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Abstract
Background: Polyamines and ornithine decarboxylase (ODC) are essential for cell proliferation.
DL-α-difluoromethylornithine (DFMO), a synthetic inhibitor of ODC, induces G1 arrest through
dephosphorylation of retinoblastoma protein (pRb). The effect of DFMO on cell growth of pRb
deficient cells is not known. We examined the effects of DFMO on pRb deficient human
retinoblastoma Y79 cell proliferation and its molecular mechanism.

Methods: Using cultured Y79 cells, the effects of DFMO were studied by using polyamine analysis,
western blot, gel shift, FACS and promoter analysis.

Results: DFMO suppressed the proliferation of Y79 cells, which accumulated in the G1 and S
phase. DFMO induced p27/Kip1 protein expression, p107 dephosphorylation and accumulation of
p107/E2F-4 complex in Y79 cells.

Conclusion: These results indicate that p107 dephosphorylation and accumulation of p107/E2F-4
complex is involved in G1 and S phase arrest of DFMO treated Y79 cells.

Background
The polyamines, spermidine, spermine, and their precur-
sor putrescine are essential for cell growth and the regula-
tion of the cell cycle [1,2]. Many reports describe increased
polyamine and ODC levels in various cancers [3-7]. Intra-
cellular polyamine levels are regulated and primarily
depend on the activity of ornithine decarboxylase (ODC),
which catalyzes the first rate-limiting step in polyamine
biosynthesis [8]. Depletion of polyamines by DL-α-dif-
luoromethylornithine (DFMO), a specific inhibitor of
ODC, has been reported to inhibit growth of various
kinds of cells [3,4,9-11]. DFMO induces expression of
CDK inhibitors such as p21 and p27 [12-14] and G1 arrest
associated with hypophosphorylation of pRb [13].

P16, one of the major p16 CDK inhibitor family, com-
petes with cyclin D to bind with CDK4 and CDK6, and the
both p21 and p27 which are p21 CDK inhibitor family
associate with cyclin/CDK complexes including CDK2, 4
and 6. It is established that increased expression of p16,
p21 or p27 suppreses CDK activities, which leads to cell
cycle arrest [15,16].

The pRb protein and E2F are thought to be a critical com-
ponent in the control of the restriction point of the G1/S
transition of the cell cycle [17]. Free E2F activates E2F-
dependent transcription of genes required for S-phase
entry. E2F/pRb complex represses transcriptional activity
of E2F [18]. When pRb protein is phosphorylated by cyc-
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lin CDK complexes, the E2F/pRb complex is disrupted,
and the released E2Fs from pRb lead to activation of E2F
target genes [17,18]. p107 and p130 are similar to pRb in
their structures and functions [18,19]. E2F-1, E2F-2, and
E2F-3 bind almost exclusively to pRb; E2F-4 binds to
p107 and p130 with high affinity, and also associates with
pRb in some cell types; E2F-5 associates with p130 [18].

Overexpression experiments have revealed that each of
pRb family proteins can induce G1 cell cycle arrest [20-23].
Recently, it has been reported that p107 blocks cell cycle
inside S phase in addition to G1 arrest [24].

Since little is known about effects of DFMO on cell growth
of pRb deficient cells, we examined whether DFMO has an
anti-proliferative effect and how DFMO affects cell cycle
in human retinoblastoma Y79 cells that lack functional
pRb protein.

Results
Inhibition of Y79 cell growth and induction of G1 and S 
phase arrest by DFMO
Preliminary experiment showed that DFMO (1–5 mM)
inhibited Y79 cell growth in a dose-dependent manner
(not shown). Therefore, we used 5 mM DFMO in the
present study. The effects of 5 mM DFMO on Y79 cell
growth were studied. After 72 h and 96 h, 5 mM DFMO
inhibited Y79 cell growth 34.5 ± 3.97 and 53.5 ± 3.7%,
respectively, compared to control without DFMO treat-
ment (p < 0.001) (Fig. 1A). The growth suppression by 5
mM DFMO was completely restored by addition of 20
mM putrescine, indicating the specificity of the effect of
DFMO on cell growth and the involvement of polyamines
in Y79 cell growth. Viabilities of the cells treated with 5
mM DFMO were 96.6 ± 1.08 %, 96.67 ± 2.65 %, 95.88 ±
1.32 %, and 96.83 ± 1.58 % after 24 h, 48 h, 72 h, and 96
h respectively (not significant, compared to that observed
at 0 h) (Fig. 1B). The results suggest that DFMO did not
induce Y79 cell death. We next analyzed the effect of
DFMO on ODC activities and polyamine levels in cells.
DFMO (5 mM) treatment decreased ODC activities 96.7 ±
0.81 % and 99.6 ± 0.01 at 24 h and 48 h, respectively,
compared to that observed at 0 h (p < 0.001) (Table 1).
The levels of putrescine, spermidine, and spermine were
significantly reduced at 24 h and 48 h (Table 2).

Cell cycle analysis was done using a flow cytometer. As
shown in Fig. 2A and 2B, the percentages of G1 phase cells
were significantly increased at 48 h and 72 h. The percent-
ages of G2 phase cells were significantly reduced at 48 h
and 72 h. These data suggest that DFMO treatment
blocked cell cycle inside S phase in addition to G1 arrest.

Effects of polyamine depletion on expression of CDK 
inhibitors and pRb family proteins
To study the mechanism of S and G1 phase arrest, we stud-
ied the effect of DFMO on the expression of CDK inhibi-
tors and pRb family proteins. The expression of p27 was
markedly induced by DFMO treatment. The magnitude of
induction at 24 h and 48 h was 235% and 268%, respec-
tively, compared to that at 0 h (100%). Addition of

Table 1: ODC activities of Y79 cells treated with DFMO

0 h 24 h 48 h

13.33 ± 1.17 0.66 ± 0.01* 0.05 ± 0.001* (nmolCO2/h/mg protein)

Significantly different compared to 0 h: *p < 0.001

Effects of DFMO on Y79 cell growthFigure 1
Effects of DFMO on Y79 cell growth. A: Y79 cells were 
treated with 5 mM DFMO over a 96 h period, and cell 
number was counted. B: Cell viability was analyzed with 
trypan blue dye exclusion test. Significantly different com-
pared to 0 h: *p < 0.01
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putrescine rescued the effect of DFMO. In contrast, p16
and p21 were not significantly changed (Fig. 3A). We con-
firmed that Y79 cells did not express pRb using western
blot analysis (Fig. 3B), and examined the expression of
p107 and p130 proteins. Hypophosphorylated forms of
p107 accumulated at 24 h and 48 h after DFMO treatment
(Fig. 3B). On the contrary, the expression levels of each

form of p130 protein did not change until 48 h after
DFMO treatment (Fig. 3B).

Polyamine depletion increased p107/E2F-4 complex
Since p107 is known to be associated with E2F-4 [24,25],
C-Myc [26,27], and B-Myb [28], and suppress their tran-
scriptional activities, we investigated whether DFMO
induced binding of these proteins with p107. Whole cell
extracts (100 μg protein) derived from cells treated with
DFMO for 0 h, 24 h, and 48 h were immunoprecipitated
with antibody against E2F-4 or C-Myc. Immunoprecipi-
tated proteins were analyzed by western blotting using
anti p107 antibody. The p107/E2F-4 complex was
detected at 0 h, and DFMO treatment induced 1.6 ± 0.2-
and 1.8 ± 0.2-fold increase in amount of the complex at
24 h and 48 h, respectively, compared to 0 h (p < 0.01)
(Fig. 4A). Putrescine (20 μM) blocked the increase of the
amount of p107/E2F-4 complex, indicating the specificity
of the effect of DFMO on binding of E2F-4 with p107.
Other E2F family proteins (E2F1, 2, 3, and 5) were
detected in DFMO treated Y79 cells (Fig. 4B, lower panel),
but the complex between p107 and these proteins were
not detected (Fig. 4B, upper panel). Although C-Myc was
detected in DFMO treated Y79 cells (Fig. 4C, right panel),
the complex of p107 and c-Myc was not detected (Fig. 4C,
left panel). Whole cell extracts (100 μg protein) derived
from cells treated with DFMO for 0 h, 24 h, and 48 h were
immunoprecipitated with antibody against p107. Immu-
noprecipitated proteins were analyzed by western blotting
using anti B-Myb antibody and the complex of p107 and
B-Myb was not detected (Fig. 4D, left panel). It has been
reported that pRb and pRb family protein can directly reg-
ulate DNA replication by their association with MCM7/
CDC47 [29]. Therefore, we analyzed the MCM7-immuno-
precipitated whole cell extracts by western blotting using
anti p107 antibody. The complex of p107 and MCM7 was
detected, but it was not increased by DFMO treatment
(Fig. 4E).

p107/E2F-4 complex binds to E2F binding site
To clarify whether p107 is involved in repression of E2F
by DFMO we performed gel shift assay using E2F consen-
sus oligonucleotides. A fast migrating complex (Fig. 5A,
b), and a complex migrating at slower rate (Fig. 5A, a)
were apparent in DFMO treated Y79 cells. Complex b did

Effects of DFMO on Y79 cell cycleFigure 2
Effects of DFMO on Y79 cell cycle. Y79 cells were 
treated with 5 mM DFMO for 24, 48, and 72 h. Cell cycle 
was analyzed using a flow cytometer (A), as described under 
Experimental Procedures, and percentages of G1, S, and G2 
phase cells are shown (B). Significantly different compared to 
0 h: *p < 0.01
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Table 2: Polyamine levels of Y79 cells treated with DFMO

Putrescine Spermidine Spermine

0 h 1643.7 ± 143.2 1014.1 ± 235.1 659.3 ± 96.2
24 h 90.5 ± 22.7* 597.7 ± 118.2** 405.7 ± 102.9***
48 h 45.8 ± 9.5* 221.7 ± 87.6** 422.8 ± 87.5*** (nmol/105 cells)

Significantly different compared to 0 h
*p < 0.0001, **p < 0.002, ***p < 0.03
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not change significantly by DFMO treatment. The magni-
tudes of increase of complex a were 2.4 ± 0.3- and 2.4 ±
0.5-fold at 24 h and 48 h, respectively, compared to 0 h (p
< 0.01) (Fig. 5A lanes 2 and 3). The binding activity in
these complexes was due to E2F, as it was competed out
by excess unlabeled wild type E2F consensus binding site

Effects of DFMO on association of p107 and cellular proteinsFigure 4
Effects of DFMO on association of p107 and cellular 
proteins. A: Effects of DFMO on p107/E2F complexes in 
Y79 cells. Whole cell lysates (100 μg) treated with 5 mM 
DFMO for 0, 24, 48 h or 5 mM DFMO and 20 μM putrescine 
for 48 h were immunoprecipitated with anti E2F-4 antibody 
and immunoblotted with anti p107 anitibody. B: Cell lysates 
(100 μg) were immunoprecipitated with anti E2F-1, 2, 3, and 
5 antibodies and immunoblotted with anti p107 anitibody 
(upper panels) or with anti E2F-1, 2, 3, and 5 antibodies 
(lower panels). C: Cell lysates (100 μg) were immunoprecipi-
tated with anti C-Myc antibody and immunoblotted with anti 
p107 anitibody (left panel). The lysate of Y79 cells treated 
with DFMO for 24 h were immunoprecipitated with anti C-
Myc antibody and immunoblotted with anti C-Myc antibody 
(right panel). D: Cell lysates (100 μg) were immunoprecipi-
tated with anti p107 antibody and immunoblotted with anti 
B-Myb anitibody (left panel). The lysate of Y79 cells treated 
with DFMO for 24 h were immunoprecipitated with anti 
p107 antibody and immunoblotted with anti p107 antibody 
(right panel). E: Cell lysates (100 μg) were immunoprecipi-
tated with anti MCM7 antibody and immunoblotted with anti 
p107 anitibody.
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Expression of CDK inhibitors and pRb family pro-
teins. A: Y79 cells were treated with 5 mM DFMO for 24 
and 48 h. Cell lysates (100 μg) were subjected to western 
blot analysis using the antibodies against p16, p21, p27, and 
cytochrome c (as a control). Quantification of the bands was 
performed using the NIH image software, and corrected 
using the levels of cytochrome c. The data were expressed as 
%, compared to that observed at 0 h (100%). The experi-
ments were repeated twice and similar results were 
obtained. A typical result is presented. B: Cell lysates (100 
μg) of Y79 cells and Jurkat cells (positive control) were sub-
jected to western blot analysis using the antibody against pRb 
(upper panel). Y79 cells were treated with 5 mM DFMO for 
24 and 48 h. Cell lysates (50 μg) were subjected to western 
blot analysis using the antibodies against p107 and p130 (mid-
dle and lower panels). Signals were visualized using ECL. 
pp107 and p107 indicate hyperphosphorylated p107 and 
hypophosphorylated p107, respectively. 1, 2, and 3 indicate 
phosphorylated forms of p130.
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oligonucleotides, but not by their mutants (Fig. 5A lanes
8 and 9). The addition of specific antibodies against E2F-
4 and p107 to the reaction mixtures confirmed that the
complex a contains E2F-4 and p107 (Fig. 5A lanes 6 and
7).

Effect of DFMO on E2F transcriptional activity
To further clarify whether p107 is involved in transcrip-
tional repression of E2F by DFMO we performed reporter
assay using artificially synthesized four tandem repeats
(E2WTx4) of the adenovirus E2 enhancer, which has two
typical E2F-binding sites [30]. The plasmids, pE2WTx4
and pRL-CMV were cotransfected into Y79 cells. After 24
h culture media were changed to RPMI 1640 media with
or without 5 mM DFMO or 5 mM DFMO and 20 μM
putrescine. Cell lysates were prepared at indicated times
after the addition of DFMO, and examined for luciferase
activity to monitor the promoter activity. Luciferase activ-
ity was reduced by DFMO treatment to 76.7 ± 3.3%, 66.7
± 5.5%, 55.7 ± 4.1% at 24 h, 48 h, and 72 h, respectively,
compared to control (p < 0.02) (Fig. 5B). The addition of
20 μM putrescine completely restored the luciferase activ-
ity to the level of control, indicating the specificity of
DFMO effect on E2F promoter activity.

Discussion
Our results demonstate that DFMO has anti-proliferative
effects even in pRb deficient cells, and suggest that p107
may play an important role in cell cycle control of Y79
cells.

There are several reports that DFMO induces G1 arrest in
various kinds of cells [12-14]. It was reported that pRb is
dephosphorylated by DFMO treatment [13]. Induction of
CDK inhibitors that regulate pRb phosphorylation has
been reported in cells treated with DFMO [12-14]. How-
ever, it is unknown about the effect of DFMO on growth
and cell cycle of cells that lacks pRb expression. In this
study we showed for the first time that p107 is involved in
cell cycle control in response to polyamine depletion in
Y79 cells.

In the present study we showed that expression of p27,
but not p16 and p21, was increased after DFMO treat-
ment. As it is established that p27 suppresses CDK activi-
ties and leads to cell cycle arrest [15,16], it is reasonably
assumed that increased expression of p27 by DFMO sup-
pressed CDK activities, which led to cell cycle arrest in the
present study.

p107 plays an important role in cell cycle control by mak-
ing complex with E2F-4 [24,25], c-Myc [26,27], B-Myb
[28] and MCM7 [29]. When E2F/p107 complex binds to
promoters, p107 recruits histone deacetylase complexes,
which repress promoter activity [30-34]. Binding of E2F-4

Effect of DFMO on E2F transcriptional activityFigure 5
Effect of DFMO on E2F transcriptional activity. A: E2F 
electoromobility shift assays using 10 μg of nuclear extracts 
from DFMO treated Y79 cells and E2F binding oligonucle-
otides. Lanes 1–4 : Nuclear extracts from Y79 cells treated 
with 5 mM DFMO for 0, 24, 48 h or 5 mM DFMO and 20 μM 
putrescine for 48 h were incubated as described under 
Experimental. Lanes 5–7 : Nuclear extracts from Y79 cells 
treated with 5 mM DFMO for 24 h were preincubated with 
control IgG, E2F-4 antibody, and p107 antibody, respectively. 
Lanes 8, 9 : Nuclear extracts from Y79 cells treated with 5 
mM DFMO for 24 h were incubated with 50 ng of unlabeled 
competitor (WT and MT, respectively). B: One μg of 
pE2WTx4-Luc and 10 ng of pRL-CMV were co-transfected 
into Y79 cells (5 × 105) using FuGene™ Transfection Rea-
gent. After 24 h culture media were changed to RPMI 1640 
media with or without 5 mM DFMO or 5 mM DFMO and 20 
μM putrescine. Cell lysates were prepared at 24 h, 48 h and 
72 h after the addition of DFMO, and examined for luciferase 
activity to monitor the promoter activity. Significantly differ-
ent compared to control cells: *p < 0.02
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to p107 was reported to protect E2F-4 from degradation,
and this may contribute to the maintenance of active tran-
scriptional repression in quiescent cells [35]. It was
reported that p107 act as a tumor suppressor function in
pRb deficient mouse [36]. Recently, the unique role of
p107 inhibiting S phase progression of cells that have
already passed the G1 restriction point receives much
attention [24,37,38]. Kondo et al. reported the involve-
ment of p107 in the inhibition of S phase progression in
response to DNA-damaging agent [37]. Our data suggest
that p107 is involved in not only S phase arrest but also
G1 phase arrest in DFMO-treated Y79 cells by binding
with E2F-4.

Although the mechanism of accumulation of hypophos-
phorylated forms of p107 remains to be elucidated, CDK
inhibitors may be the most possible regulators, as p107
contains multiple CDK phosphorylation sites [18]. There
may be other factors that control cell cycle. However, since
targeted disruption of three Rb-related genes leads to loss
of cell cycle control [25], pRb family proteins are sug-
gested to be involved in downstream pathway of cell cycle
control. Therefore, p107 and p130 may be principal fac-
tors in controlling cell cycle in pRb deficient cells.

In conclusion, we report here that DFMO induced G1 and
S phase arrest of Y79 cells and the cell cycle arrest was
mediated through dephosphorylation of p107 and accu-
mulation of p107/E2F-4 complex which repress E2F tran-
scriptional activity.

Methods
Cells and reagents
The human retinoblastoma cell line Y79 and the human T
cell lymphoma cell line Jurkat were obtained from the
RIKEN cell bank (Tsukuba, Japan). Cells were cultured in
RPMI 1640 medium with 10% fetal bovine serum (FBS)
(JRH Biosciences, Lenexa, KS) in humidified air with 5 %
CO2 at 37°C. DFMO was kindly provided by Dr. P.
McCann, Merrell Dow Research Center. The antibodies
against p16, p27, p107, p130, E2F-1, E2F-2, E2F-4, E2F-5,
B-Myb, cytochrome c, and c-Myc were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA). The antibody
against p21 was obtained from BD Transduction Labora-
tories (Franklin Lakes, NJ). The antibodies against E2F-3
and MCM7 were obtained from Neo Markers (Fremont,
CA). Propidium iodide and protein A-sepharose CL4B are
obtained from Sigma. The antibody against pRb was
obtained from New England BioLabs (Beverly, MA). The
wild and mutant E2F oligonucleotides were obtained
from Santa Cruz Biotechnology. [γ-32P]ATP and T4 poly-
nucleotide kinase were purchased from Amersham Bio-
sciences (Tokyo, Japan). The reporter plasmid pE2WTx4-
Luc was kindly provided by Dr. Kiyoshi Ohtani [38]. Dual
luciferase reporter assay system and pRL-CMV vector were

purchased from Promega (Madison, WI). FuGene™6
Transfection Reagent was purchased from Roche.

General experimental protocols
Cells (105 cells/ml) were treated with or without 5 mM
DFMO, or 5 mM DFMO and 20 μM putrescine for the
indicated times. At 0 h, 24 h, 48 h, 72 h, and 96 h, the cells
in each treatment group were collected. Viable cells were
counted using trypan blue exclusion method.

ODC enzyme assay and polyamine analysis
ODC activity was determined using DL- [l-14C]-ornithine
as a substrate, as described previously [39]. Polyamine
analysis was determined using high-performance liquid
chromatography (HPLC) as described [40].

Cell cycle analysis
At 0 h, 24 h, 48 h, and 72 h, the cells were collected and
washed twice with PBS and fixed with chilled 70 % etha-
nol on ice for 30 minutes, treated with RNase A (0.5 mg/
ml) for 20 minutes at 37°C, and stained with 50 mg/ml
propidium iodide for 30 minutes at 4°C. Stained cells
were analyzed using EPICS XL flow cytometer (Beckman
Coulter, Tokyo, Japan) and WinCycle software (Phoenix
Flow Systems, Inc, San Diego, CA).

Immunoprecipitation and western blot analysis
For immunoprecipitation, whole cell extracts (100 μg pro-
tein) were incubated at 4°C for 16 h with specific antibod-
ies prebound to protein A-sepharose CL-4B prewashed in
IP buffer (50 mM HEPES, pH 7.4, containing 150 mM
NaCl, 10 mM EDTA, 100 mM NaF, and 2 mM sodium
orthovanadate). For western blotting, extracted proteins
(100 μg) were separated by SDS polyacrylamide gel elec-
trophoresis, transferred to nitrocellulose membrane,
probed with diluted antibody (1:1,000), and visualized
by ECL (Amersham Biosciences). Quantification of the
bands was performed using NIH image Version 1.62
(Wayne Rasband, National Institutes of Health, U.S.A).
The protein concentration was measured using a Bradford
assay kit (Bio-Rad, Hercules, CA).

Electrophoretic mobility shift assays
At 0 h, 24 h, and 48 h, the cells were collected and washed
twice with PBS. Nuclear extracts were prepared as
described [41]. The sequences of the E2F oligonucleotides
used were 5'-ATTTAAGTTTCGCGCCCTTTCTCAA-3'
(wild) and 5'-ATTTAAGTTTCGATCCCTTTCTCAA-3'
(mutant). The wild type oligonucleotides were labeled
with [γ-32P] ATP and T4 polynucleotide kinase. Ten μg of
nuclear extracts were incubated for 20 min at room tem-
perature in 12.5 mM HEPES buffer (pH 7.9), containing
100 mM KCl, 10% glycerol, 0.1 mM EDTA, 0.75 mM DTT,
0.2 mM phenylmethylsulfonyl floride, 3 μg of poly (dI-
dC), and 32P-labeled E2F probe (10,000 cpm). For com-
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petition, 50 ng of unlabeled competitor was added. For
antibody studies, extracts were preincubated with 4 μg of
antibody for 20 min at room temperature. The reaction
mixtures were seperated on 6 % nondenaturing polyacry-
lamide (37.5:1) gels. The gels were autoradiographed
using Fujix Bio Imaging Analyzer BAS2000 (Fujifilm,
Tokyo, Japan).

Transient transfection and promoter assay
One μg of pE2WTx4-Luc and 10 ng of pRL-CMV was co-
transfected into Y79 cells (5 × 105) using FuGene™6 Trans-
fection Reagent according to the manufacturer's instruc-
tion (Roche). After 24 h culture media were changed to
RPMI 1640 media with or without 5 mM DFMO, or 5 mM
DFMO and 20 μM putrescine. Promoter activities were
analyzed by dual luciferase reporter assay system accord-
ing to the manufacturer's protocol (Promega).

Statistical analysis
Data from two independent experiments performed in
triplicate are presented as mean ± SD unless otherwise
indicated. Statistical analysis was performed using analy-
sis of variance, with comparison of different groups by
Fisher's partial least-squares difference (PLSD) test
(Statview 4; Abacus Concepts, Berkeley, CA). The P value
less than 0.05 was considered to be significant.
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