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Abstract: The brewing sector is a significant part of the global food industry. Breweries produce
large quantities of wastes, including wastewater and brewer’s spent grains. Currently, upcycling of
food industry by-products is one of the principles of the circular economy. The aim of this review
is to present possible ways to utilize common solid by-product from the brewing sector. Brewer’s
spent grains (BSG) is a good material for sorption and processing into activated carbon. Another
way to utilize spent grains is to use them as a fuel in raw form, after hydrothermal carbonization or
as a feedstock for anaerobic digestion. The mentioned by-products may also be utilized in animal
and human nutrition. Moreover, BSG is a waste rich in various substances that may be extracted for
further utilization. It is likely that, in upcoming years, brewer’s spent grains will not be considered as
a by-product, but as a desirable raw material for various branches of industry.

Keywords: brewer’s spent grains (BSG); waste management; circular economy; brewing by-product;
beer; biosorbent; biomethane; solid fuel; nutrient; hydrochars; natural compounds extraction

1. Introduction

Barley and wheat were domesticated during the Neolithic Revolution, about 10,000 BC, which changed
human behaviour from hunting and gathering into agriculture [1–3]. Those grains were used mostly
for baking. The first known brewers were the Sumerians, who started brewing in at least 4000 BC [4].
Evidence shows that beer was widely known in the ancient world [5,6]. Since then, the beer industry
started to grow from small manufactures to the big industrial breweries known today. In modern
breweries, there are four main ingredients for beer production; water, malt, yeasts, and hops. Water is
a solvent, for sugars extracted from malt during the mashing process, and it creates an environment
for yeasts [7]. Sugars, required for fermentation, are delivered into wort by malt [8]. Yeasts are the
workhorses of fermentation; thanks to them, the final product receives CO2, ethanol and higher
alcohols responsible for the aroma profile of finished beer [9]. Hops are responsible for herbal aroma
and bitterness of the finished product [10]. Beer production starts with the grinding of malt grains
and unmalted materials (if used). Such raw material is mixed with water and heated up to the
temperatures optimal for enzyme activity. This phase is named mashing, and its purpose is to extract
sugars from grains. The essential enzymes during that stage are alpha and beta amylases present in
malt. Beta-amylase cleaves every second a-1,4 bond in starch chains, starting from its non-reducing
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end. Alpha-amylase cleaves mentioned bonds in random order. Mashing ends with heating the
mixture up to 78 ◦C in order to denature remaining enzymes and stop their activity. The next step is
lautering. During that process, the wort is being separated from spent grains (Figure 1). Subsequently,
the filtrate is being boiled with hops. The purpose of that step is to sterilize the wort, and to add
hop bitterness and aroma. Finally, the wort has to be cooled down, and yeasts are added prior to
the fermentation. The main solid by-product in the brewing industry is brewer’s spent grains (BSG)
obtained during lautering [9,11].Biomolecules 2020, 10, x 3 of 18 

 
Figure 1. Diagram of beer wort production with an emphasis on the main solid by-product. 
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good effectiveness, adsorb the copper [45] or other heavy metals [46] cations from water solutions. 
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Figure 1. Diagram of beer wort production with an emphasis on the main solid by-product.

Industrial-scale breweries produce high quantities of mentioned wastes and are able to deliver it
constantly. According to Eurostat, 34 billion L of beer was produced in the European Union in 2019 [12].
That means that large quantities of brewer’s spent grains are produced yearly. Such by-product is
rich in cellulose, hemicellulose, lignin, and proteins (Table 1). It may be feasible to use them in the
neighbourhood of such factories due to the high costs of transport. The aim of that overview is to show
the possible ways to utilize brewer’s spent grains.

Table 1. The approximate chemical composition of BSG in different studies (% of dry weight).

Lignin Cellulose Hemicellulose Ash Protein Lipids Phenolics Starch

Kanauchi et al., (2001) [13] 11.9 25.4 21.8 2.4 24.0 10.6 N.D. N.D.

Carvalheiro et al., (2004) [14] 21.7 21.9 29.6 1.2 24.6 N.D. N.D. N.D.

Silva et al., (2004) [15] 16.9 25.3 41.9 4.6 N.D. N.D. N.D. N.D.

Mussatto and Roberto, (2006) [16] 27.8 16.8 28.4 4.6 15.2 N.D. N.D. N.D.

Celus et al., (2006) [17] N.D. 0.3 22.5 3.3 26.7 N.D. N.D. 1

Xiros et al., (2008) [18] 11.5 12 40 3.3 14.2 13 2.0 2.7

Jay et al., (2008) [19] 20–22 31–33 N.D. N.D. 15–17 6–8 1.0–1.5 10–12

Treimo et al., (2009) [20] 12.6 ± 0.1 45.9 * 23.4 ± 1.4 N.D. N.D. 7.8 ± 0.2

Robertson et al., (2010) [21] 13–17 N.D. 22–29 N.D. 20–24 N.D. N.D. 2–8

Khidzir et al., (2010) [22] 56.74 ± 9.38 40.20 ± 17.71 N.D. 2.27 ± 0.76 6.41 ± 0.31 2.50 ± 0.11 N.D. 0.28 ± 0.06

Waters et al., (2012) [23] N.D. 26.0 22.2 1.1 22.1 N.D. N.D. N.D.

Nuno et al., (2013) [24] 19.40 ± 0.34 21.73 ± 1.36 19.27 ± 1.18 4.18 ± 0.03 24.69 ± 1.04 N.D. N.D. N.D.

Sobukola et al., (2012) [25] 9.19 ± 0.011 60.64 ± 0.26 * 2.48 ± 0.02 24.39 ± 0.46 6.18 ± 0.13 N.D. N.D.

Kemppai-nen et al., (2016) [26] 19.6 45 * 4.1 20.3 N.D. N.D. N.D.

Yu et al., (2020) [27] N.D. 51.0 ± 0.7 * 4.1 ± 0.1 23.4 ± 0.2 9.4 ± 0.1 N.D. N.D.

N.D.—no data, *—all carbohydrates.
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2. Activated Carbon Production and Sorption Properties

Activated carbon is used today for many different applications, such as decolourising, solvent
recovery, water treatment, deodorizing, treatment of different gases for removal of impurities, precious
metals recovery and catalysis [28]. The process of production of activated carbon consists of two
principal processing steps: carbonization of biomass and activation [29]. Typically, two distinct
types of activation are used for developing of a highly porous structure, i.e., thermal-physical or
chemical activation [28,30,31]. Firstly, initial treatment is done to produce the substrate for activation by
carbonization at 400–500 ◦C [28]. During thermal activation partial gasification, using a mild oxidizing
gas such as CO2, steam or flue gas at 800–1000 ◦C, is performed in order to develop the porosity and
surface area [28]. Such treatment has been investigated so far, for many different types of biomass,
using various gasification agents [32–35].

On the other hand, chemical activation is typically performed, using inorganic additives, such as
acids or bases, before carbonization [28,36–39]. These additives degrade and dehydrate the cellulosic
materials during carbonization at 250–650 ◦C [28]. Obtained modified biochar (BC), depending on used
oxidizing gases or acidic or basic oxidizing solutions, contains different chemical functional groups
(e.g., phenolic, carboxylic, carbonylic, etc.), making it a very attractive tool for wastewater treatment,
CO2 capture, toxic gas adsorption, soil amendment, supercapacitors, catalytic applications, etc.

Research shows that BSG is a very promising material to produce activated carbon in a thermal
activation way [3]. Relatively high nitrogen content in a dry mass [40–43] between 2 and 5 percent
(different types of malts could have different nitrogen content in a dry mass) have a positive impact for
adsorption properties in produced activated carbon. Additionally, activated carbons from BSG could
have similar or even better adsorption properties of ions (e.g., Cr or Fe) and phenolic compounds than
commercial activated carbons [41,42,44].

Non-activated carbon materials from brewer’s spent grain could be used in adsorption processes
too. Research shows that BSG after saturation of the active sites with hydrogen cations could, with good
effectiveness, adsorb the copper [45] or other heavy metals [46] cations from water solutions. Dyes could
also be removed by using a BSG as a cheap and eco-friendly biosorption material [47,48]. Moreover,
It could be transformed into a magnetic form by a treatment, using perchloric acid stabilized magnetic
fluid containing iron oxide nanoparticles [48]. One of the most critical factors in ions and dyes
biosorption on BSG is pH. To obtain the maximum efficiency, pH has to be chosen under the specified
ion or dye—one of the most important factors in these cases is a structure of adsorbed particles and
type of ion (cationic or anionic).

3. Biomethane Production

Biowaste material is reported as a good source for biomethane production. Selective collection
of biowastes is practised in numerous cities across Europe [49]. The main problem with typical
biowastes from urban areas is variable composition and indigestible materials, like plastic [50].
What is more, its collection and transport are costly [49]. Breweries are potential sources of a high
amount of standardized biological by-product—brewer’s spent grains. In case of large, industrial
breweries, such biowaste is accessible every day. Wang et al. studied biomethane production from
BSG. They proposed to start a process with enzymatic pre-treatment in order to break down cellulose,
hemicellulose, and proteins into small monomers. Such hydrolysate was anaerobically digested into
methane using continuously stirred bioreactor, sequencing batch bioreactor with expanded granular
sludge bed. The last of the mentioned methods was the most efficient, with 56% of total organic matter
converted into methane [51]. Vitanza et al. reported that the conversion of organic matter in BSG using
anaerobic digestion reached 81% [52]. Such a process may be more effective when microwave-assisted
alkali pre-treatment is applied [53]. In that case, 46% of lignin and 38% of hemicellulose is being
removed. On the other hand, this kind of pre-treatment requires additional costs for electricity and
caustic soda [53]. Dudek et al. observed the addition of biochar to anaerobic digestion of BSG.
This study showed that 5% addition of biochar increased production of biogas, while the reaction
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rate did not change [54]. Moreover, the whole process of anaerobic digestion may be improved by
the addition of microelements. Studies showed that supplementation with Mg, Co, K and smaller
amounts of Ni and Fe increases the stability of methane production [55].

4. Thermal Valorization of BSG

4.1. BSG as a Solid Fuel

Basic fuel properties, reported by many researchers, suggest that BSG is promising as a solid
fuel (Figure 2) [56,57]. Reported carbon content reported is typically ranging between 45% up to
approx. 49% on the dry basis [56,57], which makes BSG not significantly different in terms of its fuel
properties, in comparison to lignocellulosic biomass. Additionally, ash content varies between 2 and
6% [57–59], which is similar to different types of agricultural biomass [60–66]. However, high moisture
content, exceeding 70% [56,57], is a significant obstacle in the use of BSG as a solid biofuel. Drying is
possible but requires energy and bulky installations due to relatively high residence time, e.g., the order
of magnitude of 100 min was reported by Arranz et al. [67] needed to obtain moisture reduction
of 0.2 of the original value, corresponding with the moisture content of approx. 15%. Moreover,
the energy required for the drying process should not be overlooked. Stroem et al. [68] reported drying
energy, for superheated steam drying of BSG, ranging between 0.65 and 1.45 MJ/kg of removed water,
when latent heat recovery from steam was included in the balance [68].Biomolecules 2020, 10, x 5 of 18 
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4.2. Hydrothermal Carbonization as a Thermal Valorization Method for Wet Types of Biomass

HTC is a thermal valorization process, typically performed at elevated temperatures (typically
200 to 260 ◦C) in subcritical water, at elevated pressure [69,70]. The use of such a process can enhance
mechanical dewatering, which has already been reported for various wet types of biomass [71–73].

The ionic constant of water is significantly increased, and water behaves as a non-polar solvent at
200–280 ◦C [73–79]. A multitude of reactions occurring at the same time, with the output of multiple
different products, can be considered characteristic for HTC of complex substances such as different
types of biomass [70]. The HTC process starts with hydrolysis [69]. This is followed by dehydration and
decarboxylation [69,80]. Dehydration decreases the amount of hydroxyl groups (OH) [69]. The decrease
in the amount of OH groups also causes a lower O/C ratio. Decarboxylation decreases the amount
of carboxyl (COOH) and carbonyl (C=O) groups, also slightly decreasing the O/C ratio of the solid
product [69]. This is followed by polymerization and aromatization [69,80]. A decrease in the number
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of hydroxyl groups is the key aspect in making hydrothermally carbonized biomass more hydrophobic,
lowering its equilibrium moisture content [81] and making physical dewatering easier [69]. The ability
to decrease O/C ratio is beneficial when valorization is performed, aiming at improving the results
of subsequent pyrolysis [82–84]. Moreover, the process of hydrothermal carbonization can change
the biomass in terms of the composition of the inorganic fraction [70,85]. Furthermore, some studies
reported relatively easy pelletizing of hydrochars [86]. This makes hydrothermal carbonization
a prospective valorization process for low-quality solid biofuels, especially when wet biomass is
concerned as a potential feedstock.

4.3. The Effect of Hydrothermal Carbonization of BSG

Slight improvement in mechanical dewatering, thanks to HTC of BSG, was observed by
Jackowski et al. [72]. Moreover, the GC-MS analysis of the liquid HTC effluent indicated that it
contains organic compounds that could be used to produce biogas in the anaerobic digestion [72].
Similarly, Poerschmann et al. [87] found phenols, benzenediols, and fatty acids in the liquid by-products
of HTC of BSG, concluding that the release of such compounds is an effect of the presence of bound
lipids in the feedstock [87]. HTC of spent grain from a big scale brewery, performed by Arauzo et al. [88],
resulted in an improvement in fuel properties. Higher heating value (HHV) increased, accompanied
by a decrease in the ash content, especially for high water: biomass ratios [88]. The study deemed low
temperatures of the HTC process especially suitable, thanks to the high content of hemicellulose in
the feedstock [88]. Jackowski et al. observed that the yield of HTC can be determined by an indirect
method [89]. The study also confirmed that HTC could increase the heating value of BSG and decrease
the O/C ratio [89], indicating its suitability as a valorization method suitable for subsequent pyrolysis.

A Py-GC-MS analysis of BSG and corresponding hydrochars were performed by Olszewski et al. [90].
Relatively low pyrolysis temperature for spent grains resulted in a release of a significant amount
of N-compounds, which was attributed to weakly bonded proteins present in the feedstock [90].
On the other hand, fewer N-compounds was released during pyrolysis of hydrochars, owing to the
Maillard reactions producing more stable N-heterocyclic structures [90]. A single-step and two-step
BSG pyrolysis process, consisting of HTC and pyrolysis, was compared by Olszewski et al. [91].
Hydrothermal carbonization, performed at temperatures between 180 and 260 ◦C, resulted in the
removal efficiency of inorganics, ranging from almost 60% to more than 95% for K, approx. 45% to
approx. 55% for P, and approx. 35% up to approx. 75% for Na [91]. Moreover, HTC performed
at 180 and 220 ◦C, and pyrolysis at 600 ◦C resulted in increased BET surface for pyrochars from a
two-step process, when comparing to single-step pyrolysis at the same temperature [91]. Jackowski et al.
observed that the yield of HTC can be determined by an indirect method [89]. The study also confirmed
that HTC could increase the heating value of BSG and decrease the O/C ratio [89].

5. Extraction of High-Value Compounds from BSG

Due to the multitude of compounds contained, the brewer’s spent grain undergoes extraction
processes to obtain substances with the desired properties. BSG undergoes many different extraction
processes, such as alkaline hydrolysis [92], enzymatic hydrolysis [93], microwave-assisted extraction [94],
solvent extraction [24], supercritical carbon dioxide extraction [95], ultrasound-assisted extraction [96]
etc. The products that can be obtained by extraction are:

5.1. Arabinoxylans, Polyphenol, Antioxidants and Glucose

Arabinoxylan is a polysaccharide consisting of two pentose sugars: xylose and arabinose [97].
Among other hemicelluloses, cellulose, and lignin, it is part of the dietary fibre found in BSG. It can
bind to polyphenols such as ferulic acid and p-cumaic acid. Arabinoxylans can be recovered by
ultrasound-assisted extraction [96], microwave-assisted extraction [94] or HCl and ethanol extraction
(after previous protein extraction) [98].
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Studies show that supercritical extraction of CO2 with ethanol 60% v/v at 35 MPa, 40 ◦C at an
extraction time of 240 min allows a good recovery of phenolic or flavonoid fractions [95,99]. The extract
obtained is characterized by good antioxidant properties. Phenolic fractions can also be obtained by
solvent extraction (acetone–water mixture) [24]. Good recovery of ferulic and p-coumaric acids is
provided by the BSG alkaline extraction [92] and solvent extraction (acetone: water mixture) [24,100].

Alonso-Riaño et al. characterized extraction, and determined kinetics of the water, ultrasound-
assisted extraction of polyphenol compounds from BSG [101]. Experimental data were in good
agreement with both power law and the Weibull model [101]. Ultrasound-assisted extraction achieved
similar productivity, after 30 min of treatment, in comparison to enzyme hydrolysis [101]. Birsan et al.
compared conventional maceration, microwave and ultrasound-assisted extraction, using BSG from
light and dark beer as well as their mixtures [102]. Microwave and ultrasound extraction did not
improve the total polyphenol yield when compared to the conventional maceration method [102].
Tan et al. investigated the use of Bacillus subtilis WX-17 to improve the nutritional value of BSG in a
solid-state fermentation [103]. The total amount of unsaturated fatty acid and the total antioxidant
quantity increased by 1.7 and 5.8 times, respectively [103]. Zuorro et al. investigated the extraction
of phenolic antioxidants from BSG, using acetone–water and ethanol–water mixtures as extraction
solvents [104]. The extraction yield was maximum at 60% (v/v) organic solvent concentration, for both
solvents [104].

5.2. Proteins

Due to the high protein content (about 20% in dry matter), BSG is a good potential source of
vegetable protein for the food industry. In the case of protein extraction, the selectivity of the extraction
process is crucial. Alkaline treatment of BSG, by Du et al. [105], resulted in the extraction yield of 21.4%
and purity of 60.2% for proteins extracted from BSG. In case of a combination of alkaline pretreatment
with diluted acid, a very high degree of extraction was obtained (even 95%). However, the selectivity
of this process was not good enough, because part of lignin and hydrocarbons contained in BSG was
dissolved together with proteins [106]. Good selectivity, with lower horizontal extraction (about 65%)
was obtained with hydrothermal pretreatment, which significantly required lower temperature and
did not require the use of chemicals [106].

Good results of the extraction of proteins from BSG (up to 80%) were achieved with the use of
carboxylate salt—urea DES [107]. The disadvantage of this technology is the residual DES in the
protein product, but in a case when a substitute for urea will be gained, this method could be attractive
for making human nutrition products.

Another promising method is the use of ultrasounds for enzymatic hydrolysis of proteins from
BSG [27]. By using ultrasound pretreatment, the efficiency of protein separation is increased (from 61.6
to 69.8%), the time of enzymatic reaction is shortened (by 56%), and the cost of enzyme use can be
reduced (even 73%).

6. Sustainable Materials

Next interesting application of brewer’s spent grains are construction materials. Nowadays,
there are numerous attempts to utilize biological by-products in such a way [108–110]. Brewer’s spent
grain seem to be feasible for fillers and reinforcement materials. Furthermore, this kind of practice
allows reducing costs of biocomposites. Zedler et al. investigated the modification of rubber with
BSG and ground tire rubber. Two curing systems were tested; sulfur-based and dicumyl peroxide.
Results showed that biocomposites cured with sulfur represent better acoustic and physicomechanical
absorption. What is more, such a curing method does not influence the thermal stability of the
product [111]. Formela et al. conducted experiments on reinforcing polyurethane foam with brewer’s
spent grains and ground tire rubber. Results showed that both waste fillers might be used as cheap
and environment-friendly reinforcement phase for polyurethane foam. Moreover, combinations in
spent grain and tire rubber ratio allows to design composites with various properties, which enriches
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the spectrum of their possible applications [112]. Another way to utilize biowastes from breweries
is to modify building materials with brewer’s spent grains. Ferraz et al. tested ceramic bricks made
with powder mixtures enriched with 5, 10, and 15% addition of dried BSG to brick raw material.
Incorporation of 5% of BSG by mass seems to be the best compromise between high mechanical bending
strength and low thermal conductivity. For the obtained product, mechanical bending strength reached
15 MPa, and it was 12% less than the strength of the unmodified brick. On the other hand, thermal
conductivity decreased by 28% in comparison with unmodified brick and was equal to 0.46 W/mK [113].
Russ et al. conducted a large-scale experiment on BSG enriched bricks. Spent grains were 3.5% of
brick raw material. Results showed that BSG might be a substitute for sawdust used in the brick
industry. The bricks produced with spent grains represented comparable or even higher strength,
increased porosity, and a reduced density after firing in comparison to standard clay bricks. Moreover,
the experiment demonstrated that the obtained product met the specifications mentioned in German
regulations and may be introduced to the market. Authors report that there were no problems with the
production process [114]. Presented studies show brewer’s spent grains as a feasible enrichment for
bricks’ raw material, allowing for the design of new products with greater strength, higher porosity and
improved thermal isolation. Another way of the utilization of BSG is the production of biodegradable
packages. Ferreira et al. created trays made out of BSG and starch, using the hot-pressing technique.
The product was compared with typically expanded polystyrene trays. Results demonstrated that all
of the prepared samples with BSG content from 40 to 80% represented higher flexural strength than
non-biodegradable counterpart (from 2.62 to 1.51 MPa for BSG trays in comparison to 0.64 MPa for
polystyrene). Unfortunately, flexural strength was decreased after contact with water. To overcome
such a problem, the addition of chitosan and glyoxal was proposed. Trials showed that tested additions
were effective and allowed for the production of a biodegradable counterpart for expanded polystyrene
trays [115]. Moreover, BSG has been mentioned as a sustainable material that could be used for the
manufacturing of electrodes [116].

7. Use of BSG in Agriculture

7.1. Animal Nutrition

BSG can be successfully used as feed additives in animal nutrition, mainly for cattle and pigs.
The literature data also describe successful studies on the effect of feeding fish and poultry. Due to the
specificity of their composition, they have not been used as feeds for horses, sheep, or goats [117,118].

Fresh brewer’s spent grain is characterized by high water content (70–85%) and easily fermenting
components, such as non-sugar starch, pentosans, and pectin compounds. Protein content in dry
matter is recorded at the level of about 20%, and fibre almost 60%. Therefore, it is considered for
extremely perishable feed, and it can be used for a maximum of 2–3 days from manufacture provided
that it is stored at 5 ◦C [117,119–121].

In practice, this means that they can only be used by farm buildings in the close vicinity of
the brewery, for which the time and costs associated with obtaining the linings as a feed additive
are profitable [119].

There are ways of preserving the raw BSG that allow prolonging its suitability for animal
consumption. The choice of a specific method, such as pickling or drying, is primarily related to the
costs of its use and the animal species that will be fed with BSG. The pickling of BSG has a positive
effect on extending its shelf life, and it is most often used due to its low impact on the change of quality
composition. Dried BSG is rarely used in animal nutrition, due to the relation between the cost of the
drying process and the subsequent use of this feed [120,121].

Both pickled and untreated fresh BSG are used mainly in the feeding of dairy and fattening cattle.
Milk-making properties characterize them. Hence, they are most often used in the initial and final
stage of lactation. Due to their low fat and carbohydrate content, they should never be used as a
complete independent feed, and they are most often served as an additive in combination with cereal



Biomolecules 2020, 10, 1669 8 of 18

shots, e.g., corn silage, green fodder, and protein-rich legumes. When applied in excessive quantities,
they may cause diarrhea, decreased fertility of cows, and complications in the perinatal period [120,122].

The studies carried out on carp fish showed that, in experimental groups, the replacement of
10–40% of rice bran included in feed mixes with BSG resulted in improved body weight gain. According
to the authors, this beneficial effect was also due to the content of high-quality protein with a good
amino acid profile, especially cysteine, lysine, and methionine. Achieving an elevated content of these
amino acids in brewer’s spent grain is possible thanks to the use of appropriately selected species of
microorganisms involved in the production process [118]. Moreover, nutritional quality tests led by
Nazzaro et al. showed that brewer’s by-products might be suitable for marine (Sparus aurata) and fresh
(Oncorhyncus mykiss) fish nutrition, with digestibility up to 88% for both fish species [123]. Another
approach for utilization of BSG is enzymatic pre-treatment of mentioned by-product in order to cleave
remaining cellulose and protein chains [124].

In relation to poultry feeding, the use of BSG as feed has a significant impact on production
because it increases the rate of hatching from fertilized eggs. Literature data, similarly as in the
case of carp, also indicate a significant impact of the amino acids on the nutrition of laying hens,
which, in turn, translates directly into other breeding indicators, thus increasing the quality of poultry
production [118,120]. Additionally, some studies investigated the use of BSG as fodder for edible insects [125].

7.2. BSG as a Sustainable Fertilizer and Soil Amendment

Residues from the brewing industry contain a lot of valuable nutrients, such as phosphorus or
potassium, which could be used as a source of nutrients for crops [126,127]. Spent grain (12.5 t/ha) was
reported to be comparable with NPKF (200 kg/ha) and resulted in higher fruit yields when applied to
soils in south-western Nigeria [128]. Moreover, some other trials reported a synergetic effect between
the use of NPK and BSG on the growth of maize in the south-eastern part of Nigeria [129]. Some studies
reported the effect of the synergy of BSG application, which could play a role of fertilizer and pest
control for soil-borne insects, such as G. mellonella larvae [130].

Apart from the supply of nutrients, the application of BSG to the soil could be beneficial in terms
of the improvement of the organic matter content [131]. This makes it an interesting choice for a
feedstock for biochar production, with the intention of soil application.

Application of biochar to soil offers important benefits, including more efficient use of nutrients,
improved soil quality, as well as increased water holding capacity [132–135]. Moreover, it promotes an
increase in the diversity of soil microbial community by changing the root-associated microbiome [136–141].
Furthermore, it allows the soil to effectively become a carbon sink [142]. Reported soil application
of hydrochars from spent brewer’s yeast resulted in a positive effect on the soil aggregation [143].
Application of BSG to the cultivation of hops resulted in significant improvements in the growth of the
root system of the plants [144].

8. Human Nutrition

One of the most popular methods of utilization of the by-product of beer production, which is BSG,
is to use it as animal feed or (often after some modifications) as an addition to human food (Figure 3.).
BSG contains many desirable elements of the human diet, such as vitamins, fibre, or minerals [59,145].
However, due to the high moisture content [18], the linings must be treated freshly after beer processing
(e.g., dried or frozen) to avoid the multiplication of microorganisms on them. Brewer’s spent grain can
be used for, among other things, the following purposes:
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8.1. Beer Production

Due to the remaining sugars, which have not passed into the wort as a result of the mashing
or lautering process (e.g., during the brewing of high extract beers), BSG is also suitable for beer
production. Studies show that the first 5% of BSG from the top layer after filtration may contain
undigested starch [146]. They may be used as an addition for the production of the next beer, replacing
part of the backfill. Additionally, when the mashing regime is changed, especially during the production
of low-alcoholic or non-alcoholic beers, the starch present in BSG is not fully digested and leached into
wort [147]. Again, these BSG could be used in the production of beer with lower alcohol content.

8.2. Flour, Pasta and Bread Production

In recent years, there have been attempts to enrich flour with various additions like split pea or
bean [148]. Nocente et al. showed that enrichment of durum flour with BSG increases fibre up to 135%,
β-glucan up to 85% and total antioxidant capacity up to 19% in comparison with all wheat durum flour.
Authors claim that 10% addition of BSG is optimal in terms of organoleptic and technological properties
of BSG-enriched pasta [149]. The addition of flour made of BSG has increased water absorption by the
bread and may have a positive effect on its texture and volume compared to bread made of standard
flour [150]. With a higher content of flour made of BSG in baked goods, they are characterized by
a higher content of fibre [151]. However, they disturb the dough forming and contribute to lower
gas retention and, consequently, lower volume of baked goods. This effect can be eliminated by
adding enzymes such as xylanase and lipase during bread baking [152,153]. The addition of LE, PE,
and PCE also positively influences the volume of the loaf, its ageing rate, and crumb structure. Studies
recommend not exceeding the value of 30% of the ratio of BSG flour to total flour volume in the case of
bread baking [151].

8.3. Cookies

As in the case of bread, the addition of flour from BSG affects the qualities of cookies such as
appearance, hardness, chewiness, smell, and taste. Researchers testing cookies with different content
of flour from BSG rated them on a scale from 1 to 5, all with BSG flour between 3.5 and 4.5 (where 4
means “like moderately”). However, they fall out worse compared to cookies made of wheat flour
only, which were rated 5 (“like very much”) [154]. Moreover, the addition of BSG flour to wheat
flour in ratio 1:4 may decrease the glycemic index of cookies [155]. A similar ratio of wheat flour to
BSG flour (3:1), according to the researchers, had the best taste qualities among the cookies from the
research trials [154]. Furthermore, cookies made of brewer’s spent grains are quite popular among
homebrewers [156–158].



Biomolecules 2020, 10, 1669 10 of 18

8.4. Snacks

Snacks with BSG contain a large amount of fibre and protein. However, the content of a large
amount of water-insoluble fibre—lignin and cellulose increase the hardness of snacks, which directly
causes worse taste qualities. This effect can be mitigated by adding corn starch and whey protein
isolate [155]. In the case of crispy-slices production, the content of 10% of flour from BSG did not affect
the taste and consistency of crispy-slices and contributed to an increase in the fibre content in the
produced snack [159]. Stojceska et al. reported that BSG might be added to snack extrudates up to
20% in order to obtain product similar to commercially available snacks, although 30% addition still
ensures acceptable physicochemical properties [160].

8.5. Frankfurters

Another possible way to implement BSG into the food industry is meat production. Özvural et al.
enriched frankfurters with brewer’s spent grains. Although the addition of BSG reduced sensory
impressions compared to the control group without BSG (7.57 on a 9-point scale, where 1 = dislike
extremely and 9 = like extremely), they were still at an acceptable level (from 5.47 to 7.13). The study
shows that BSG has a potential in the production of meat products with increased fibre and reduced
fat content [161]. What is more, such an approach may reduce the costs of the final product.

8.6. High Fibre Products and High Protein Products

Researchers from Virginia Tech suggested obtaining high fibre product (HFP) and high protein
product (HPP) by wet fractionation process [9]. From the tested reagents (i.e., sodium hydroxide,
sodium bisulfite, and alcalase), the best effects were observed for alcalase. Under optimal conditions,
HPP with a recovery rate of 43.7% and protein content of 42.8% w/w was obtained. The dominant
amino acids in HPP composition were glutamic acid (20.8% w/w), proline (7.5% w/w), and leucine
(10.5% w/w). The produced HFP had more than 80% of fibre, consisting of hemicellulose (about 42%
w/w), cellulose (about 24% w/w), and lignin (about 10% w/w). In case of a positive analysis of HPP and
HFP production costs, there is another possibility of commercial application of BSG in the development
of the agriculture and food industry.

9. Conclusions

Brewer’s spent grains are standardized and rich biowastes. They are being produced in large
breweries daily, but due to its high moisture content, its transportation is costly. The best way to
utilize the mentioned by-product is processing in the neighborhood of the breweries in order to reduce
the costs of transport. On the other hand, drying of BSG using waste heat from breweries may be
a feasible way to produce desirable raw material for other branches of industry. That may simplify
waste management in breweries or even provide additional income for large brewing facilities. In the
case of restaurant microbreweries, BSG may be a chance to enrich their gastronomic offer with healthy
dishes. Further studies may show a new application of brewer’s solid wastes. Moreover, due to the
circular economy trend of upcycling agro-food wastes, BSG is likely to be used in numerous branches
of industry as well as in agriculture.
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