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Metabolic chronic diseases, also named noncommunicable diseases (NCDs), are 
considered multifactorial pathologies, which are dramatically increased during the 
last decades. Noncommunicable diseases such as cardiovascular diseases, obesity, 
diabetes mellitus, cancers, and chronic respiratory diseases markedly increase morbidity, 
mortality, and socioeconomic costs. Moreover, NCDs induce several and complex clinical 
manifestations that lead to a gradual deterioration of health status and quality of life of 
affected individuals. Multiple factors are involved in the development and progression 
of these diseases such as sedentary behavior, smoking, pollution, and unhealthy diet. 
Indeed, nutrition has a pivotal role in maintaining health, and dietary imbalances represent 
major determinants favoring chronic diseases through metabolic homeostasis alterations. 
In particular, it appears that specific nutrients and adequate nutrition are important in all 
periods of life, but they are essential during specific times in early life such as prenatal and 
postnatal phases. Indeed, epidemiologic and experimental studies report the deleterious 
effects of an incorrect nutrition on health status several decades later in life. During the last 
decade, a growing interest on the possible role of epigenetic mechanisms as link between 
nutritional imbalances and NCDs development has been observed. Finally, because of 
the pivotal role of the hormones in fat, carbohydrate, and protein metabolism regulation 
throughout life, it is expected that any hormonal modification of these processes can 
imbalance metabolism and fat storage. Therefore, a particular interest to several 
chemicals able to act as endocrine disruptors has been recently developed. In this review, 
we will provide an overview and discuss the epigenetic role of some specific nutrients and 
chemicals in the modulation of physiological and pathological mechanisms.
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INTRODUCTION

A significant increase in human longevity has been observed in the last two decades, and life expectancy 
exceeds the age of 80 years in several countries (World Health Organization (WHO)) with a proportional 
increase of chronic diseases (Figueira et al., 2016). Noncommunicable diseases (NCDs), such as diabetes, 
sarcopenia, osteoporosis, cardiovascular diseases, neurological disorders, and cancers, increase with 
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age and seriously affect both subject’s life and healthcare systems 
(Troesch et al., 2015). In fact, NCDs induce several and complex 
clinical manifestations that lead to a gradual deterioration of health 
status and quality of life of affected individual, making the subject 
frail and at greater risk of disability and mortality. Then, supporting 
healthy aging by preventing NCDs is a major priority for agencies 
such as the World Health Organization (WHO) and the United 
Nations [World Health Organization (WHO), 2018]. In particular, 
WHO has identified unhealthy diets, sedentary behaviors, excessive 
alcohol consumption, tobacco use, and pollution among the main 
modifiable risk factors, with nutrition as an important determinant 
of human health throughout life (Eggersdorfer and Walter, 2011).

Nutrition has a pivotal role in maintaining health, and dietary 
imbalances represent major determinants favoring chronic diseases 
through metabolic homeostasis alterations. Adequate nutrition and 
specific nutrients are important in all periods of life, but they appear 
essential during specific times such as in utero life and early years 
of postnatal life. In this context, large amount of epidemiologic and 
experimental data show that imbalanced diet can induce health 
consequences several decades after exposure, and during the last 
decade, an increased interest has been observed on the possible role 
of epigenetic mechanisms as link between nutritional imbalances 
and NCD development (Block and El-Osta, 2017).

Interestingly, the “developmental origins of adult disease” 
hypothesis originated in 1989 from epidemiological studies by David 
Barker and colleagues (Barker et al., 1989a; Barker et al., 1989b) 
that showed newborns with small weight at birth were at a major 
risk of heart failure in later phases of life. Hales and Barker (Hales 
and Barker, 1992) used the term “programming” to describe the 
“permanent or long-term change in the structure or function of an 
organism resulting from a stimulus or insult acting at a critical period 
of early life.” Afterward, the concept of epigenetics was introduced to 
support the programming theory. Epigenetics can be described as 
cell-specific reversible modifications in DNA chromatin structure 
that modulate gene expression without altering DNA sequence. 
Epigenetic factors are heritable from cell to daughter cell within the 
same organism, and there is growing evidence that this heritability 
can be transgenerational among organisms (Heard and Martienssen, 
2014; van Otterdijk and Michels, 2016). Indeed, the genetic heritage 
of each living being contains both DNA sequence information and 
epigenetic information, and their interaction maintains the function 
of organs and cells. The most studied epigenetic modifications are 
DNA methylation, histone modification, chromatin remodeling, 
and noncoding RNA, which all require the involvement of 
transcription factors. Further, during the last decades, several studies 
have confirmed the existence of specific human genes able to confer 
different susceptibilities to diseases (Jirtle and Skinner, 2007).

EPIGENETICS ALTERATION UPON EARLY 
EXPOSURE TO ALTERED DIET AND 
METABOLIC CONDITIONS

Transgenerational effects on metabolism and metabolic diseases 
have been known and studied before the advent of the field of 
epigenetics. In fact, the evaluation and characterization of children 
born during the Dutch Winter Famine (Lumey et al., 1993) 

showed a link between maternal nutrition and risk of metabolic 
disorders later in life, such as a Swedish study, which found that 
paternal and grand-paternal nutrition during childhood increased 
mortality for cardiovascular diseases and diabetes in later decades 
of life (Kaati et al., 2002).

These studies and following epidemiological observations 
show that unhealthy nutrition, not only undernutrition but also 
overnutrition, during in utero and early postnatal life increases 
susceptibility to metabolic alterations later in life by acting during 
the critical period of growth and by probably causing a mismatch 
between early and adult nutritional environments.

Maternal obesity is increasing, and several human and animal 
studies have demonstrated that offspring of obese mothers or 
mothers exposed to a high-fat diet present increased weight 
and fat mass at birth and during growth have an increased risk 
of developing nonalcoholic fatty liver disease (NAFLD), insulin 
resistance, altered glucose tolerance, obesity, hyperphagia, 
hypertension, and cardiovascular damage (Laker et al., 2013). 
Also, obesity and high-fat diet are associated with elevated 
circulating lipids that cross the placenta, through specific fatty 
acid transporters amplified in obese pregnant women, and they 
modulate cell signaling pathways by acting as ligands for nuclear 
receptors and altering gene expression by DNA hypermethylation. 
It seems that maternal high lipid levels interfere with the 
hypothalamic expression of leptin receptor, pro-opiomelanocortin 
(POMC), and neuropeptide Y in offspring, such as with the 
expression of SIRT1, specific factor involved in fat and glucose 
metabolism (Chen et al., 2008; Kim and Um, 2008). In particular, 
SIRT1 is principally involved in obesity, liver lipid metabolism 
(NAFLD), and brain neuronal degeneration. SIRT1 is a 
Nicotinamide Adenine Dinucleotide (NAD)+-dependent protein 
deacetylase, and it is involved in the deacetylation of the nuclear 
receptors, playing a critical role in insulin resistance development 
(Martins, 2013). In fact, SIRT1 is involved in metabolic regulation 
and in the repair of DNA damage with epigenetic alterations and 
maintains the DNA to prevent gene modification of various genes 
including CYP 450 enzymes and allows rapid metabolism of 
xenobiotics that enter the organism. Diet changes, as observed in 
underdeveloped countries’ urbanization and Western countries, 
involve SIRT1 dysregulation, causing several alterations in 
transcriptional regulators and modification of chromatin that 
contribute to endocrine abnormalities such as insulin resistance, 
NAFLD, and energy balance disorders (Martins, 2017a; Martins, 
2017b). Moreover, SIRT1 has been recently identified as an 
antiaging gene, both in humans and other animal species. SIRT1 
is involved in telomere maintenance and DNA repair with its 
critical involvement chromosome stability and cell proliferation 
and is important to the regulation of other antiaging genes such 
as klotho, p66shc, and Forkhead box protein O1 with relevance to 
age-related diseases (Martins, 2018).

On the other hand, maternal elevated circulating lipids 
determine the activation of the inflammatory signaling, which 
lead to an increase in proinflammatory cytokines [tumor 
necrosis factor α, interleukin 1 (IL-1), IL-6, IL-8, and IL-18] 
and oxidative stress within the placenta, which results in an 
altered intrauterine and postnatal development (Laker et al., 
2013). Just a few studies have investigated the effects of maternal 
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inflammation on offspring’s postnatal life and have shown that 
it impairs nervous system and musculoskeletal development, 
while it promotes adipogenesis (Jonakait, 2007; Bayol et al., 2008; 
Tong et al., 2009). Interestingly, the effect of interpregnancy 
weight loss was studied, and a reduced risk to develop obesity 
and cardiovascular diseases was observed in siblings born after 
maternal bariatric surgery compared with those born before 
(Guénard et al., 2013). Moreover, in a mouse model, after a long-
term high-fat diet, the development of obesity and mild glucose 
intolerance through specific gene expression alterations has been 
demonstrated. In particular, the authors have identified a histone 
acetylation among the gene expression profile in pancreatic islets, 
causing a dysregulation in fatty acid metabolism through the 
suppression of specific genes (NRF1, GABPA, MEF2A) involved 
in fatty acid signaling (Nammo et al., 2018). In another study 
conducted on pregnant rats, maternal dyslipidemia induced by 
an unsaturated fatty acid diet determines DNA methylation and 
histone acetylation in placenta and fetal liver with a subsequent 
accumulation of lipids in the fetal liver (Ramaiyan and Talahalli, 
2018). On the other hand, the use of a hypolipidemic agent, such 
as Quercus acutissima fruit ethanol extract, exhibits antiobesity 
effects through inhibition of acetylation in 3T3-L1 preadipocytes 
and high-fat diet–fed obese mice (Hawang et al., 2017) (Figure1). 
Furthermore, recent investigations have also demonstrated that 
either a maternal fat overload diet or high-calorie diet can induce 
mitochondrial dysfunction, inflammation, and senescence-like 
characteristics in brown adipose cells likely leading to metabolic 
imbalance and increased risk of developing obesity in later phases 
of life (Lettieri Barbato et al., 2015; Lettieri-Barbato et al., 2017).

Like maternal obesity, gestational diabetes also has detrimental 
effects on both mother and fetus. Offspring of mothers with 
gestational diabetes present increased birth weight, adiposity, 
neonatal hypoglycemia, and obesity and have an increased risk 
of developing metabolic syndrome and type 2 diabetes later in 
life (Catalano, 2010). To date, several genes have been associated 
to diabetes, which, however, explain only a small proportion of 

heritability, whereas environmental factors seem to influence 
its pathogenesis in a significant manner. Then, the gestational 
diabetes represents an interesting model to study the epigenetic 
modifications determined by environmental influence (Nolan 
et al., 2011). Indeed, gestational diabetes is more frequent in 
daughters of diabetic mothers than in those of diabetic fathers 
(Harder et al., 2001; McLean et al., 2006), pointing to intrauterine 
glucose exposure as a relevant issue in addition to genotype 
(Hocher, 2014; Hocher et al., 2016; Reichetzeder et al., 2016). 
In fact, intrauterine exposure to hyperglycemia determines an 
impairment in placental cholesterol uptake and alters placental 
methylation of leptin and adiponectin, hormones that regulate 
energy balance and insulin sensitivity, leading to the development 
of both leptin and insulin resistance. Moreover, animal and 
human studies show that leptin and insulin resistance, such as 
undernutrition, act on hypothalamic receptors and appetite 
circuits leading to postnatal hyperphagia, decreased satiety, and 
subsequent development of metabolic syndrome (Block and 
El-Osta, 2017) (Figure1).

Finally, maternal restriction of proteins, folate, methionine, 
and B vitamins during periconceptional period, gestation, and 
lactation increases the risk of lower weight at birth and increased 
central adiposity, fatty liver, blood pressure dysregulation, and 
myocardium hypertrophy in offspring as consequences of an 
altered DNA methylation (Wu, 2009; Gueant et al., 2013). 
In particular, in an experimental mouse model, it has been 
demonstrated that a low-protein diet in pregnant mothers during 
a precocious gestational period, such as the preimplantation 
period, determines cardiovascular and metabolic diseases in 
offspring adults, through histone modifications of the Gata6 
gene (Sun et al., 2015). And, in male rat offspring, maternal 
protein restriction, during gestation and lactation, determines 
impaired glucose tolerance in adulthood by histone acetylation 
of the liver X receptor α, which is involved in the regulation 
of hepatic gluconeogenesis (Vo et  al., 2013), as well as leads 
to histone modifications in GLUT4 promoter region in the 

FIGURE 1 | Principal biological mechanisms of diet-induced epigenetic alterations.
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skeletal muscle of female rat offspring (Zheng et al., 2012) and 
determines high cholesterol levels in adult rat offspring because 
of repressive changes in histone modifications at the cholesterol 
7α-hydroxylase promoter (Sohi et al., 2011) (Figure1).

A last consideration must be made regarding alcohol 
consumption during pregnancy. In fact, recent animal studies 
show that prenatal ethanol exposure determines high fat 
mass at birth, altered β-cells structure, impaired glucose 
homeostasis, and insulin resistance (Yao and Nyomba, 
2008; Dobson et al., 2012), by inducing anomaly in DNA 
methylation (Ungerer et al., 2013), likely due to reduced folate 
bioavailability and methionine levels (Halsted et al., 2002).

EPIGENETICS MODIFICATIONS UPON 
EARLY EXPOSURE TO CHEMICALS 
THROUGH FOOD CHAIN

Hormones play a pivotal role through life in the regulation 
of fat, carbohydrate, and protein metabolism, and hormonal 
alterations of these processes are likely to impair metabolism 
and fat storage. Many natural and synthetic chemicals, 
found in the environment, contaminating food through 
food chain, possess hormonal activity. These compounds, 
known as endocrine disrupters (EDCs), are exogenous 
substances endowed with the capacity to alter the function(s) 
of the endocrine system and thus represent a serious risk 
to health both in humans and animals (International 
Programme for Chemical Safety) (Li et al., 2013; Maradonna 
and Carnevali, 2018). Endocrine-disrupting chemicals 
belong to a heterogeneous class of chemicals dispersed in 
the environment. These compounds alter many aspects 
of the endocrine-metabolic homeostasis because of their 
ability to mimic and/or antagonize the biological activity of 
endogenous hormones (Pande et al., 2019), likely binding 
to specific receptors. Although the main EDC effect is on 
the reproductive system (McLachlan et al., 1984), growing 
evidence shows that some compounds can also impair body 
weight regulation by affecting metabolism (Migliaccio et al., 
1996) and functional activity of adipocytes, often leading 
to obesity. These EDCs are defined as “obesogens” (Grun 
and Blumberg, 2006). Several chemicals have comprised 
obesogens with estrogen properties, such as tributyltin (TBT), 
generally used as biocide in antifouling paints applied to the 
hulls of ships; diethylstilbestrol, used to enhance fertility in 
farm animals; dichlorodiphenyltrichloroethane (DDT) and its 
breakdown product dichlorodiphenyl-dichloroethylene, used 
as insecticide; bisphenol A (BPA), used in the manufacture of 
plastics; polybrominated diphenyl ethers and 4-nonylphenol, 
used for industrial proceedings; parabens, generally used as 
antimicrobial agents for the preservation of personal care 
products, foods, pharmaceutical products, and paper products; 
phytoestrogens, naturally produced by plants and assumed 
by humans via ingestion of edible plants (Darbre, 2015). 
“Interestingly, several animal and human evidence shows that 
the exposure to obesogens, both prior to birth in utero and 

during neonatal period, leads to altered body weight at birth 
(both high weight and low weight) and increased body weight 
and obesity during growth with an increase in fat cell number 
permanently into adult life (Janesick and Blumberg, 2011). 
Moreover, many studies highlight that such effects can also be 
inherited through future generations even in the absence of 
additional exposure. Transgenerational studies have revealed 
that TBT exposure of pregnant mice generates offspring of 
both genders with larger fat deposits, and this phenotype is 
inherited up to the third generation, even without further TBT 
exposure (Chamorro-Garcia et al., 2013; Janesick and Shioda, 
2014). Other heritable traits toward obesity in rodents have 
been observed after exposure to BPA, phthalates (Manikkam 
et al., 2013), and DDT (Skinner et al., 2013).

Obesogens induce weight gain by increasing both the number 
and size of adipocytes, by altering the endocrine pathways 
responsible for adipose tissue development, by changing 
lipid homeostasis, and by promoting adipogenesis and lipid 
accumulation. These events might occur through multiple 
mechanisms, such as interference with Peroxisome Proliferator-
Activated Receptors (PPARs) and steroid receptors, alteration 
in fat cell recruitment, shifting of appetite, satiety, and food 
preferences (Darbre, 2017). In particular, it is thought that early 
life exposure to EDCs might influence epigenetic programming 
of obesity via the capacity of these compounds to bind nuclear 
receptors and other transcription factors and thus to influence 
consequent gene expression. For example, nuclear receptors, such 
as steroid receptors, can directly bind hormone-response elements 
present in the DNA upon activation by single or multiple ligands. 
Furthermore, they are able to recruit chromatin-modifying 
complexes including methyltransferases and acetyltransferases, 
which directly alter epigenetic marks involved in the regulation of 
target genes (Ozgyin et al., 2015). Therefore, EDCs can change the 
local chromatin state as well as modulate the expression of DNA 
or histone methyltransferases by activating or inhibiting nuclear 
receptors and other transcription factors (Rissman and Adli, 2014).

Among EDCs, phytoestrogens represent a diverse group of 
natural chemicals with structural and functional similarities 
to endogenously produced mammalian estrogens, able to bind 
the nuclear receptors and thus endowed of significant estrogen 
receptor (ER) modulatory activities. They are present in fruits, 
vegetables, and whole grains commonly consumed by humans, 
as well as in many dietary supplements, and are widely marketed 
as natural alternatives to estrogen replacement therapy. Recently, 
the nutritional changes leading to the inclusion of soy-derived 
products into human diets have consistently enhanced the 
exposure to these compounds. In fact, soy products are nowadays 
important components of food products consumed in both adult 
and infant human diets (McCarver G et al., 2011), with variable 
amounts assumed in different world regions (Jefferson et al., 
2009). Phytoestrogens are polyphenolic structures classified as 
flavonoids (or isoflavones), coumestans, lignans, and stilbenes, 
with isoflavones representing major compounds in dietary 
sources (Rietjens et al., 2017). Various beneficial health effects 
have been ascribed to these compounds including cardiovascular 
diseases, obesity, metabolic syndrome, and type 2 diabetes, as well 
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as brain function disorders and some types of cancer (Guerrero-
Bosagna and Skinner, 2014).

Phytoestrogens exert their potential health effects by different 
ways. Although the main mode of action relies on their binding to ER, 
several other pathways such as rapid nongenomic cellular response, 
antioxidant action, tyrosine kinase inhibition, PPAR-mediated 
action, and binding to nonclassic ER gp130 or aryl hydrocarbon 
receptor (AHR) have been largely described (Guerrero-Bosagna 
and Skinner, 2014). Compelling evidence suggests that epigenetic 
modifications link environmental insults occurring during 
development to disease susceptibility in the adult life. In this regard, 
the capacity of phytoestrogens to induce epigenetic effects has been 
described, in particular for the soy isoflavone genistein and to a lesser 
extent for daidzein and its microbial metabolite equol (Guerrero-
Bosagna et al., 2008; Remely et al., 2015). A direct epigenetic effect 
of isoflavones was initially demonstrated upon exposure of newborn 
mice to coumestrol and equol that lead to increased methylation and 
subsequent inhibition of the proto-oncogene H-ras (Lyn-Cook et al., 
1995) in both male and female mice. Furthermore, consumption 
of genistein was reported to alter DNA methylation pathways in 
mice (Day et al., 2002). In addition to direct effects, evidence has 
been achieved on the capacity of phytoestrogens to affect offspring 
methylation patterns as a result of maternal exposure. In this regard, 
dietary supplementation of pregnant mice with genistein altered coat 
color and protected Avy mouse offspring from obesity development 
by modifying the epigenome of the fetus (Dolinoy et al., 2006).

Several studies have been carried out to assess the 
obesity-promoting or obesity-protective effect of maternal 
supplementation with phytoestrogens on the offspring. The 
results achieved are often difficult to compare because of several 
variables including the animal model, interspecies differences 
in isoflavone metabolism, diet composition, phytoestrogen 
concentration, and length of treatment, as well as confounding 
factors such as age and gender (Ørgaard and Jensen, 2008). In 
this regard, it is of interest that sex differences in human amniotic 
fluid levels of daidzein and genistein, with significantly higher 
concentrations among the female fetuses, have been reported 
(Jarrel et al., 2012). Likewise, genistein pharmacokinetics are 
faster in male rather than female rats (Sikker et al., 2001). Studies 
assessing the effects of in utero exposure to phytoestrogens in 
different preparations (genistein as supplement to standard diet, 
isoflavone-rich diet, soy protein–based diet) and for different 

periods after birth yielded contrasting results. Whereas some 
studies reported that in utero exposure results in a lower weight 
at birth (Cederroth et al., 2007; Guerrero-Bosagna and Skinner, 
2009; Zhang et al., 2015), others reported obesity-promoting 
properties such as increased body weight and food intake 
(Vafeiadi et al., 2015; Jahan-Mihan et al., 2011; Jahan-Mihan 
et al., 2012; Cao et al., 2015; Walley and Roepke, 2018). Likewise, 
more than a decade ago, Ruhlen and colleagues (Ruhlen et al., 
2008) reported either decreased or increased body weight of 
offspring upon in utero exposure depending on the period of life 
(adulthood vs. at birth).

Predisposition to diet-induced obesity as a consequence 
of prenatal following prenatal nutrient restriction has been 
reported to be gender related, with males more affected than 
females, as well as age at pubertal development (girls earlier 
than boys) (Rubin et al., 2017; Guerrero-Bosagna et al., 2008). 
Regardless of the effect induced in the offspring by in utero 
exposure to phytoestrogens, they appeared to be stronger in 
the male progeny with respect to females.

CONCLUSIONS

Obesity and NCDs are increasing burning health problems 
that greatly affect worldwide population. Several factors are 
claimed to play a role in the development and persistence 
of these metabolic chronic disorders through life, such 
as altered diet and sedentary life. Interestingly, in the last 
decades, several studies have pointed out the importance of 
perturbance during the early phases of life in the increased 
number of metabolic chronic disorders. In particular, altered 
diet and exposure to specific chemicals through food chain 
appear to play a pivotal role. Further studies, however, are 
needed to fully characterize and confirm this hypothesis in 
order to apply preventive actions to successfully approach this 
global health problem.
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