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ABSTRACT The �-amylases are endo-acting enzymes that hydrolyze starch by ran-
domly cleaving the 1,4-�-D-glucosidic linkages between the adjacent glucose units in
a linear amylose chain. They have significant advantages in a wide range of applica-
tions, particularly in the food industry. The eukaryotic �-amylase isolated from the
Antarctic ciliated protozoon Euplotes focardii (EfAmy) is an alkaline enzyme, different
from most of the �-amylases characterized so far. Furthermore, EfAmy has the char-
acteristics of a psychrophilic �-amylase, such as the highest hydrolytic activity at a
low temperature and high thermolability, which is the major drawback of cold-active
enzymes in industrial applications. In this work, we applied site-directed mutagene-
sis combined with rational design to generate a cold-active EfAmy with improved
thermostability and catalytic efficiency at low temperatures. We engineered two
EfAmy mutants. In one mutant, we introduced Pro residues on the A and B domains
in surface loops. In the second mutant, we changed Val residues to Thr close to the
catalytic site. The aim of these substitutions was to rigidify the molecular structure
of the enzyme. Furthermore, we also analyzed mutants containing these combined
substitutions. Biochemical enzymatic assays of engineered versions of EfAmy re-
vealed that the combination of mutations at the surface loops increased the ther-
mostability and catalytic efficiency of the enzyme. The possible mechanisms respon-
sible for the changes in the biochemical properties are discussed by analyzing the
three-dimensional structural model.

IMPORTANCE Cold-adapted enzymes have high specific activity at low and moder-
ate temperatures, a property that can be extremely useful in various applications as
it implies a reduction in energy consumption during the catalyzed reaction. How-
ever, the concurrent high thermolability of cold-adapted enzymes often limits their
applications in industrial processes. The �-amylase from the psychrophilic Antarctic
ciliate Euplotes focardii (named EfAmy) is a cold-adapted enzyme with optimal cata-
lytic activity in an alkaline environment. These unique features distinguish it from
most �-amylases characterized so far. In this work, we engineered a novel EfAmy
with improved thermostability, substrate binding affinity, and catalytic efficiency to
various extents, without impacting its pH preference. These characteristics can be
considered important properties for use in the food, detergent, and textile industries
and in other industrial applications. The enzyme engineering strategy developed in
this study may also provide useful knowledge for future optimization of mole-
cules to be used in particular industrial applications.
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The �-amylases (Enzyme Commission [EC] no. 3.2.1.1) are endo-acting enzymes that
hydrolyze starch by randomly cleaving the 1,4-�-D-glucosidic linkages between the

adjacent glucose units in a linear amylose chain (1, 2). On the basis of sequence
similarity, �-amylases have been classified into the glycoside hydrolase (GH) families (3),
mostly incorporated into the GH13 family in the carbohydrate-active enzymes (CAZy)
database (4). However, with the rapidly increasing number of �-amylases recently
discovered, they have also been identified as representatives of other GH families (3).
The evolutionary relatedness among members of the GH13 family has been recently
extensively revised, and the family is presently subdivided into 42 subfamilies on the
basis of similarities in their sequences (5). The tertiary structure of each of these
enzymes is characterized by a (�/�)8 barrel containing a conserved catalytic triad (Asp,
Glu, and Asp) that forms the active site (6).

�-Amylases have been utilized in a wide range of industrial processes, such as in
food, detergent, textile, and paper industries (7, 8). They represent approximately 30%
of the world’s enzyme market (2). �-Amylases can be obtained from several sources,
including plants, animals, and microorganisms. Microbial �-amylases are generally
attractive for biotechnological and industrial applications (1, 9), particularly those
produced by extremophiles, as they can withstand harsh conditions (10–15). In general,
cold-adapted enzymes produced by psychrophiles possess high biotechnological value
and provide economic benefit, being more productive at low temperatures than meso-
philic or thermophilic homologs. This implies energy savings in industrial processes (16,
17). However, although a few number of cold-adapted �-amylases have been studied
to understand the molecular adaptation of cold-adapted enzymes (18–22), they are
very rarely developed for immediate use in industrial applications (23). As a matter of
fact, there has been a high demand for the discovery of a novel cold-adapted
�-amylase for use in various industrial processes (24).

Cold-adapted enzymes possess a range of structural features that confer higher
structural flexibility than thermostable homologs, which usually translates to high
specific activity at low temperatures (25). However, an increased flexibility may also
represent a two-edged sword for psychrophilic organisms, since it also increases the
likelihood that the proteins may undergo denaturation in response to small changes in
temperature (26). Therefore, the high thermolability of cold-adapted enzymes has been
a major drawback for their use in industrial applications (17, 27). One way to solve this
problem is to modify existing cold-adapted enzymes by site-directed mutagenesis
combined with a rational design approach (28), which generally is based on structure-
guided consensus sequence alignments with sequences that have moderate or high
amino acid identity to reduce the number of possible target residues to be mutated.
Previously, rational design principles were successfully utilized to enhance the stability
and/or catalytic efficiency of enzymes such as maltogenic amylase and patatin-like
phospholipase (29–31). These changes reduced the molecular flexibility of the poly-
peptide by (i) introducing hydrophobic residues in the protein core, (ii) introducing
disulfide and salt bridges to increase electrostatic interactions in the polypeptide, (iii)
stabilizing �-helix dipoles, (iv) introducing Pro residues, and (v) loop shortening to
decrease loop entropy (28, 32).

Recently, the cold-adapted �-amylase from the Antarctic ciliate Euplotes focardii,
named EfAmy, was heterologously expressed in Escherichia coli and biochemically
characterized (33). The ciliated protozoon E. focardii shows a strictly psychrophilic
phenotype (34, 35). The amylolytic activity of EfAmy was compared with that of the
homologous enzyme, EcAmy, from the mesophilic congeneric species E. crassus (33).
The results showed that EfAmy represents a classical psychrophilic enzyme with high
hydrolytic activity at low temperatures (5 to 25°C) and high thermolability. Further-
more, EcAmy displayed a 2-fold increased thermostability at 50°C compared with that
of EfAmy. In this study, we applied site-directed mutagenesis to generate a cold-active
EfAmy with improved thermostability and catalytic efficiency at low temperatures. We
applied a rational design approach to identify residues that contribute to the structural
stability and catalytic efficiency of the cold-active EfAmy �-amylase. Biochemical assays
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of engineered versions of EfAmy revealed that the combination of mutations at the
surface loops and catalytic core resulted in significant increases in thermostability and
catalytic efficiency of the enzyme. The novel �-amylases generated in our study could
have important applications in the detergent and food and beverage industries, where
the cold-adapted enzymes have already been widely applied and have even led to the
evolution of the conventional processes (36). Furthermore, the success of our rational
design strategy suggests that it may be universally applied to other enzymes.

RESULTS AND DISCUSSION
EfAmy sequence analysis. In a previous study (33), we biochemically characterized

two homologous �-amylases from two closely related Euplotes species, the psychro-
philic E. focardii (named EfAmy) and the mesophilic E. crassus (named EcAmy). We
showed that EfAmy and EcAmy share a relatively high sequence similarity (68% identity,
82% similarity). To identify their evolutionary relations with other members of the GH13
subfamilies, EfAmy and EcAmy were aligned with �-amylases from representative taxa
of Bacteria, Archaea, and Eukarya. The alignment was then converted into a phyloge-
netic tree (Fig. 1). The tree clearly shows that EfAmy (named in the tree as Euplotes
focardii) and EcAmy (named Euplotes crassus) together with homologous sequences

FIG 1 Phylogenetic tree of GH13 family enzymes from a variety of organisms, including ciliates. Each amylase sequence is indicated by
the name of the species that produces it preceded by the number of the GH13 subfamily and followed by letters that label different
amylase forms from the same species when present. GH13 subfamilies are attributed according to van der Kaaij et al. (81) and Janeček
and Gabriško (5). Database accession numbers for the amylases are reported in Table S2 in the supplemental material.
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from other ciliates, such as Euplotes harpa, Oxytricha trifallax, Tetrahymena thermophila,
and Paramecium tetraurelia, cluster within the GH13_1 subfamily clade that is repre-
sented by several well-studied fungus and yeast �-amylases, including Aspergillus
niger acid �-amylase (37), Aspergillus oryzae TAKA �-amylase (38), and Saccharomyco-
psis fibuligera �-amylase (39).

Rational design of EfAmy mutations. Previous findings from the biochemical char-
acterization of EfAmy and EcAmy indicate significant differences in the catalytic properties
of the two enzymes, such as in their thermostability and temperature-dependent catalytic
efficiency (33). In this study, we combined rational design and site-directed mutagenesis
approaches to modify EfAmy to develop novel �-amylases that are both thermostable
and highly active at low temperatures. As the first step of our strategy, we performed
a detailed sequence analysis of the cold-adapted EfAmy with the homologous meso-
philic EcAmy (Fig. 2). This included a multiple-sequence alignment (MSA) and protein

FIG 2 Euplotes �-amylase sequence analysis. Alignment of the predicted amino acid sequences of EfAmy and EcAmy with the
homologous A. oryzae TAKA �-amylase A (TAA) that was included due to available molecular structures used in the homology model
shown in Fig. 3. Conserved residues are lightly shaded. The �-amylase catalytic residues of the Asp, Glu, and Asp triad are marked in
yellow. The five mutation sites are labeled with red arrows. The seven conserved �-amylase sequence regions are boxed. The amino
acids of putative signal peptides are in italics. Secondary structure elements are presented below the sequences, which correspond
to the TAA �/� barrel, as described by Machius et al. (82). TAA residues involved in Ca2� (*) and Cl� (●) binding (82) are indicated
below the sequences. Sequence regions belonging to domains A (– · –), B (– – –), and C (– · · –) are labeled above the sequences.
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secondary structure analysis. In the MSA, the TAKA �-amylase A (TAA) from A. oryzae
was also included, since the three-dimensional protein structure of this enzyme was
used as the template for homology modeling of Euplotes �-amylases in the subsequent
analysis. The overall low conservation of the protein sequences among GH13 family
enzymes prevented the inclusion of additional �-amylases in the alignment (40). The
purpose of this analysis was to compare the sequences of two homologous enzymes
from closely related species to identify the residues possibly responsible for their
distinguished catalytic properties revealed by the previous biochemical characteriza-
tion (33). In general terms, the conservation between EfAmy and EcAmy was not
uniform along the entire sequence. The highest amino acid conservation level was
found at the sequences corresponding to the A, B, and C domains (Fig. 2), which
showed 71, 81, and 53% identity, respectively. Subsequently, for the selection of the
mutation sites, we focused our attention on the A and B domains, since changes in the
C domain appear to have no effects on �-amylase thermostability and activity (41).

Through an intensive analysis of the sequences, we detected three substitutions in
the A and B domains of EfAmy and EcAmy, i.e., E166P, S185P, and T350P (where each
number refers to the sequence position that is involved in the substitution and the
letters that precede and follow the number stand for amino acids present in E. focardii
and E. crassus, respectively). It is unsurprising that a higher number of Pro residues is
observed in the mesophilic �-amylase than in the psychrophilic EfAmy. In fact, Pro
avoidance has been generally assumed as the molecular mechanism of cold adaptation
of the psychrophilic enzymes, since Pro residues in loops are supposed to infer
increased rigidity to the polypeptide and a smaller number of Pro residues has been
noted in loops connecting secondary structures in several cold-adapted enzymes
investigated so far (42). Very intriguingly, we observed through structural modeling
analysis that the three Pro substitutions between EfAmy and EcAmy were all located in
the surface loops (Fig. 3) (i.e., two of them were found in the loop of the B domain and
another was found in the loop of the A domain), which have been reported to be of
major importance to the overall stability of �-amylases (7). Therefore, we primarily
chose to mutate the three residues in the loops of EfAmy (Glu166, Ser185, and Thr350)
to Pro to achieve an increased thermostability of the cold-adapted enzyme.

Through sequence alignment and modeling analysis, we also observed that Val212
and Val232 in EfAmy were replaced by Thr in EcAmy. As shown in Fig. 3, Val212 is
located in close proximity to the catalytic residues, Asp210 (at a distance of approxi-
mately 4.1 Å) and Glu234 (at a distance of approximately 3.6 Å), while Val232 is located
in proximity to residue Arg208 (at a distance of approximately 3.5 Å), which according
to Brzozowski and Davies (43) plays a role in the stabilization of ligand (e.g., with ligand
ABC as shown in Fig. 3A). Val212 and Val232 interact with the catalytic residues by
nonpolar interactions as shown in Fig. 3A. Previous studies have indicated that the
modification of amino acids surrounding the catalytic sites of enzymes will significantly
affect the catalytic activity and stability (31, 44). In our case, the replacement of these
residues with polar amino acids, such as Thr (as occurs in EcAmy), most likely will
produce the establishment of H bonds between the two Thr residues and Asp and Arg
residues of the catalytic site as predicted and shown in Fig. 3B. The predicted shorter
length and, consequently, the higher strength of these hydrogen bonds with respect to
the nonpolar interactions (which, moreover, become weaker under cold temperature
conditions [45]) may confer higher stability versus the ligand and better catalytic
activity of the enzyme. Therefore, Val212 and Val232, located around the active sites of
EfAmy, were chosen for mutagenesis to probe their effects on the catalytic efficiency
and thermostability of EfAmy. In addition to the single mutations, variants containing
these substitutions combined (V212T/V232T, E166P/S185P/T350P, and E166P/S185P/
T350P/V212T/V232T) were also generated and studied.

pH dependency of EfAmy and site-directed variants. The pH dependence of
wild-type and mutant �-amylase activities were examined in various buffers at pH
values that ranged from 5.0 to 11.0 under standard assay conditions. The results show
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that the optimal pH of all site-directed variants was 9, which was similar to that of
the wild-type enzyme (see Fig. S2 in the supplemental material). While �-amylases
from most bacteria and fungi have an optimal pH in the acidic to neutral range (1),
EfAmy represents an alkaline enzyme similar to the previously characterized alkaline
�-amylases from alkalophilic Bacillus spp. (46). This can be considered an important
property for utilizing the enzyme in detergent and textile industries and in other
industrial applications.

Effects of temperature on activity and stability of site-directed variants. The
effect of temperature on wild-type and mutant �-amylase activities was determined at
various temperatures ranging from 5 to 60°C (Fig. 4). Under the standard conditions
used, the wild-type EfAmy showed the highest activity at approximately 25°C. Fifty
percent maximal activity was observed at 5°C and approximately 10% residual activity
remained at 45°C. All these characteristics indicate that the wild type behaves as a
classic psychrophilic enzyme. To optimize the enzyme activity and stability at high
temperatures and without a dramatic compromise of its activity at low temperatures for
a broader application in industrial uses, we introduced mutations in both surface loops
and in the catalytic domain of the EfAmy based on our structural analysis. As shown in
Fig. 4A and B, the mutant enzymes with single mutations (E166P, S185P, T350P, V212T,
and V232T) showed optimal activity at 25°C, with only slightly decreased activity at low
temperatures (5 to 20°C) and increased activity at high temperatures (30 to 55°C). These
data may indicate that single mutagenesis is not sufficient to drastically modify the
catalytic parameters of the cold-adapted enzyme to convert it to a true mesophilic
�-amylase. Similar phenomena were also observed with a number of other microbial

FIG 3 Low-resolution homology model of EfAmy. EfAmy residues that were chosen for mutation to Pro are indicated in black. (A) The
catalytic dyad (Glu234 and Asp210) and the other residues involved in the interaction with the ligand ABC (reporting the accepted
nomenclature from �3 to �3; see Materials and Methods and reference80). Feasible nonpolar interactions indicated with dotted lines
and their lengths in Å are also reported. (B) The same region shown in panel A with V212T and V232T mutations. The most likely
formed hydrogen bonds are indicated by dotted lines with their lengths in Å.
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�-amylases (47–49). When the mutations were combined, the generated variant en-
zymes (E166P/S185P/T350P and E166P/S185P/T350P/V212T/V232T) displayed a shift in
optimal temperature from 25 to 30°C that is typical of the mesophilic counterpart,
EcAmy (Fig. 4C). These results clearly demonstrate that the combination of mutations
shows an effect of superimposing the activation that alters the behavior of the variant
toward that of a mesophilic enzyme (50). As mentioned above, Pro has a more rigid
conformation. Therefore, point mutations introducing extra Pro residues in the surface
loops could thus increase the enzyme’s surface rigidity. Recently, Brandsdal and coworkers
disclosed the correlation between enzyme surface rigidity and temperature-dependent
activity (51). Through computer simulation and mutation study, they determined that
increasing the restraints in protein surface loops can lead to an unambiguous effect of
turning a cold-adapted enzyme into a variant with mesophilic characteristics. On the
other hand, our structural analysis indicates that the two mutations in the catalytic core
region of the enzyme (V212T and V232T) may result in the formation of extra H bonds
between the substituted residues and the catalytic sites (Fig. 3). It is known that the
hydrogen bonding network around the catalytic domain of �-amylase can be crucial for
the enzyme to maintain its stability and catalytic efficiency at a high temperature (52,
53), which is also supported by our results from this study.

To analyze the thermostability of the mutant �-amylases, we incubated the enzymes
at 40 and 50°C for 2 to 20 min before measuring the residual activity at their optimal

FIG 4 (A to C) Effect of temperature on the amylolytic activity of EfAmy, EcAmy, and mutants. For each enzyme, the total activity at the optimal temperature
was set at 100%. This represented 1.27 U/ml for EfAmy, 1.86 U/ml for EcAmy, 1.31 U/ml for the E166P mutant, 1.34 U/ml for S185P, 1.31 U/ml for T350P, 1.53
U/ml for V212T, 1.51 U/ml for V232T, 1.91 U/ml for V212T/V232T, 1.32 U/ml for E166P/S185P/T350P, and 2.03 U/ml for E166P/S185P/T350P/V212T/V232T.
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temperatures (Fig. 5). As shown in Table 1, all single mutant enzymes (E166P, S185P,
T350P, V212T, and V232T) displayed increased stability at the same temperatures with
respect to the wild-type EfAmy, which showed 4.1- and 1.8-min half-lives at 40 and
50°C, respectively. In addition to single mutations, our study also examined the possible
synergistic effects of combining mutations. Notably, the E166P/S185P/T350P/V212T/
V232T variant, combining all the single mutations, was the most stable; half-life was
more than 1.8-fold that of the wild-type enzyme at 50°C. Although single-site mutagen-
esis of the rationally selected residues was not able to raise the thermostability of the
cold-adapted EfAmy to the same level as EcAmy, which represents the mesophilic
counterpart, the half-lives are comparable when the combined mutations are taken
into account (Table 1). These data reveal the effect of beneficial amino acid muta-
tions that are synergistic or additive for the thermostability of the enzyme, which
is consistent with the findings from other studies (54, 55). The generated variant

FIG 5 Thermostability of EfAmy and mutants at 40°C (A) and 50°C (B).
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enzyme is comparable to an engineered cold-adapted Pseudoalteromonas haloplanktis
�-amylase that shows strong stabilization at room temperature (56). A number of
previous studies have shown that both Pro insertions and hydrogen bonding play
important roles in maintaining the thermostability of proteins (30, 57–59). In this study,
by adopting sequence alignment and structural modeling analyses, we engineered
EfAmy with substituted Pro residues in the surface loops that promoted new hydrogen
bonds in the catalytic domain. This most likely confers a reduced flexibility of the loops
and catalytic core of EfAmy and thus an increased thermostability of the enzyme.

Kinetic parameters. Kinetic studies were performed on the wild-type and mutated
enzymes at 5, 25, and 35°C using starch as the substrate. As indicated by the results
presented in Table 2, in comparison with the wild-type EfAmy, the E166P, S185P, and
T350P mutants showed slightly decreased turnover rates (kcat) and increased substrate
binding affinities (decreased Km) at all temperatures. However, the overall catalytic
efficiency was increased for these single-site mutants. This effect was greater when the
three mutations were combined (E166P/S185P/T350P), with an increased kcat/Km value
of 56% at 35°C. On the other hand, although slight decreases in kcat values were
observed at 5 and 25°C when the single-site variants with amino acid substitutions in
the catalytic core of the enzyme (V212T or V232T) were tested, significant increases of
catalytic efficiency were detected at all temperatures measured. This can be explained
by the dramatic decrease in Km values for both single-site mutants. Interestingly, when
the engineered enzyme that carried the combination of all mutations (E166P/S185P/
T350P/V212T/V232T) was analyzed, a significant increase of turnover rate was observed
at a high temperature (35°C). Indeed, this enzyme represents the most efficient catalyst
among all the enzymes tested in this study when the reactions were carried out at 35°C.
It is worth noting that the engineered enzyme that carried the five mutations combined
showed an even better catalytic efficiency than the mesophilic EcAmy (33). There is
agreement that a trade-off between thermostability and catalytic activity has taken
place during the natural evolution of enzymes to suit different temperature niches in
the environment (60). This is supported by the fact that cold-adapted enzymes with
high catalytic efficiency at a low temperature often show high thermolability at high
temperatures due to the loss of native structures (61, 62). However, thermostability and
catalytic activity are not mutually exclusive in a cold-adapted enzyme. It has been
reported that directed-evolution methods can confer enzymes with both high thermo-
stability and high catalytic activity (63, 64). D. Kern and coworkers have recently applied
ancestral sequence reconstruction (ASR) approaches to create a “superenzyme” that
displays high thermostability and catalytic activity at low temperatures (65). In this
study, we further proved that rational design-based protein engineering can also
achieve the same effect.

Conclusion. Protein engineering strategies are often used to optimize enzyme
traits. Both rational design and directed evolution have been used to tailor enzyme
properties (66, 67). Rational design requires a thorough understanding of parental
structures, consensus sequences, and interactions between amino acid residues to

TABLE 1 Stability properties of EfAmy and site-directed variants

Enzyme or mutation(s)

t1/2 (min) at:

40°C 50°C

EfAmy (wild type) 4.1 1.8
EcAmy 6.5 4.2
E166P 5.0 2.4
S185P 5.2 2.6
T350P 4.8 2.3
V212T 4.2 2.0
V232T 4.3 2.0
V212T/V232T 4.6 2.2
E166P/S185P/T350P 5.3 3.0
E166P/S185P/T350P/V212T/V232T 5.7 3.3
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identify mutations that will lead to desired enzyme properties, especially the high level
of thermostability and catalytic efficiency required for industrial applications (68). In this
work, we applied a rational design method to engineer a novel cold-adapted �-amylase
with improved thermostability, substrate binding affinity, and catalytic efficiency to
various extents. In one variant (E166P/S185P/T350P), we introduced Pro residues in
the A and B domains of surface loops. In the second variant (V212T/V232T), we
facilitated extra molecular interactions in the catalytic core of the protein. The aim
of these substitutions was to rigidify the molecular structure of the enzyme. Indeed,
the E166P/S185P/T350P site-directed variant exhibited a strong increase in thermosta-
bility in comparison to that of the wild type, whereas the V212T/V232T site-directed
mutation had a high impact on the catalytic efficiency compared with those of the
enzymes with surface mutations. All our mutation sites were selected based on
structural and consensus analyses of the cold-adapted enzyme and its mesophilic
counterpart. Unlike the site-directed mutagenesis solely based on protein structural
analysis that often shows adverse impacts on the kinetic parameters, the structure-
guided consensus approach assumes that nature has efficiently optimized the protein
sequence space. Consequently, the targeting of a single mutational point of interest at
positions which match the desired consensus cutoff has proven to be a successful
approach for engineering enzymes with improved kinetic parameters (30, 69, 70). The
combination of sequence analysis and homology-based model comparison appears

TABLE 2 Kinetic parameters of EfAmy and site-directed variants at 5, 25, and 35°C

Enzyme or mutation(s)
Temp
(°C) kcat (s�1) Km (g · liter�1)

kcat/Km

(s�1 · g�1 · liter)

EfAmy 5 718.55 � 31.91 3.05 � 0.08 235.59 � 16.65
25 1466.42 � 46.1 3.31 � 0.16 443.03 � 35.43
35 982.5 � 33.18 4.43 � 0.19 221.78 � 17.03

EcAmy 5 377.53 � 19.33 1.31 � 0.04 288.19 � 23.58
25 618.91 � 23.92 1.36 � 0.03 455.08 � 27.64
35 879.76 � 27.61 1.42 � 0.07 619.55 � 50.11

E166P 5 694.31 � 26.29 2.91 � 0.06 238.59 � 13.96
25 1452.39 � 37.49 3.21 � 0.07 452.46 � 21.56
35 1033,78 � 38.91 4.01 � 0.12 262.79 � 17.58

S185P 5 677.62 � 26.41 2.86 � 0.13 236.93 � 20.05
25 1407.58 � 33.96 3.04 � 0.11 463.02 � 27.96
35 1162.17 � 31.42 3.89 � 0.08 298.76 � 14.23

T350P 5 704.62 � 23.19 2.99 � 0.09 235.65 � 14.86
25 1458.29 � 32.48 3.23 � 0.08 451.48 � 21.25
35 999.76 � 29.35 4.18 � 0.18 239.18 � 17.35

V212T 5 681.49 � 28.67 2.36 � 0.07 288.77 � 20.73
25 1392.11 � 42.49 2.67 � 0.11 521.39 � 37.46
35 1002.34 � 34.72 2.81 � 0.16 356.71 � 32.77

V232T 5 693.89 � 27.33 2.42 � 0.15 286.73 � 29.18
25 1409.63 � 37.54 2.66 � 0.09 529.94 � 32.08
35 1011.87 � 39.69 2.81 � 0.12 360.1 � 29.56

V212T/V232T 5 643.28 � 31.42 1.76 � 0.13 365.51 � 45.1
25 1314.08 � 41.66 1.89 � 0.09 695.28 � 55.28
35 1039.36 � 34.51 2.01 � 0.11 517.09 � 45.61

E166P/S185P/T350P 5 632.57 � 21.65 2.69 � 0.11 235.16 � 17.69
25 1297.12 � 41.6 2.89 � 0.13 448.83 � 34.65
35 1304 � 38.85 3.76 � 0.18 346.81 � 27.01

E166P/S185P/T350P/V212T/V232T 5 483.75 � 23.28 1.53 � 0.05 316.18 � 25.58
25 983.16 � 29.61 1.59 � 0.07 618.34 � 45.93
35 1332.03 � 38.37 1.67 � 0.11 797.6 � 75.84
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to be a good approach for the rational design of mutations to improve the thermal
stability and catalytic efficiency of this enzyme (71, 72). Our study supports this
multidisciplinary approach for engendering structural diversities in catalysis and for
optimizing particular industrial applications. The E. focardii �-amylase that we have
engineered is promising for industrial applications not only for its efficiency in the cold
but also because it represents an alkaline enzyme, similar to the �-amylase from
alkalophilic Bacillus spp. (11, 46) and different from most of the �-amylases character-
ized so far. These characteristics can be considered important properties for use in
detergent and textile industries and in other industrial applications.

MATERIALS AND METHODS
Materials. Restriction enzymes, recombinant Taq DNA polymerase, and Pfu DNA polymerase were

purchased from Fermentas (Milan, Italy). Ampicillin, chloramphenicol, isopropyl-�-D-thiogalactopyranoside
(IPTG), 5-bromo-4-chloro-indolyl-�-D-galactopyranoside (X-Gal), and soluble starch were purchased from
Sigma-Aldrich (USA). All chemicals were reagent grade. All oligonucleotide primers used in this study
were synthesized by Sigma (Milan, Italy).

Bacterial strains, plasmids, and culture conditions. E. coli DH5� was used as the host for cloning,
whereas E. coli BL21(DE3)/pLysS harbored the wild-type and recombinant plasmids for gene expression.
The pET22b(�) vector (Novagen), containing the inducible T7 promoter, was used as the expression
vector. The plasmid pET22b-EfAmy, containing the gene encoding EfAmy (33), was used for production
of the wild-type EfAmy protein. Different E. coli strains harboring wild-type and mutated genes were
routinely grown in Luria-Bertani (LB) medium at 37°C. When required, antibiotics and chromogenic
substrates were added at the following concentrations: 100 �g/ml ampicillin, 34 �g/ml chloramphenicol,
and 30 �g/ml X-Gal.

Construction, expression, and purification of the mutant plasmids. The gene encoding the
wild-type EfAmy was previously cloned and overexpressed in E. coli BL21(DE3)/pLysS (28), while the
mutated genes encoding the mutated EfAmy were constructed by PCR-based site-directed mutagenesis
(73). For each single mutation, PCRs were carried out using the plasmid pET-EfAmy as the template, Pfu
DNA polymerase, and two complementary mutagenic primers for each site-specific mutation. For each
combined mutation, PCR was performed using the former mutated plasmid as the template with the
corresponding primers for each reaction. The sequences of the oligonucleotides are shown in Table S1
in the supplemental material. The final amplified products were verified by bidirectional DNA sequenc-
ing. As a result, PCR mutagenesis yielded eight expression plasmids: pET-EfAmy-E166P, pET-EfAmy-S185P,
pET-EfAmy-T350P, pET-EfAmy-V212T, pET-EfAmy-V232T, pET-EfAmy-V212T/V232T, pET-EfAmy-E166P/
S185P/T350P, and pET-EfAmy-E166P/S185P/T350P/V212T/V232T, where the numbers indicate the posi-
tion in the polypeptide of the mutated residue and the letters before and after the numbers indicate the
original and the substituted amino acid, respectively.

E. coli BL21(DE3)/pLysS cells carrying wild-type and mutant EfAmy plasmids were grown overnight at
37°C in LB medium supplemented with 100 �g/ml ampicillin and 34 �g/ml chloramphenicol. The
overnight cultures were diluted to an optical density at 600 nm (OD600) of approximately 0.08 in 600 ml
of LB medium supplemented with 100 �g/ml ampicillin and 34 �g/ml chloramphenicol using a 2-liter
flask. Cultivation took place in a 2-liter flask at 30°C under vigorous stirring and aeration. The induction
procedures were carried out when cultures reached an OD600 of 0.6 to 0.8 by the addition of filter-
sterilized IPTG to a final concentration of 0.1 mM. The cultures were grown overnight for postinduction.
Cells were harvested by centrifugation at 5,000 � g and 4°C for 20 min, were divided into 0.50-g aliquots,
and were frozen at �80°C.

The IPTG induction of recombinant E. coli BL21(DE3)/pLysS cells resulted in the accumulation of
recombinant E. focardii �-amylases as inclusion bodies. The recovery procedure was conducted accord-
ing to a previous description (33).

SDS-PAGE (with 12% polyacrylamide) was performed by the method of Laemmli (25). The protein
concentration was determined according to the Bradford method with bovine serum albumin as the
standard (74). As estimated from SDS-PAGE (see Fig. S1), the molecular masses of the purified proteins
were between 52 and 54 kDa.

Enzyme assays. The �-amylase enzyme activity was measured according to the modified method
described by Xiao et al. (75). The reactions for both the wild-type and mutant enzymes were carried out
by adding 0.1 ml of starch solution (at a concentration of 2 g/liter) as a substrate to 0.1 ml of a solution
containing �-amylases (wild-type or mutated) at a concentration of 0.4 mg/ml in 0.1 M Tris-HCl buffer (pH
9). All the reaction conditions are described in detail in the following paragraphs. The �-amylase activity
was confirmed by adding 0.1 ml of iodine reagent (0.5% KI and 0.05% I2) to the solution. Following color
development, the formation of the starch-iodine complex was monitored on the spectrophotometer at
580 nm (A580). One unit of �-amylase activity is defined as the disappearance of an average of 1 mg of
iodine-binding starch material per min in the assay reaction.

Effect of pH on enzyme activity. The optimal pH of the wild-type and mutant �-amylases was
determined by incubating the assay reaction mixtures for 20 min at 25°C in the following buffers (all at
a concentration of 0.1 M): morpholineethanesulfonic acid (MES; pH range, 5.0 to 7.0), Tris-HCl (pH range,
7.0 to 9.0), and glycine-NaOH (pH range, 9.0 to 11.0).

Effect of temperature on enzyme activity and stability. The optimal temperatures of wild-type
and mutant �-amylases were determined by incubating the reactions at temperatures ranging from 0 to
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60°C in 0.1 M Tris-HCl buffer (pH 9). Half-lives of thermal inactivation were determined for purified
�-amylases by incubating the enzymes in 0.1 M Tris-HCl buffer (pH 9) at 40°C and 50°C for 0 to 20 min
at regular time intervals. Initial and residual activities were measured under the standard assay conditions
as described above. The first-order rate constant, Kd, of irreversible thermal denaturation was obtained
from the slope of the plots of ln (initial activity/residual activity) versus time, and the half-lives (t1/2) were
calculated as ln 2/Kd.

Influence of mutations on kinetic parameters. The kinetic parameters Km and kcat of wild-type and
mutant �-amylases were measured using soluble starch as the substrate at 5, 25, and 35°C. The initial
velocities of substrate hydrolysis were monitored for a minimum of substrate concentration. The
substrate concentrations used ranged from 0.5 to 8 g/liter. All kinetic data were analyzed by nonlinear
regression using Origin 8.0. The standard errors for each parameter were estimated from the curve fitting.
Assays were performed in duplicate, and results for kinetic data were the means from two independent
experiments.

Sequence analysis, phylogenetic tree construction, and comparative modeling. Sequence sim-
ilarity and analysis for conserved sequence regions (CSR) were performed using BLAST programs on the
National Center for Biotechnology Information (NCBI) website (http://www.ncbi.nlm.nih.gov). Sequence
alignment was performed using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/), and the
related phylogenetic tree was calculated using the neighbor-joining method and displayed using the R
package APE (version 3.5) (76). The comparative homology models of E. focardii and E. crassus �-amylases
were obtained by the Modeler software (77) using TAKA �-amylase A (TAA) from Aspergillus oryzae (PDB
no. 2TAA and 2GVY) (78, 79) and the �-amylase from Malbranchea cinnamomea (PDB no. 3VM7) (80)
as specific templates. The sequence identities shown by these three templates against EfAmy were
33.3%, 33.8% and 32.9%, respectively, and against EcAmy the identities were 37.4%, 37.6%, and 35.9%,
respectively. It is relevant to note that each template had a coverage percentage higher than 95%. To
visualize residues involved in ligand interaction, the EfAmy homology model was superimposed on the
structure of TAA from A. oryzae in complex with ABC, an acarbose-derived hexasaccharide, as the ligand
(PDB no. 7TAA) (43). The Deep View Swiss-PDB viewer software and PyMOL v1.5 were used to visualize
and analyze the three-dimensional models.
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13. Janeček Š, Baláž Š. 1992. �-Amylases and approaches leading to their
enhanced stability. FEBS Lett 304:1–3. https://doi.org/10.1016/0014
-5793(92)80575-2.

14. Samie N, Noghabi KA, Gharegozloo Z, Zahiri HS, Ahmadian G, Sharafi H,
Behrozi R, Vali H. 2012. Psychrophilic �-amylase from Aeromonas veronii
NS07 isolated from farm soils. Process Biochem 47:1381–1387. https://
doi.org/10.1016/j.procbio.2012.05.007.

15. Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genicot S, Gerday C.
1996. Enzymes from psychrophilic organisms. FEMS Microbiol Rev 18:
189 –202. https://doi.org/10.1111/j.1574-6976.1996.tb00236.x.

16. Cavicchioli R, Charlton T, Ertan H, Omar SM, Siddiqui K, Williams T. 2011.
Biotechnological uses of enzymes from psychrophiles. Microb Biotech-
nol 4:449 – 460. https://doi.org/10.1111/j.1751-7915.2011.00258.x.

17. Gerday C, Aittaleb M, Bentahir M, Chessa J-P, Claverie P, Collins T,
D’Amico S, Dumont J, Garsoux G, Georlette D. 2000. Cold-adapted

Yang et al. Applied and Environmental Microbiology

July 2017 Volume 83 Issue 13 e00449-17 aem.asm.org 12

http://www.ncbi.nlm.nih.gov
http://www.ebi.ac.uk/Tools/msa/clustalo/
http://www.rcsb.org/pdb/explore/explore.do?structureId=2TAA
http://www.rcsb.org/pdb/explore/explore.do?structureId=2GVY
http://www.rcsb.org/pdb/explore/explore.do?structureId=3VM7
http://www.rcsb.org/pdb/explore/explore.do?structureId=7TAA
https://doi.org/10.1128/AEM.00449-17
https://doi.org/10.1128/AEM.00449-17
https://doi.org/10.1016/S0168-1656(01)00407-2
https://doi.org/10.1016/S0168-1656(01)00407-2
https://doi.org/10.1007/s00018-013-1388-z
https://doi.org/10.1093/nar/gkt1178
https://doi.org/10.1007/s00018-016-2246-6
https://doi.org/10.1016/S0167-4838(00)00302-2
https://doi.org/10.1016/S0167-4838(00)00240-5
https://doi.org/10.1016/S0167-4838(00)00240-5
https://doi.org/10.1002/bit.22083
https://doi.org/10.1002/bit.22083
https://doi.org/10.1016/S0032-9592(03)00053-0
https://doi.org/10.1016/0003-9861(73)90117-3
https://doi.org/10.1016/0003-9861(73)90117-3
https://doi.org/10.1016/S0032-9592(03)00037-2
https://doi.org/10.1385/ABAB:90:1:47
https://doi.org/10.1016/0014-5793(92)80575-2
https://doi.org/10.1016/0014-5793(92)80575-2
https://doi.org/10.1016/j.procbio.2012.05.007
https://doi.org/10.1016/j.procbio.2012.05.007
https://doi.org/10.1111/j.1574-6976.1996.tb00236.x
https://doi.org/10.1111/j.1751-7915.2011.00258.x
http://aem.asm.org


enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:
103–107. https://doi.org/10.1016/S0167-7799(99)01413-4.

18. Zhang J-W, Zeng R-Y. 2008. Purification and characterization of a cold-
adapted �-amylase produced by Nocardiopsis sp. 7326 isolated from
Prydz Bay, Antarctic. Mar Biotechnol (NY) 10:75– 82. https://doi.org/10
.1007/s10126-007-9035-z.

19. Aghajari N, Haser R, Feller G, Gerday C. 1996. Crystallization and prelim-
inary X-ray diffraction studies of �-amylase from the Antarctic psychro-
phile Alteromonas haloplanctis A23. Protein Sci 5:2128 –2129. https://doi
.org/10.1002/pro.5560051021.

20. Morita Y, Nakamura T, Hasan Q, Murakami Y, Yokoyama K, Tamiya E.
1997. Cold-active enzymes from cold-adapted bacteria. J Am Oil Chem
Soc 74:441– 444. https://doi.org/10.1007/s11746-997-0103-3.

21. Aghajari N, Feller G, Gerday C, Haser R. 1998. Structures of the psychro-
philic Alteromonas haloplanctis �-amylase give insights into cold adap-
tation at a molecular level. Structure 6:1503–1516. https://doi.org/10
.1016/S0969-2126(98)00149-X.

22. D’Amico S, Gerday C, Feller G. 2001. Structural determinants of cold adap-
tation and stability in a large protein. J Biol Chem 276:25791–25796. https://
doi.org/10.1074/jbc.M102741200.

23. Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR. 2002. Low-
temperature extremophiles and their applications. Curr Opin Biotechnol
13:253–261. https://doi.org/10.1016/S0958-1669(02)00317-8.

24. Groudieva T, Kambourova M, Yusef H, Royter M, Grote R, Trinks H,
Antranikian G. 2004. Diversity and cold-active hydrolytic enzymes of
culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremo-
philes 8:475– 488. https://doi.org/10.1007/s00792-004-0409-0.

25. Laemmli UK. 1970. Cleavage of structural proteins during the assembly
of the head of bacteriophage T4. Nature 227:680 – 685.

26. Place SP, Hofmann GE. 2005. Constitutive expression of a stress-
inducible heat shock protein gene, hsp70, in phylogenetically distant
Antarctic fish. Polar Biol 28:261–267. https://doi.org/10.1007/s00300
-004-0697-y.

27. Margesin R. 2009. Cold-active enzymes as new tools in biotechnology, p
164 –184. In Gerday C, Glansdorff N (ed), Extremophiles–volume II. Eolss
Publishers, Paris, France.

28. Lehmann M, Wyss M. 2001. Engineering proteins for thermostability: the
use of sequence alignments versus rational design and directed evolu-
tion. Curr Opin Biotechnol 12:371–375. https://doi.org/10.1016/S0958
-1669(00)00229-9.

29. Mabrouk SB, Aghajari N, Ali MB, Messaoud EB, Juy M, Haser R, Bejar S.
2011. Enhancement of the thermostability of the maltogenic amylase
MAUS149 by Gly312Ala and Lys436Arg substitutions. Bioresour Technol
102:1740 –1746. https://doi.org/10.1016/j.biortech.2010.08.082.

30. Duan X, Chen J, Wu J. 2013. Improving the thermostability and catalytic
efficiency of Bacillus deramificans pullulanase by site-directed mutagen-
esis. Appl Environ Microbiol 79:4072– 4077. https://doi.org/10.1128/AEM
.00457-13.

31. Yang G, De Santi C, de Pascale D, Pucciarelli S, Pucciarelli S, Miceli C.
2013. Characterization of the first eukaryotic cold-adapted patatin-like
phospholipase from the psychrophilic Euplotes focardii: identification of
putative determinants of thermal-adaptation by comparison with the
homologous protein from the mesophilic Euplotes crassus. Biochimie
95:1795–1806. https://doi.org/10.1016/j.biochi.2013.06.008.

32. van den Burg B, Eijsink VG. 2002. Selection of mutations for increased
protein stability. Curr Opin Biotechnol 13:333–337. https://doi.org/10
.1016/S0958-1669(02)00325-7.

33. Yang G, Yang G, Aprile L, Turturo V, Pucciarelli S, Pucciarelli S, Miceli C.
2013. Characterization and comparative analysis of psychrophilic and
mesophilic alpha-amylases from Euplotes species: a contribution to the
understanding of enzyme thermal adaptation. Biochem Biophys Res
Commun 438:715–720. https://doi.org/10.1016/j.bbrc.2013.07.113.

34. Chiappori F, Pucciarelli S, Merelli I, Ballarini P, Miceli C, Milanesi L. 2012.
Structural thermal adaptation of �-tubulins from the Antarctic psychro-
philic protozoan Euplotes focardii. Proteins 80:1154 –1166. https://doi
.org/10.1002/prot.24016.

35. Pucciarelli S, La Terza A, Ballarini P, Barchetta S, Yu T, Marziale F, Passini
V, Methé B, Detrich HW, Miceli C. 2009. Molecular cold-adaptation of
protein function and gene regulation: the case for comparative genomic
analyses in marine ciliated protozoa. Mar Genomics 2:57– 66. https://doi
.org/10.1016/j.margen.2009.03.008.

36. Sarmiento F, Peralta R, Blamey JM. 2015. Cold and hot extremozymes:
industrial relevance and current trends. Front Bioeng Biotechnol 3:148.
https://doi.org/10.3389/fbioe.2015.00148.

37. Brady R, Brzozowski A, Derewenda Z, Dodson E, Dodson G. 1991.
Solution of the structure of Aspergillus niger acid �-amylase by combined
molecular replacement and multiple isomorphous replacement
methods. Acta Crystallogr B 47:527–535. https://doi.org/10.1107/
S0108768191001908.

38. Tada S, Iimura Y, Gomi K, Takahashi K, Hara S, Yoshizawa K. 1989. Cloning
and nucleotide sequence of the genomic Taka-amylase A gene of
Aspergillus oryzae. Agric Biol Chem 53:593–599. https://doi.org/10.1271/
bbb1961.53.593.

39. Itoh T, Yamashita I, Fukui S. 1987. Nucleotide sequence of the �-amylase
gene (ALP1) in the yeast Saccharomycopsis fibuligera. FEBS Lett 219:
339 –342. https://doi.org/10.1016/0014-5793(87)80248-X.

40. Chen W, Xie T, Shao Y, Chen F. 2012. Phylogenomic relationships be-
tween amylolytic enzymes from 85 strains of fungi. PLoS One 7:e49679.
https://doi.org/10.1371/journal.pone.0049679.

41. Lo H-F, Lin L-L, Chiang W-Y, Chie M-C, Hsu W-H, Chang C-T. 2002.
Deletion analysis of the C-terminal region of the �-amylase of Bacillus sp.
strain TS-23. Arch Microbiol 178:115–123. https://doi.org/10.1007/
s00203-002-0431-5.

42. Feller G, Gerday C. 1997. Psychrophilic enzymes: molecular basis of cold
adaptation. Cell Mol Life Sci 53:830 – 841. https://doi.org/10.1007/
s000180050103.

43. Brzozowski AM, Davies GJ. 1997. Structure of the Aspergillus oryzae
alpha-amylase complexed with the inhibitor acarbose at 2.0 A resolu-
tion. Biochemistry 36:10837–10845. https://doi.org/10.1021/bi970539i.

44. Jaouadi B, Aghajari N, Haser R, Bejar S. 2010. Enhancement of the
thermostability and the catalytic efficiency of Bacillus pumilus CBS pro-
tease by site-directed mutagenesis. Biochimie 92:360 –369. https://doi
.org/10.1016/j.biochi.2010.01.008.

45. Ben-Naim A. 2013. Theory of cold denaturation of proteins. Adv Biol
Chem 3:29 –39. https://doi.org/10.4236/abc.2013.31005.

46. Lee S-P, Morikawa M, Takagi M, Imanaka T. 1994. Cloning of the aapT
gene and characterization of its product, alpha-amylase-pullulanase
(AapT), from thermophilic and alkaliphilic Bacillus sp. strain XAL601. Appl
Environ Microbiol 60:3764 –3773.

47. Igarashi K, Hatada Y, Ikawa K, Araki H, Ozawa T, Kobayashi T, Ozaki K, Ito
S. 1998. Improved thermostability of a Bacillus �-amylase by deletion of
an arginine-glycine residue is caused by enhanced calcium binding.
Biochem Biophys Res Commun 248:372–377. https://doi.org/10.1006/
bbrc.1998.8970.

48. Bisgaard-Frantzen H, Svendsen A, Norman B, Pedersen S, Kjaerulff S,
Outtrup H, Borchert TV. 1999. Development of industrially important
�-amylases. J Appl Glycosci 46:199 –206. https://doi.org/10.5458/jag.46
.199.

49. Chi M-C, Chen Y-H, Wu T-J, Lo H-F, Lin L-L. 2010. Engineering of a
truncated �-amylase of Bacillus sp. strain TS-23 for the simultaneous
improvement of thermal and oxidative stabilities. J Biosci Bioeng 109:
531–538. https://doi.org/10.1016/j.jbiosc.2009.11.012.

50. D’Amico S, Marx J-C, Gerday C, Feller G. 2003. Activity-stability relation-
ships in extremophilic enzymes. J Biol Chem 278:7891–7896. https://doi
.org/10.1074/jbc.M212508200.

51. Isaksen GV, Åqvist J, Brandsdal BO. 2016. Enzyme surface rigidity tunes
the temperature dependence of catalytic rates. Proc Natl Acad Sci U S A
133:7822–7827. https://doi.org/10.1073/pnas.1605237113.

52. Liu Y-H, Lu F-P, Li Y, Wang J-L, Gao C. 2008. Acid stabilization of Bacillus
licheniformis alpha amylase through introduction of mutations. Appl
Microbiol Biotechnol 80:795– 803. https://doi.org/10.1007/s00253-008
-1580-5.

53. Yang H, Liu L, Shin H-D, Chen RR, Li J, Du G, Chen J. 2013. Structure-
based engineering of histidine residues in the catalytic domain of
�-amylase from Bacillus subtilis for improved protein stability and cat-
alytic efficiency under acidic conditions. J Biotechnol 164:59 – 66. https://
doi.org/10.1016/j.jbiotec.2012.12.007.

54. Liu L, Deng Z, Yang H, Li J, Shin H-D, Chen RR, Du G, Chen J. 2014. In
silico rational design and systems engineering of disulfide bridges in the
catalytic domain of an alkaline �-amylase from Alkalimonas amylolytica
to improve thermostability. Appl Environ Microbiol 80:798 – 807. https://
doi.org/10.1128/AEM.03045-13.

55. Voutilainen SP, Murray PG, Tuohy MG, Koivula A. 2010. Expression of
Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevi-
siae and rational mutagenesis to improve its thermostability and activity.
Protein Eng Des Sel 23:69 –79. https://doi.org/10.1093/protein/gzp072.

56. D’Amico S, Gerday C, Feller G. 2003. Temperature adaptation of proteins:
engineering mesophilic-like activity and stability in a cold-adapted

Rational Designed Mutagenesis of Ciliate Alpha-Amylase Applied and Environmental Microbiology

July 2017 Volume 83 Issue 13 e00449-17 aem.asm.org 13

https://doi.org/10.1016/S0167-7799(99)01413-4
https://doi.org/10.1007/s10126-007-9035-z
https://doi.org/10.1007/s10126-007-9035-z
https://doi.org/10.1002/pro.5560051021
https://doi.org/10.1002/pro.5560051021
https://doi.org/10.1007/s11746-997-0103-3
https://doi.org/10.1016/S0969-2126(98)00149-X
https://doi.org/10.1016/S0969-2126(98)00149-X
https://doi.org/10.1074/jbc.M102741200
https://doi.org/10.1074/jbc.M102741200
https://doi.org/10.1016/S0958-1669(02)00317-8
https://doi.org/10.1007/s00792-004-0409-0
https://doi.org/10.1007/s00300-004-0697-y
https://doi.org/10.1007/s00300-004-0697-y
https://doi.org/10.1016/S0958-1669(00)00229-9
https://doi.org/10.1016/S0958-1669(00)00229-9
https://doi.org/10.1016/j.biortech.2010.08.082
https://doi.org/10.1128/AEM.00457-13
https://doi.org/10.1128/AEM.00457-13
https://doi.org/10.1016/j.biochi.2013.06.008
https://doi.org/10.1016/S0958-1669(02)00325-7
https://doi.org/10.1016/S0958-1669(02)00325-7
https://doi.org/10.1016/j.bbrc.2013.07.113
https://doi.org/10.1002/prot.24016
https://doi.org/10.1002/prot.24016
https://doi.org/10.1016/j.margen.2009.03.008
https://doi.org/10.1016/j.margen.2009.03.008
https://doi.org/10.3389/fbioe.2015.00148
https://doi.org/10.1107/S0108768191001908
https://doi.org/10.1107/S0108768191001908
https://doi.org/10.1271/bbb1961.53.593
https://doi.org/10.1271/bbb1961.53.593
https://doi.org/10.1016/0014-5793(87)80248-X
https://doi.org/10.1371/journal.pone.0049679
https://doi.org/10.1007/s00203-002-0431-5
https://doi.org/10.1007/s00203-002-0431-5
https://doi.org/10.1007/s000180050103
https://doi.org/10.1007/s000180050103
https://doi.org/10.1021/bi970539i
https://doi.org/10.1016/j.biochi.2010.01.008
https://doi.org/10.1016/j.biochi.2010.01.008
https://doi.org/10.4236/abc.2013.31005
https://doi.org/10.1006/bbrc.1998.8970
https://doi.org/10.1006/bbrc.1998.8970
https://doi.org/10.5458/jag.46.199
https://doi.org/10.5458/jag.46.199
https://doi.org/10.1016/j.jbiosc.2009.11.012
https://doi.org/10.1074/jbc.M212508200
https://doi.org/10.1074/jbc.M212508200
https://doi.org/10.1073/pnas.1605237113
https://doi.org/10.1007/s00253-008-1580-5
https://doi.org/10.1007/s00253-008-1580-5
https://doi.org/10.1016/j.jbiotec.2012.12.007
https://doi.org/10.1016/j.jbiotec.2012.12.007
https://doi.org/10.1128/AEM.03045-13
https://doi.org/10.1128/AEM.03045-13
https://doi.org/10.1093/protein/gzp072
http://aem.asm.org


�-amylase. J Mol Biol 332:981–988. https://doi.org/10.1016/j.jmb.2003
.07.014.

57. Muslin E, Clark S, Henson C. 2002. The effect of proline insertions on the
thermostability of a barley �-glucosidase. Protein Eng 15:29 –33. https://
doi.org/10.1093/protein/15.1.29.

58. Zhou C, Xue Y, Ma Y. 2010. Enhancing the thermostability of �-glucosidase
from Thermoanaerobacter tengcongensis MB4 by single proline substitu-
tion. J Biosci Bioeng 110:12–17. https://doi.org/10.1016/j.jbiosc.2009.12
.002.

59. Vogt G, Woell S, Argos P. 1997. Protein thermal stability, hydrogen
bonds, and ion pairs. J Mol Biol 269:631– 643. https://doi.org/10.1006/
jmbi.1997.1042.

60. Siddiqui KS, Cavicchioli R. 2006. Cold-adapted enzymes. Annu Rev
Biochem 75:403– 433. https://doi.org/10.1146/annurev.biochem.75
.103004.142723.

61. Arnold FH, Wintrode PL, Miyazaki K, Gershenson A. 2001. How enzymes
adapt: lessons from directed evolution. Trends Biochem Sci 26:100 –106.
https://doi.org/10.1016/S0968-0004(00)01755-2.

62. Feller G, Gerday C. 2003. Psychrophilic enzymes: hot topics in cold
adaptation. Nat Rev Microbiol 1:200 –208. https://doi.org/10.1038/
nrmicro773.

63. Merz A, Yee M, Szadkowski H, Pappenberger G, Crameri A, Stemmer WP,
Yanofsky C, Kirschner K. 2000. Improving the catalytic activity of a
thermophilic enzyme at low temperatures. Biochemistry 39:880 – 889.
https://doi.org/10.1021/bi992333i.

64. Wintrode PL, Miyazaki K, Arnold FH. 2000. Cold adaptation of a meso-
philic subtilisin-like protease by laboratory evolution. J Biol Chem 275:
31635–31640. https://doi.org/10.1074/jbc.M004503200.

65. Nguyen V, Wilson C, Hoemberger M, Stiller JB, Agafonov RV, Kutter S,
English J, Theobald DL, Kern D. 2017. Evolutionary drivers of thermoad-
aptation in enzyme catalysis. Science 355:289 –294. https://doi.org/10
.1126/science.aah3717.

66. Toscano MD, Woycechowsky KJ, Hilvert D. 2007. Minimalist active-site
redesign: teaching old enzymes new tricks. Angew Chem Int Ed Engl
46:3212–3236. https://doi.org/10.1002/anie.200604205.

67. Penning TM, Jez JM. 2001. Enzyme redesign. Chem Rev 101:3027–3046.
https://doi.org/10.1021/cr000049n.

68. Yang G, Ding Y. 2014. Recent advances in biocatalyst discovery, devel-
opment and applications. Bioorg Med Chem 22:5604 –5612. https://doi
.org/10.1016/j.bmc.2014.06.033.

69. Dror A, Shemesh E, Dayan N, Fishman A. 2014. Protein engineering by
random mutagenesis and structure-guided consensus of Geobacillus
stearothermophilus lipase T6 for enhanced stability in methanol. Appl
Environ Microbiol 80:1515–1527. https://doi.org/10.1128/AEM.03371-13.

70. Bommarius AS, Blum JK, Abrahamson MJ. 2011. Status of protein engi-

neering for biocatalysts: how to design an industrially useful biocatalyst.
Curr Opin Chem Biol 15:194 –200. https://doi.org/10.1016/j.cbpa.2010.11
.011.

71. Bogin O, Peretz M, Hacham Y, Burstein Y, Korkhin Y, Frolow F. 1998.
Enhanced thermal stability of Clostridium beijerinckii alcohol dehydroge-
nase after strategic substitution of amino acid residues with prolines
from the homologous thermophilic Thermoanaerobacter brockii alcohol
dehydrogenase. Protein Sci 7:1156 –1163. https://doi.org/10.1002/pro
.5560070509.

72. Tsigos I, Mavromatis K, Tzanodaskalaki M, Pozidis C, Kokkinidis M, Bouriotis
V. 2001. Engineering the properties of a cold active enzyme through
rational redesign of the active site. Eur J Biochem 268:5074–5080. https://
doi.org/10.1046/j.0014-2956.2001.02432.x.

73. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. 1989. Site-directed
mutagenesis by overlap extension using the polymerase chain reaction.
Gene 77:51–59. https://doi.org/10.1016/0378-1119(89)90358-2.

74. Kruger NJ. 1994. The Bradford method for protein quantitation. Methods
Mol Biol 32:9 –15. https://doi.org/10.1385/0-89603-268-X:9.

75. Xiao Z, Storms R, Tsang A. 2006. A quantitative starch-iodine method for
measuring alpha-amylase and glucoamylase activities. Anal Biochem
351:146 –148. https://doi.org/10.1016/j.ab.2006.01.036.

76. Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and
evolution in R language. Bioinformatics 20:289 –290. https://doi.org/10
.1093/bioinformatics/btg412.

77. Sali A, Blundell TL. 1993. Comparative protein modelling by satisfaction
of spatial restraints. J Mol Biol 234:779 – 815. https://doi.org/10.1006/
jmbi.1993.1626.

78. Matsuura Y, Kusunoki M, Harada W, Kakudo M. 1984. Structure and
possible catalytic residues of Taka-amylase A. J Biochem 95:697–702.

79. Vujicic-Zagar A, Dijkstra BW. 2006. Monoclinic crystal form of Aspergillus
niger alpha-amylase in complex with maltose at 1.8 angstroms reso-
lution. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:716 –721.
https://doi.org/10.1107/S1744309106024729.

80. Han P, Zhou P, Hu S, Yang S, Yan Q, Jiang Z. 2013. A novel multifunc-
tional alpha-amylase from the thermophilic fungus Malbranchea
cinnamomea: biochemical characterization and three-dimensional struc-
ture. Appl Biochem Biotechnol 170:420 – 435. https://doi.org/10.1007/
s12010-013-0198-y.
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