of these M2 different miRNAs, and 𝑆𝐿 =
{𝑙𝑀2+1, 𝑙𝑀2+2, . . . , 𝑙𝑀2+𝐿} represent the set of these 𝐿 different
lncRNAs; then, for any given 𝑚2𝑖 ∈ 𝑆𝑀2 and 𝑙𝑗 ∈ 𝑆𝐿, we can
define the ASC2 between m2𝑖 and 𝑙𝑗 as follows:

ASC2 (𝑚2𝑖, 𝑙𝑗)

= {
{
{

1, If 𝑚2𝑖 𝑖𝑠 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜 𝑙𝑗 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(2)
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2.3. lncRNA-Disease Associations. In order to evaluate the
performance of DCSLDA, the newly lncRNA-disease asso-
ciations were downloaded from LncRNADisease database,
which integrated more than 1000 lncRNA-disease entries and
475 lncRNA interaction entries, including 321 lncRNAs and
221 diseases from ∼500 publications. In this dataset, after
duplicate associations and the lncRNA-disease associations
involved in either diseases or lncRNAs which were not
contained in the dataset1 or dataset2were removed, 203 high-
quality lncRNA-disease associations were obtained finally
(see Supplementary file 3).

2.4. Disease Functional Similarity Based on miRNAs. For
calculating the functional similarity between diseases, we
introduced the concept of social network. In the social
network, for any two nodes, we can calculate the similarities
between them by comparing and integrating the similarities
of nodes associated with these two nodes. In this section,
based on the assumption that similar diseases tend to show
a similar interaction and noninteraction pattern with the
miRNAs, we calculated the disease similarity in the disease-
miRNA interactive network. As illustrated in Figure 1, the
calculation procedures of disease functional similarity based
on miRNAs include 3 steps. First, we constructed miRNA-
disease interactive network from known miRNA-disease
associations (dataset1), whose topology can be abstracted as
an undirected graph 𝐺1 = (𝑉1, 𝐸1), where 𝑉1 = 𝑆𝐷 ∪
𝑆𝑀1 = {𝑑1, 𝑑2, . . . , 𝑑𝐷, 𝑚1𝐷+1, 𝑚1𝐷+2, . . . , 𝑚1𝐷+𝑀1} is the set
of vertices, 𝐸1 is the set of edges, and, for any two nodes 𝑎,
𝑏 ∈ 𝑉1, there is an edge between 𝑎 and 𝑏 in 𝐸1, if and only if
there are 𝑎 ∈ 𝑆𝐷, 𝑏 ∈ 𝑆𝑀1, and𝐴𝑆𝐶1(𝑎, 𝑏) = 1. However, since
different miRNA terms in the dataset1may relate to different
numbers of diseases, it is not suitable to assign the same
contribution value to different miRNAs. Hence, we define the
contribution value of each miRNA as follows:
𝐶𝐷 (𝑚𝑖)

= − lg(𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 of𝑚𝑖 − 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝐸1
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 of 𝑎𝑙𝑙 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝐸1 ) . (3)

Finally, we defined the functional similarity between diseases
𝑑𝑖 and 𝑑𝑗 by integrating the miRNAs related to 𝑑𝑖, 𝑑𝑗, or both
of them as follows:

FSD (𝑑𝑖, 𝑑𝑗) = exp∑𝑚𝑘∈(𝐷(𝑑𝑖)∩𝐷(𝑑𝑗)) 𝐶𝐷 (𝑚𝑘)𝐷 (𝑑𝑖) + 𝐷 (𝑑𝑗) − 𝐷 (𝑑𝑖) ∩ 𝐷 (𝑑𝑗)
(4)

where FSD is the disease functional similarity matrix calcu-
lated based on miRNA and 𝐷(𝑑𝑖) and 𝐷(𝑑𝑗) are the number
of di related edges and dj related edges in E1, respectively. As
an example, in Figure 1, there is FSD (𝑑1, 𝑑2) = exp(𝐶𝐷(𝑚1)+𝐶𝐷(𝑚3) + 𝐶𝐷(𝑚4))/(4 + 5 − 3).
2.5. lncRNA Functional Similarity Based on miRNAs. Based
on the assumption that similar lncRNAs tend to show
a similar interaction and noninteraction pattern with the
miRNAs, we can calculate the lncRNA similarity in the
lncRNA-miRNA interactive network. Similar to the calcula-
tion procedures of disease functional similarity, first, we con-
structed lncRNA-miRNA interactive network from known

lncRNA-miRNA associations (dataset2), whose topology can
be abstracted as an undirected graph 𝐺2 = (𝑉2, 𝐸2), where𝑉2 = 𝑆𝑀2 ∪ 𝑆𝐿 = {𝑚21, 𝑚22, . . . , 𝑙𝑀2+1, 𝑙𝑀2+2, . . . , 𝑙𝑀2+𝐿} is the
set of vertices, 𝐸2 is the set of edges, and, for any two nodes
𝑎, 𝑏 ∈ 𝑉2, there is an edge between 𝑎 and 𝑏 in 𝐸2, if and only
if there are 𝑎 ∈ 𝑆𝑀2, 𝑏 ∈ 𝑆𝐿, and 𝐴𝑆𝐶2(𝑎, 𝑏) = 1. Then,
considering the number of lncRNA-miRNA associations, we
defined the contribution value of each miRNA as follows:

𝐶𝐿 (𝑚𝑖)
= −log2 (𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 of 𝑚𝑖 − 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝐸2

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 of 𝑎𝑙𝑙 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝐸2 ) . (5)

Additionally, we defined the functional similarity between
lncRNA 𝑙𝑖 and 𝑙𝑗 by integrating the miRNAs related to 𝑙𝑖, 𝑙𝑗,
or both of them as follows:

FSL (𝑙𝑖, 𝑙𝑗) = exp∑𝑚𝑘∈(𝐷(𝑙𝑖)∩𝐷(𝑙𝑗)) 𝐶𝐿 (𝑚𝑘)𝐷 (𝑙𝑖) + 𝐷 (𝑙𝑗) − 𝐷 (𝑙𝑖) ∩ 𝐷 (𝑙𝑗)
(6)

where FSL is the disease functional similarity matrix calcu-
lated based on miRNA and𝐷(𝑙𝑖) and𝐷(𝑙𝑗) are the number of
𝑙𝑖 related edges and 𝑙𝑗 related edges in 𝐸2, respectively.
2.6. Method for Predicting Potential Association between
lncRNAs andDiseases. Based on the assumptions that similar
diseases tend to show a similar interaction and noninterac-
tion pattern with the miRNAs and similar miRNAs tend to
show a similar interaction and noninteraction pattern with
the lncRNAs, we proposed a novel model, DCSLDA, based
on miRNAs and distance correlation set to predict potential
disease-lncRNA associations. As illustrated in Figure 2, the
procedures ofDCSLDAconsist of the following 6major steps.

Step 1 (construction of the disease-miRNA-lncRNA inter-
action network). On the basis of the above descriptions
and letting 𝑀 = 𝑀1 ∩ 𝑀2, we can construct a disease-
miRNA-lncRNA interaction network based on dataset1
and dataset2, whose topology can be abstracted to an
undirected graph 𝐺3 = (𝑉3, 𝐸3), where 𝑉3 = 𝑆𝐷 ∪ 𝑆𝑀 ∪ 𝑆𝐿 =
{𝑑1, 𝑑2, . . . , 𝑑𝐷, 𝑚𝐷+1, 𝑚𝐷+2, . . . , 𝑚𝐷+𝑀, 𝑙𝐷+𝑀+1, 𝑙𝐷+𝑀+2, . . . ,𝑙𝐷+𝑀+𝐿} is the set of vertices, 𝐸3 is the edge set of 𝐺3, and∀𝑙𝑖 ∈ 𝐿, 𝑚𝑗 ∈ 𝑀, 𝑑𝑘 ∈ 𝐷. There is an edge between 𝑙𝑖 and 𝑚𝑗
in 𝐸3, if and only if the lncRNA 𝑙𝑖 relates to the miRNA 𝑚𝑗.
Moreover, there is an edge between 𝑚𝑗 and 𝑑𝑘 in 𝐸3, if and
only if the miRNA 𝑚𝑗 is related to the disease 𝑑𝑘. Then, for
any given 𝑎, 𝑏 ∈ 𝑉3, we can define the ASC3 between a and b
as follows:
ASC3 (𝑎, 𝑏)

= {
{{

1, If 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎 𝑎𝑛𝑑 𝑏 𝑖𝑛 𝑡ℎ𝑒 𝐸3
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(7)

In addition, although we did not use any known disease-
lncRNA associations, the diseases and lncRNAs can still be
linked by integrating edges between diseases node and miR-
NAs node and edges between miRNAs nodes and lncRNAs
nodes in the 𝐺3.
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＃＄ (ＧＣ) = -ＦＡ(
ＮＢ？ ＨＯＧ＜？Ｌ Ｉ＠ ＧＣ - Ｌ？Ｆ；Ｎ？ ＞ＣＭ？；Ｍ？Ｍ

ＮＢ？ ＨＯＧ＜？Ｌ Ｉ＠ ＞ＣＭ？；Ｍ？ - ＧＣ２．！ ；ＭＭＩ＝Ｃ；ＮＣＩＨＭ
)

＃，(ＧＣ) = -ＦＩＡ2(
ＮＢ？ ＨＯＧ＜？Ｌ Ｉ＠ ＧＣ - Ｌ？Ｆ；Ｎ？ ＦＨ＝２．！Ｍ

ＮＢ？ ＨＯＧ＜？Ｌ Ｉ＠ ＧＣ２．！ - lncRNA ；ＭＭＩ＝Ｃ；ＮＣＩＨＭ
)

FSD(di, dj) = FSL( li, lj) =
|D(li)| + |D(lj)| − |D(li) ∩ D(lj)|

Known disease-miRNA associations dataset (dataset1) Known miRNA-lncRNA associations dataset (dataset2)

LncRNA-miRNA interactive network

contribution value of each miRNA for disease contribution value of each miRNA for lncRNA

Disease-miRNA interactive network

7.792195 8.105353 11.56478 8.564784619 7.083657929 6.979822118 6.979822118

8.564784619 7.083657929 6.979822118 6.979822118 8.242856524 7.291766124 8.449307401

13.14974712 13.14974712 8.626185163 7.979822118 7.979822118 7.626185163 7.626185163

7.626185163 8.757429697 9.342392197 9.342392197 8.195550809 8.105353 8.105353

8.195550809 8.50589093 7.901819606 8.564784619 8.342392197 8.062284278 8.14974712

Similarity for disease pairs based on miRNAs Similarity for lncRNA pairs based on miRNAs

m1 m2 m3 m4 m5 m6 m7

m8 m9 m10 m11 m12 m13 m14

m15 m16 m17 m18 m19 m20 m21

m22 m23 m24 m25 m26 m27 m28

m29 m30 m31 m32 m33 m34 m35

2.059775771

1.846484825

3.672559628

2.009801796

2.181197934

m1

m8

m15

m22

m29

2.154045688

2.417287123

3.672559628

2.350340333

2.274619619

m2

m9

m16

m23

m30

3.195438373

2.417287123

2.310831792

2.526431592

2.092776031

m3

m10

m17

m24

m31

2.292348386

2.371529632

2.116257127

2.526431592

2.292348386

m4

m11

m18

m25

m32

1.846484825

2.195438373

2.116257127

2.181197934

2.225401596

m5

m12

m19

m26

m33

1.815227131

1.909131634

2.009801796

2.154045688

2.141080711

m6

m13

m20

m27

m34

1.815227131

2.25758628

2.009801796

2.154045688

2.167409649

m7

m14

m21

m28

m35

d9

d1

d2

d3

d4

d5

d6

d7

d8

0.564828

0.333333

0.25

0.333333

0.142857

4.518621

0.107586

0.5

0.026316

d6

0.071429

0.125

0.111111

0.125

339981.6

0.142857

2.029099

0.142857

0.023256

d5

0.1

0.25

0.2

27.0756

0.125

0.333333

0.022727

0.333333

0.025641

d4

0.090909

0.2

252.7471

0.2

0.111111

0.25

0.23839

0.25

0.025

d3

1.217234

41.26464

0.2

0.25

0.125

0.333333

0.25477

5.477555

0.198247

d2

1074218

1.217234

0.090909

0.1

0.071429

0.564828

619.6161

1.369389

0.182192

d1

l9

l1

l2

l3

l4

l5

l6

l7

l8

0.1428571

0.125

0.0909091

0.3333333

0.3333333

1167.1081

0.3333333

0.1111111

0.0714286

l6

0.125

0.1111111

0.0833333

337.75343

1836426.4

0.3333333

337.75343

0.1

0.0666667

l5

0.125

0.1111111

0.0833333

1925387.4

337.75343

0.3333333

337.75343

0.1

0.0666667

l4

202.83927

190.16182

1.84E+34

0.0833333

0.0833333

0.0909091

276.59901

0.0555556

0.0434783

l3

253.54909

6.44E+22

190.16182

0.1111111

0.1111111

0.125

380.32363

0.0666667
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Figure 1: The flowchart of functional similarity calculation based on information of miRNA includes three steps: (1) constructing known
disease-miRNA association andmiRNA-lncRNAassociation network respectively; (2) obtaining contribution of eachmiRNA; (3) calculating
functional similarity for diseases and lncRNAs, respectively.
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Step 2 (construction of the Adjacency Matrix based
on the disease-miRNA-lncRNA interactive network).
We can construct a (𝐷 + 𝑀 + 𝐿) × (𝐷 + 𝑀 + 𝐿)

dimensional Adjacency Matrix (AM) based on the
disease-miRNA-lncRNA interactive network as fol-
lows:

𝐴𝑀(𝑖, 𝑗)

{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝐴𝑆𝐶3 (𝑑𝑖, 𝑑𝑗) , if 𝑖 ∈ [1,𝐷] , 𝑗 ∈ [1, 𝐷] .
𝐴𝑆𝐶3 (𝑑𝑖, 𝑚𝑗) , if 𝑖 ∈ [1, 𝐷] , 𝑗 ∈ [𝐷,𝐷 + 𝑀] .
𝐴𝑆𝐶3 (𝑑𝑖, 𝑙𝑗) , if 𝑖 ∈ [1, 𝐷] , 𝑗 ∈ [𝐷 + 𝑀,𝐷 + 𝑀 + 𝐿] .
𝐴𝑆𝐶3 (𝑚𝑖, 𝑑𝑗) , if 𝑖 ∈ [𝐷,𝐷 + 𝑀] , 𝑗 ∈ [1,𝐷] .
𝐴𝑆𝐶3 (𝑚𝑖, 𝑚𝑗) , if 𝑖 ∈ [𝐷,𝐷 + 𝑀] , 𝑗 ∈ [D, 𝐷 + 𝑀] .
𝐴𝑆𝐶3 (𝑚𝑖, 𝑙𝑗) , if 𝑖 ∈ [𝐷,𝐷 + 𝑀] , 𝑗 ∈ [𝐷 + 𝑀,𝐷 + 𝑀 + 𝐿] .
𝐴𝑆𝐶3 (𝑙𝑖, 𝑑𝑗) , if 𝑖 ∈ [D +M, 𝐷 + 𝑀 + 𝐿] , 𝑗 ∈ [1, 𝐷] .
𝐴𝑆𝐶3 (𝑙𝑖, 𝑚𝑗) , if 𝑖 ∈ [𝐷 + 𝑀,𝐷 + 𝑀 + 𝐿] , 𝑗 ∈ [D, 𝐷 + 𝑀] .
𝐴𝑆𝐶3 (𝑙𝑖, 𝑚𝑗) , if 𝑖 ∈ [𝐷 + 𝑀,𝐷 + 𝑀 + 𝐿] , 𝑗 ∈ [D +M, 𝐷 + 𝑀 + 𝐿]

(8)

where 𝑖 ∈ [1,𝐷 + 𝑀 + 𝐿] and 𝑗 ∈ [1, 𝐷 + 𝑀 + 𝐿].
Step 3 (construction of the shortest distance matrix based on
the disease-miRNA-lncRNA interactive network). Let 𝑟 be
a pregiven positive integer; then we can obtain 𝑟 matrixes
such as𝐴𝑀1, 𝐴𝑀2, . . . , 𝐴𝑀𝑟 based on the AdjacencyMatrix.
Then,we can construct a (𝐷+𝑀+𝐿)×(𝐷+𝑀+𝐿) dimensional
Shortest Path Matrix (SPM) as follows:

𝑆𝑃𝑀(𝑖, 𝑗) =
{{{{
{{{{{

0, if 𝐴𝑀𝑟 (𝑖, 𝑗) = 0
1, if 𝐴𝑀(𝑖, 𝑗) = 1
𝑘, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(9)

where 𝑖 ∈ [1,𝐷 +M + 𝐿], 𝑗 ∈ [1,𝐷 + M + 𝐿], 𝑘 ∈ [2, 𝑟],
and 𝑘 satisfies 𝐴𝑀𝑘(𝑖, 𝑗) ̸= 0 while 𝐴𝑀1(𝑖, 𝑗) = 𝐴𝑀2(𝑖, 𝑗) =
⋅ ⋅ ⋅ = 𝐴𝑀𝑘−1(𝑖, 𝑗) = 0.
Step 4 (collection of the distance correlation sets for nodes
in the interactive network). In 𝐺 = (𝑉, 𝐸), let 𝑉 =
{𝑑1, 𝑑2, . . . , 𝑑𝐷, 𝑚𝐷+1, 𝑚𝐷+2, . . . , 𝑚𝐷+𝑀, 𝑙𝐷+M+1, 𝑙𝐷+M+2, . . .,𝑙𝐷+M+𝐿} = {V1, V2, . . . , V𝐷, V𝐷+1, V𝐷+2, . . . , V𝐷+𝑀, V𝐷+M+1 ,
V𝐷+M+2, . . . , V𝐷+M+𝐿}; then for each node V𝑖 ∈ 𝑉, we can
obtain its distance correlation set 𝐷𝐶𝑆𝑖 according to the
shortest distance matrix as follows:

𝐷𝐶𝑆i = {V𝑗 | 𝑟 ≥ 𝑆𝑃𝑀(𝑖, 𝑗) > 0, 𝑖 ̸= 𝑗} . (10)

For instance, in the disease-miRNA-lncRNA interaction
network illustrated in Figure 3, supposing that we hope to
collect the DCS𝐷1, then according to the above description,
we can easily know that the distance correlation sets ofD1 will
be {M1,M2,M3,M4, L1,L2,L3, L4,L5} when 𝑟 = 2.

And thereafter, for any given node V𝑗 ∈ 𝐷𝐶𝑆𝑖, where 𝑗 ̸=
𝑖, we can compute the distance correlation coefficient 𝑃(𝑖, 𝑗)
between the node V𝑖 and V𝑗 as follows:

𝑃 (𝑖, 𝑗) = 𝑃 (V𝑖, V𝑗)

= {{
{{
{

1 − 𝑆𝑃𝑀(𝑖, 𝑗)
𝑟 + 1 , if 𝑆𝑃𝑀(𝑖, 𝑗) ̸= 0

0, 𝑒𝑙𝑠𝑒.
(11)

Hence, based on (11), we can further obtain a (𝐷+𝑀+𝐿)×(𝐷+
𝑀 + 𝐿) dimensional Distance Correlation Coefficient Matrix
(DCCM) as follows:

𝐷𝐶𝐶𝑀(𝑖, 𝑗) =
{{{{
{{{{{

𝑟
𝑟 + 1 if 𝑛𝑜𝑑𝑒 V𝑖 = V𝑗

𝑃 (𝑖, 𝑗) , if 𝑛𝑜𝑑𝑒 V𝑗 ∈ 𝐷𝐶𝑆𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(12)

where 𝑖 ∈ [1,𝐷 + 𝑀 + 𝐿] and 𝑗 ∈ [1,𝐷 + 𝑀 + 𝐿].
Step 5 (estimation of association degree between a pair of
nodes in the disease-miRNA-lncRNA interactive network).
Based on (12), we can obtain distance correlation coefficient
of each nodes pair. For any given nodes pair (V𝑖, V𝑗) in 𝐺 =
(𝑉, 𝐸), where 𝑉 = {𝑑1, 𝑑2, . . . , 𝑑𝐷, 𝑙𝐷+1, 𝑙𝐷+2, . . . , 𝑙𝐷+𝐿} =
{V1, V2, . . . , V𝐷, V𝐷+1, V𝐷+2, . . . , V𝐷+𝐿} and {V𝑖, V𝑗} ⊆ 𝑉, we can
obtain the association degree (AD) between them as follows:

𝐴𝐷 (𝑖, 𝑗)

= ∑𝑘=1𝑘D+M+L 𝐷𝐶𝐶𝑀(𝑖, 𝑘) + ∑𝑘=1𝐷+𝑀+𝐿𝐷𝐶𝐶𝑀(𝑘, 𝑗)
𝐷 + 𝑀 + 𝐿

(13)

where 𝑖 ∈ [1,𝐷 + 𝑀 + 𝐿] and 𝑗 ∈ [1,𝐷 + 𝑀 + 𝐿].
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Figure 2: The procedures of DCSLDA.
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Step 6 (construction of the Final Prediction Result Matrix).

Based on (13), let 𝐴𝐷 = [ 𝐶11 𝐶12 𝐶13𝐶21 𝐶22 𝐶23
𝐶31 𝐶32 𝐶33

], where 𝐶11 is a 𝐷 × 𝐷
matrix, 𝐶12 is a 𝐷 × 𝑀 matrix, 𝐶13 is a 𝐷 × 𝐿 matrix, 𝐶21
is a 𝑀 × 𝐷 matrix, C22 is a M × M matrix, C23 is a M × L
matrix, C31 is a L ×D matrix, C32 is a L × Mmatrix, and C33
is a L × L matrix. It can be easily inferred that the matrix C13
will be our prediction results, which provided the association
probability between each disease and lncRNA. Moreover,
we can introduce disease functional similarity and lncRNA
functional similarity for C13 as follows:

𝐹𝐴𝐷 = FSD × 𝐶13 × 𝐹𝑆𝐿 (14)

where the entity 𝐹𝐴𝐷(𝑖, 𝑗) in row i column j reflects the
probability that the lncRNA 𝑙(𝑗) is related to the disease
𝑑(𝑖).
3. Results and Case Studies

To evaluate the prediction performance of DCSLDA, first
of all, we implemented LOOCV (leave-one-out cross-
validation) to compare DCSLDA with HGLDA [21] based
on the lncRNA-disease association dataset downloaded from
LncRNADisease database [14]. Next, LOOCV would be
implemented to further evaluate the prediction performance
of DCSLDA based on the known experimentally verified
lncRNA-cancer associations. And then, the effects of the
disease functional similarity and the lncRNA functional
similarity to the prediction performance of DCSLDA would
be analyzed also. Finally, experimental results about the pre-
diction of associations between lncRNAs and three cancers
were listed (see Table 1), and the performance comparisons
betweenDCLSDAandHGLDAwere implemented according
to the rankings of these new disease-related lncRNAs in the
case studies of three cancers (see Table 2).

Table 1: 17 predicted lncRNA-disease pairs with high predicted
valuewhile DCSLDAwas applied to three important kinds of cancer
(breast cancer, colorectal cancer, and lung cancer).

Cancer LncRNA PMID
Breast cancer KCNQ1OT1 21304052; 26323944
Breast cancer MALAT1 24525122; 19379481
Breast cancer XIST 27248326
Breast cancer NEAT1 25417700; 28034643
Breast cancer LINC00657 26942882
Breast cancer SNHG16 28232182
Breast cancer CASP8AP2 28388918
Breast cancer PPP1R9B 26387546
Breast cancer TUG1 27791993
Colorectal cancer KCNQ1OT1 16965397; 11340379
Colorectal cancer MALAT1 25025966
Colorectal cancer XIST 17143621
Colorectal cancer NEAT1 26552600
Colorectal cancer SNHG16 26823726
Colorectal cancer CASP8AP2 22216762
Lung cancer MALAT1 20937273; 24757675; 24667321
Lung cancer XIST 27501756

Table 2: Performance comparisons betweenDCSLDA andHGLDA
based on the rankings of ten lncRNA-disease associations related
to three important kinds of cancer (breast cancer, colorectal cancer,
and lung cancer).

Cancer LncRNA DCSLDA HGLDA
Breast cancer KCNQ1OT1 1 8
Breast cancer MALAT1 4 30
Breast cancer XIST 5 1
Breast cancer NEAT1 8 12
Breast cancer SNHG16 12 3
Colorectal cancer KCNQ1OT1 1 5
Colorectal cancer MALAT1 4 3
Colorectal cancer XIST 5 1
Lung cancer MALAT1 4 9
Lung cancer XIST 5 1
Average ranks 4.9 7.3

3.1. Performance Evaluation of Potential Disease-lncRNA
Association Prediction. According to the lncRNA-disease
association datasets downloaded from LncRNADisease
database, DCSLDA and HGLDA were applied in the
framework of LOOCV, respectively. While the LOOCV was
implemented for investigated diseases and lncRNAs, each
known lncRNA-disease association would be left out in turn
as test sample, and then we further evaluated how well this
association ranked relatively to the candidate samples. Here,
the candidate samples comprised all potential lncRNA-
disease pairs without confirmed associations. Therefore, after
the implementation of DCSLDA was completed, the rank of
each left-out testing sample relative to the candidate samples
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Figure 4: Performance comparisons between DCSLDA and
HGDLA in terms of ROC curve and AUC based on LOOCV.

could be further obtained. And then, the testing samples
with a prediction rank higher than the given threshold
were considered successfully predicted. Thus, we could
further obtain the corresponding true positive rates (TPR,
sensitivity) and false positive rates (FPR, 1-specificity) by
setting different thresholds. Here, sensitivity refers to the
percentage of test samples that were predicted with ranks
higher than the given threshold, and the specificity was
computed as the percentage of negative samples with ranks
lower than the threshold. Therefore, the receiver-operating
characteristics (ROC) curves could be drawn by plotting
TPR versus FPR at different thresholds. And then, the areas
under ROC curve (AUC) would be further calculated to
evaluate the prediction performance of DCSLDA. An AUC
value of 1 represented a perfect prediction while an AUC
value of 0.5 indicated purely random performance.

The results of the performance comparison between
DCSLDA and HGLDA were shown in Figure 4. Since the
HGLDAmethod predicts lncRNA-disease associations with-
out relying on the information of known disease-lncRNA
association, it was selected for performance comparison with
our method DCSLDA. As a result, it is clear that our newly
proposed method DCSLDA achieved the AUC of 0.8517
in the framework of LOOCV, which is much higher than
the AUC of 0.7621 achieved by HGLDA [21]. Simulation
results indicate that DCSLDA significantly improved the
performance of HGLDAby at least 0.0896 in the term of AUC
values and fully demonstrate the performance superiority of
HGLDA.

3.2. Performance Evaluation of Potential lncRNA-Cancer Asso-
ciation Prediction. Cancer has become one of the most
dangerous killers for human beings [24, 25], and there is a
high incidence of cancer in both developed countries and
developing countries. Therefore, to further evaluate the pre-
diction performance of DCSLDA, LOOCVwas implemented

DCSLDA for cancers(AUC=0.9015)
DCSLDA for all diseases(AUC=0.8517)
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Figure 5: Performance evaluation of potential lncRNA-cancer
association prediction in terms of ROC curve and AUC based on
LOOCV.

on the basis of 117 lncRNA-cancer associations collected from
the LncRNADisease dataset, and the simulation results were
illustrated in Figure 5.

From Figure 5, it is easy to find that DCSLDA achieved
the AUC of 0.9015 in the frameworks of LOOCV when 𝑟 is
set as 6, which indicates that our newly proposed method
DCSLDA has a reliable predictive performance of cancers,
and therefore it is a precise and high efficient method for the
lncRNA-disease association prediction.

3.3. Effects of the Disease Functional Similarity and lncRNA
Functional Similarity. In formula (14), we defined 𝐹𝐴𝐷 =
𝐹𝑆𝐷 × 𝐶13 × 𝐹𝑆𝐿. Then, in this section, we will analyze the
effects of the disease similarity matrix FSD and the lncRNA
similarity matrix FSL through comparing the prediction per-
formances of DCSLDA in the framework of LOOCV while
letting 𝐹𝐴𝐷 = 𝐶13 and FAD = FSD×𝐶13 ×𝐹𝑆𝐿, respectively.
The simulation results are illustrated in Figure 6. It is obvious
that DCSLDA achieved the AUCs of 0.8517 while matrixes
FSD and FSL were considered, but the AUC achieved by
DCSLDA is 0.8352 only when letting FAD = 𝐶13. Simulation
results indicated that the prediction performance ofDCSLDA
will be significantly improved by introducing the similarity
matrixes FSD and FSC. Moreover, in Table 1, DCSLDA was
applied to three important kinds of cancer (breast cancer,
colorectal cancer, and lung cancer). As a result, 17 predicted
lncRNA-disease pairs with high predicted value were publicly
released to benefit the biological experimental validation.

3.4. Case Studies. Obviously, DCSLDA can predict all poten-
tial relationships between diseases and lncRNAs in dataset1
and dataset2 simultaneously. And of course, potential asso-
ciations with high predicted value can be publicly released
to benefit the biological experimental validation. It is antic-
ipated that these potential disease-lncRNA associations that
significantly share common miRNAs could be validated by
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Figure 6: Comparison of effects of the disease functional similarity
and lncRNA functional similarity to the prediction performance of
PCSLDA in the framework of LOOCV with 𝑟 =6.

biological experiments and provide important complement
for experimental studies. Moreover, plentiful evidence has
indicated that lncRNAs played important roles in various
kinds of human cancers. The predicted results were sorted
from best to worse, among which the first 0.5% results are
selected to be analyzed (see Supplementary file 4). Case
studies about three important kinds of cancers based on
top 0.5% of predicted results were implemented to show the
predictive performance of DCSLDA. Prediction results were
verified based on the recent updates in the LncRNADisease
dataset and recently published experimental literature (rank-
ing results have been listed in Table 1).

In the world, breast cancer is the most prevalent cancer
in women and a major public health problem. Several studies
have focused on studying this disease, but more are needed,
especially at the genetic and molecular levels [26, 27]. There-
fore, it is necessary to predict breast cancer-related lncRNAs
and identify lncRNAbiomarkers. DCSLDAwas implemented
to prioritize candidate lncRNAs for breast cancer. Among the
first 5% of predictive results, nine breast cancer-related lncR-
NAs have been confirmed based on recent experimental liter-
ature (seeTable 1). For example, KCNQ1OT1,MALAT1, XIST,
and NEAT1 are experimentally confirmed breast cancer-
related lncRNAs, which have been ranked 2nd, 11th, 12th, and
19th in the predicted list based on the model of DCSLDA,
respectively. KCNQ1OT1 had significantly higher expression
levels in invasive breast carcinoma and was induced by
estrogen in estrogen receptor-alpha expressing breast cancer
cells [28]. 17𝛽-Estradiol treatment affects breast tumor or
nontumor cells proliferation, migration, and invasion in an
ER𝛼-independent, but a dose-dependent, way by decreasing
the MALAT1 RNA level [29]. XIST expression is significantly
reduced in breast cancer cell lines and breast cancer samples
[30]. Breast cancer patients with high level of NEAT1 expres-
sion show low survival rate [31].

Colorectal cancer (CRC) is a leading cause of cancer
deaths worldwide, one of the fundamental processes driving
the initiation and progression of CRC is the accumulation of
a variety of genetic and epigenetic changes in colon epithelial
cells. Colorectal cancer is usually caused by the combination
of various factors, such as genetic and epigenetic changes
[32, 33]. Specially, lncRNAs have been demonstrated to play
a critical role in the development and progression of colon
cancer [34]. As a result, six colorectal cancer-related lncRNAs
were listed in Table 1. For example, Tanaka K et al. proved
that Loss of imprinting of KCNQ1OT1 is considered as a
useful marker for diagnosis of colorectal cancer because
of its frequent occurrences in colorectal cancer samples
[35]. Ji Q et al. findings implied that MALAT1 might be a
potential predictor for tumor metastasis and prognosis [36].
Furthermore, the interaction between MALAT1 and SFPQ
could be a novel therapeutic target for CRC. Lassmann S et al.
proved that expression level change of or DNA amplification
of XIST is associated with colorectal cancer [37].

Over the past 30 years, the morbidity and mortality of
lung cancer have been increasing and the cancer has the
highest incidence and mortality across the world [38]. Due
to the early diagnosis of lung cancer and the lack of effective
treatment, its survival rate is around 10% within five years,
which seriously endangers human health. More and more
evidence has shown that lncRNAs play a critical role in
treatment of lung cancers. Among the first 5% of predictive
results, three predicted lncRNAs have been confirmed by
published experimental literature [39]. According to this
literature, MALAT1 has been shown to be highly associated
with metastasis of lung cancer and promote lung cancer
cell motility by regulating motility related gene expression
[40, 41]. Long noncoding RNA XIST acts as an oncogene in
non-small cell lung cancer by epigenetically repressing KLF2
expression [42].

In addition, performance comparisons between
DCSLDA and HGLDA were implemented according to
the rankings of these disease-related lncRNAs in the
case studies of breast cancer, colorectal cancer, and lung
cancer (see Table 2). By ranging the predicated results by
HGLDA and our methods from good to bad, we selected the
intersection of the underlying disease-lncRNA relationship
predicated by HGLDA and the first 0.5 percent of the
predicted results by our methods and listed the lncRNA
items related to breast cancer, colorectal cancer, and lung
cancer in this intersection in Table 2. As a result, DCSLDA
significantly improved the prediction ability of HGLDA with
higher ranks for these new disease-related lncRNAs.

4. Discussion and Conclusions

In recent years, plenty of studies have generated an enormous
amount of biological data related to lncRNAs. Accumu-
lating evidence shows that lncRNAs have played a very
important role in the biological functions, and the study of
lncRNA-disease association prediction is of great significance
to human beings. However, there is a few computational
models for predicting potential disease-lncRNA associations
based on the information of miRNA. To utilize the wealth
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of disease-miRNA, miRNA-lncRNA, and disease-lncRNA
associations data collected from three datasets and recently
published in experimental literature, in this article, the
novel model of DCSLDA was developed to predict potential
disease-lncRNA associations. We calculated distance corre-
lation set of each node based on disease-miRNA-lncRNA
interactive network first and then further integrated disease
functional similarity and lncRNA functional similarity for
DCSLDA. The important difference from previous compu-
tational model is that DCSLDA does not rely on any known
disease-lncRNA associations and it predicts disease-lncRNA
associations only based on disease-miRNA-lncRNA interac-
tive network. In order to evaluate the prediction performance
of DCSLDA, the validation frameworks of LOOCV were
implemented based on known disease-lncRNA and cancer-
related-lncRNA associations downloaded from LncRNADis-
ease database. And case studies were further implemented
to three important cancers (breast cancer, colorectal cancer,
and lung cancer) based on recently published experimental
literature. The simulation results show that DCSLDA can
achieve reliable and excellent prediction performance and
is superior to the state-of-the-art methods. Hence, it is
anticipated that DCSLDA could play an important role in the
prospective biomedical researches.

Disease functional similarity plays an important role
in disease-related molecular function research. Functional
associations between disease-related genes are often used
to identify pairs of similar diseases from different perspec-
tives. Calculating lncRNA functional similarity could ben-
efit lncRNA function inference and disease-related lncRNA
prioritization. Therefore, based on the two assumptions that
(1) similar diseases tend to show a similar interaction and
noninteraction pattern with the miRNAs and (2) similar
lncRNAs tend to show a similar interaction and noninter-
action pattern with the miRNAs, DCSLDA was developed
to predict potential disease-related lncRNA by integrating
lncRNA functional similarity and disease functional similar-
ity. Simulation results indicated that the prediction perfor-
mance of DCSLDA will be significantly improved by disease
similarity and lncRNA similarity.

However, there are also some limitations in our method.
Firstly, DCSLDAmeasures the correlations between lncRNAs
and investigated diseases by integrating walks with different
lengths in a lncRNA-miRNA-disease network, which is con-
structed by combining the known disease-miRNA network,
miRNA-lncRNA network, and disease similarity network.
The value of distance threshold parameters r is an important
factor in DCSLDA, and how to select this parameter is
not yet solved well. Secondly, although DCSLDA does not
rely on any known experimentally verified lncRNA-disease
relationships, the performance of DCSLDA was not very
satisfactory compared with that of several existing methods.
In the future, we will further integrate data of diseases and
lncRNAs that do not rely on the lncRNA-disease interactive
network, disease-miRNA interactive network, or miRNA-
lncRNA interactive network; then these above problems may
be well solved. Finally, introducing more reliable measure
of disease similarity and lncRNA similarity and developing
more reliable similarity integration method would improve

the performance of DCSLDA. In particular, disease simi-
larity and lncRNA similarity in this model totally rely on
known disease-miRNA and miRNA-lncRNA associations.
The performance of DCSLDA would be further improved
when sequence similarity of lncRNA and semantic similarity
of disease are introduced.
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