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Abstract: 5-Aminolevulinic acid (5-ALA) is an amino acid derivative and a precursor of protopor-
phyrin IX (PpIX). The photophysical feature of PpIX is clinically used in photodynamic diagnosis
(PDD) and photodynamic therapy (PDT). These clinical applications are potentially based on in vitro
cell culture experiments. Thus, conducting a systematic review and meta-analysis of in vitro 5-ALA
PDT experiments is meaningful and may provide opportunities to consider future perspectives
in this field. We conducted a systematic literature search in PubMed to summarize the in vitro
5-ALA PDT experiments and calculated the effectiveness of 5-ALA PDT for several cancer cell types.
In total, 412 articles were identified, and 77 were extracted based on our inclusion criteria. The
calculated effectiveness of 5-ALA PDT was statistically analyzed, which revealed a tendency of
cancer-classification-dependent sensitivity to 5-ALA PDT, and stomach cancer was significantly
more sensitive to 5-ALA PDT compared with cancers of different origins. Based on our analysis, we
suggest a standardized in vitro experimental protocol for 5-ALA PDT.

Keywords: 5-aminolevulinic acid; 5-ALA; dALA; δALA; PpIX; protoporphyrin IX; photodynamic
therapy; PDT

1. Introduction

5-Aminolevulinic acid (5-ALA) is a naturally occurring amino acid derivative that
acts as a precursor of protoporphyrin IX (PpIX) [1–3]. 5-ALA administration to animals,
including humans, leads to the synthesis of PpIX, especially in tumors [4–7]. PpIX is
activated by violet light (405 nm) or orange-red light (635 nm), subsequently emitting
red fluorescence (620–710 nm) or generating reactive oxygen species (ROS) [8]. These
features can potentially be used to visualize or kill cancer. Specifically, 5-ALA has been
clinically tested for photodynamic diagnosis (PDD) during surgery to visualize cancer
cells by fluorescence and photodynamic therapy (PDT) to target unfavorable neoplasms
by increasing ROS production [9,10]. To date, 5-ALA has been clinically approved by the
U.S. Food and Drug Administration (FDA) as GLEOLAN® (GLIOLAN® according to the
European Medicines Agency (EMA)) for PDD for malignant glioma, and LEVULAN® and
AMELUZ® have been approved for the PDT of patients with actinic keratoses. However,
there are no FDA- or EMA-approved applications of 5-ALA-PDT for cancer.

Clinical anti-cancer applications of 5-ALA-PDT have been widely reported for sev-
eral organs, such as the brain [11–16], skin [17–23], pharynx [24], blood and lymph [25],
esophagus [26], urethra and prostate [27], and uterus [28]. In addition, 97 clinical trials
of 5-ALA PDT for cancer treatment have been registered in the U.S. National Library of
Medicine (ClinicalTrials.gov) as of 10 March 2021. Therefore, 5-ALA will hopefully be
approved in the near future as a PDT drug for cancer patients. These clinical trials and
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applications are based on in vivo animal experiments, and these animal experiments are
based on in vitro cell culture experiments. For the clinical application of 5-ALA PDT in
cancer, a comprehensive review of in vitro 5-ALA PDT experiments and analysis of these
results are meaningful and may provide important opportunities to consider for the future
direction of 5-ALA experiments and clinical trials.

In this study, we systematically extracted and listed in vitro experiments that inves-
tigated 5-ALA PDT. We also performed a meta-analysis of these data by calculating and
comparing the effectiveness of 5-ALA PDT in several cancer cell types from each article.
Finally, we suggest a standard experimental protocol for the validation of future in vitro
5-ALA PDT experiments.

2. Methods
2.1. Literature Search and Selection

A systematic literature review using PubMed was performed according to the Pre-
ferred Reporting Items for Systematic Reviews and Meta-analyses Statement (PRISMA)
guidelines [29]. For the title or abstract search, we used the term sets [5-aminolevulinic acid,
aminolevulinic acid, dALA, δALA, 5-ALA, 5ALA], [in vitro, culture], and [photodynamic
therapy, PDT] for OR searching in each term set, and each term set was used together for
AND searching. In addition, the publication date was limited to the beginning of 1900 to
the end of 2019 (available online). Together, the search query used was ((aminolevulinic
acid [Title/Abstract] OR aminolevulinic acid [Title/Abstract] OR dALA [Title/Abstract]
OR δALA [Title/Abstract] OR 5-ALA [Title/Abstract] OR 5ALA [Title/Abstract]) AND
(in vitro [Title/Abstract] OR culture [Title/Abstract]) AND (photodynamic therapy [Ti-
tle/Abstract] OR PDT [Title/Abstract])) AND (1900/01/01 [Date-Publication]: 2019/12/31
[Date-Publication]). The searched articles were further selected based on whether they in-
cluded all of the following information: cell name, fluence, irradiation wavelength, time of
incubation with 5-ALA, duration between 5-ALA treatment and irradiation, and duration
between irradiation and viability assays. The selected articles that described the median
lethal concentration (LC50) in the text or those in which the LC50 could be estimated and/or
calculated from the table or graph were included. Estimated LC50 and fluence from graphs
were rounded.

2.2. Consistency of Terminology

Some papers used different terms to express the same thing. In addition, some
standardizations of different terms were required to perform statistical analysis. Therefore,
some terminologies were unified as follows: astrocytoma was used as glioblastoma, glioma
stem-like cell was used as glioma stem cell, and glioblastoma stem-like cell was used as
glioblastoma stem cell.

2.3. Data Collection, Processing, and Statistics

For data comparisons, the effectiveness of each application was calculated by the
reciprocal of the fluence multiplied by the LC50 (cm2/(J·µM)). This effectiveness is thought
to be proportional to the sensitivity of the cell to 5-ALA PDT. If there were more than three
articles that used the same classified cells or cells from the same organ, similar wavelengths
for irradiation (around 635 nm), the same duration of 5-ALA incubation (4 h), and the
same duration between irradiation and viability assays (24 h), the values of effectiveness
were averaged and assessed by one-way analysis of variance (ANOVA) with the post hoc
Tukey–Kramer test using Statcel2 software (Seiunsha, Tokyo, Japan). If the sample size
was greater than six, the data were assessed by the Wilcoxon rank-sum test using JMP Pro
software (SAS Institute Japan, Tokyo, Japan).
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3. Results
3.1. Collection of In Vitro 5-ALA PDT Experiments

The initial search resulted in 412 articles, of which 77 articles met the inclusion criteria
mentioned in the Methods section. These articles included a total of 146 in vitro viability
assays of cells treated with PDT under different conditions. They included 116, 12, 9, and
9 viability assays for cell lines derived from humans, mice, rats, and canines, respectively.
The PDT experiments using human cell lines are listed in Table 1, and the total number
of studies was 62. Eighty cell lines from different origins (21 organs) and classifications
(16 classes) were tested. Brain cancer and adenocarcinoma were the most tested cancer
origin and classification, respectively. Overall, several different experimental conditions
were adapted in each study, including various durations of incubation with 5-ALA, ir-
radiation wavelengths, fluences, and durations between irradiation and viability assays.
Therefore, it was difficult to directly compare these experimental results. To ensure the
comparability of the results, we extracted the data from studies that used similar experi-
mental conditions (irradiation wavelength, duration of 5-ALA incubation, and duration
between irradiation and viability assays). Then, we roughly estimated the effectiveness of
5-ALA PDT for different cells using the following equation. The effectiveness is the new
parameter we introduced, which is thought to correlate to the sensitivity of the cells to
5-ALA PDT because both LC50 and fluence parameters are roughly inversely proportional
to the sensitivity of the cells in PDT experiments [30,31].

E f f ectiveness =
1

LC50 × Fluence

(
cm2/[J·µM]

)
(1)

The effectiveness indicates the extent of 5-ALA effects on the treated cells under the
individual experimental conditions. The larger the effectiveness value, the more effective 5-
ALA PDT was against the cell. Although there were different effectiveness values estimated
for the same cell types in different papers (such as 0.1 to 1,131.9 for A431 cells), most results
showed a similar range of effectiveness values.

Table 1. In vitro 5-Aminolevulinic acid photodynamic therapy (5-ALA PDT) experiments for human cancer cell lines.

Organ Classification
Name

[s]: Sphere
Effectiveness

(×10−4 cm2/(J·µM)) LC50 (µM)

Duration
of

Incubation
(h)

Irradiation
Wavelength

(nm)
Fluence
(J/cm2)

Duration between
Irradiation and

Viability Assay (h) Ref.

Bladder Carcinoma HCV-29 0.2 597 4 635 100 24 [32]
Carcinoma J82 1.1 597 4 635 15 24 [32]
Carcinoma J82 12.0 597 3 590–700 1.4 48 [33]
Carcinoma RT112 41.9 597 3 590–700 0.4 48 [33]
Carcinoma RT4 2.2 298 4 635 15 24 [32]

Carcinoma RT4 41.9 597 3 590–700 0.4 48 [33]
Carcinoma RT4 [s] 20.9 597 3 400–700 0.8 24 [34]

Bone Chordoma U-CH2 3.0 181 6 635 18.75 24 [35]
Osteosarcoma HOSM-1 2.5 200 6 580–740 20 24 [36]
Osteosarcoma HOSM-2 0.5 1000 12 600–1600 20 24 [37]

Brain AT/RT BT-16 1.1 370 4 635 25 12 [38]
Glioblastoma A172 3.3 1000 24 635 3 24 [39]
Glioblastoma ACBT [s] 0.6 597 4 635 30 24 [40]
Glioblastoma U251MG 3.3 1000 0.5 All (white) 3 20-24 [41]
Glioblastoma U251MG 5.0 1000 4 627 2 O/N [42]

Glioblastoma U373 3.7 144 4 635 18.8 24 [43]
Glioblastoma U373 1.2 650 4 635 12.75 24 [44]
Glioblastoma U373 3.2 315 4 635 ± 20 10 24 [45]
Glioblastoma U373MG 3.5 500 2 635 5.7 48 [46]
Glioblastoma U373MG 7.1 1000 4 627 1.4 O/N [47]

Glioblastoma U373MG 5.1 1000 4 635 1.95 48 [48]
Glioblastoma U373vIII 0.7 1100 4 635 12.75 24 [44]
Glioblastoma U373vIII 2.5 407 4 635 ± 20 10 24 [45]
Glioblastoma U87 1.5 510 4 635 12.75 24 [44]
Glioblastoma U87 1.1 931 4 635 ± 20 10 24 [45]
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Table 1. Cont.

Organ Classification
Name

[s]: Sphere
Effectiveness

(×10−4 cm2/(J·µM)) LC50 (µM)

Duration
of

Incubation
(h)

Irradiation
Wavelength

(nm)
Fluence
(J/cm2)

Duration between
Irradiation and

Viability Assay (h) Ref.

Brain (cont.) Glioblastoma U87MG 2.5 1000 0.5 All (white) 4 20–24 [41]
Glioblastoma U87MG 2.4 1000 6 634 ± 7 4.1 48 [31]
Glioblastoma U87MG 4.2 1000 4 627 2.4 O/N [47]
Glioblastoma U87MG 3.3 1000 4 627 3 O/N [42]
Glioblastoma U87vIII 0.3 2800 4 635 12.75 24 [44]

Glioblastoma U87vIII 0.9 1161 4 635 ± 20 10 24 [45]
GSC BT273 [s] 4.4 122 4 635 18.8 24 [43]
GSC BT275 [s] 10.7 49.5 4 635 18.8 24 [43]
GSC BT379 [s] 8.8 60.3 4 635 18.8 24 [43]
GSC GS3 [s] 4.3 124 4 635 18.8 24 [43]

GSC GS5 [s] 22.3 23.9 4 635 18.8 24 [43]
Glioma stem cell GS2 2.6 298 4 635 12.75 24 [44]
Glioma stem cell GS2 7.7 130 4 635 ± 20 10 24 [45]
Glioma stem cell GSC30 [s] 10.8 93 4 635 ± 20 10 24 [45]

Medulloblastoma D283 Med 5.3 500 2 635 3.8 48 [46]

Medulloblastoma Daoy 1.7 239 4 635 25 12 [38]
Meningioma KT21-MG1 1.2 448 24 635 18.75 1.5 [49]

Neuroblastoma SK-N-SH 1.4 1000 8 500– 7.2 48 [50]
PNET PFSK-1 1.7 239 4 635 25 12 [38]

Breast Adenocarcinoma MDA-MB-231 5.0 1000 0.5 633 ± 6 2 20 [51]
Adenocarcinoma MDA-MB-231 4.3 1000 6 634 ± 7 2.3 48 [31]

Carcinoma HB4a-Ras 166.7 1000 3 400-700 0.06 19 [52]
Carcinoma T47D 5.0 500 24 624 ± 5 4 24 [53]
Carcinoma T47D 16.7 1000 4 635 0.6 48 [48]

Colon Adenocarcinoma Caco-2 9.9 597 3 590–700 1.7 48 [54]
Adenocarcinoma HT-29 2.5 1000 3 635 4 24 [55]
Adenocarcinoma HT-29 4.3 597 3 590–700 3.9 48 [54]
Adenocarcinoma SW480 0.1 1500 4 600–720 50 24 [56]
Adenocarcinoma SW480 0.1 1500 4 600–720 53 24 [57]

Adenocarcinoma SW480 4.9 597 3 590–700 3.4 48 [54]
Adenocarcinoma SW620 0.4 1500 4 600–720 18 24 [56]
Adenocarcinoma SW620 0.4 1000 4 600–720 24 24 [57]

Esophagus SCC Eca-109 1.0 1000 24 630 10 24 [58]
SCC Eca-109 0.1 750 6 630 100 24 [59]

Gingiva SCC Ca9-22 20.8 1000 3 633 0.48 24 [60]

Hypopharynx SCC FADU 8.9 1000 24 635 1.12 24 [39]

Kidney Carcinoma A498 1.2 1000 6 634 ± 7 8.2 48 [31]

Larynx SCC AMC-HN3 7.0 239 24 632 6 24 [61]

Liver Carcinoma HepG2 10.0 1000 28 600–800 1 2 [62]
Carcinoma HepG2 2.2 185 3 632 25 24 [63]

Lung Adenocarcinoma LC-T 1.0 5000 9 600–700 2.1 0 [64]
Carcinoma H1299 5.0 1000 4 633 2 2.3 [65]
Carcinoma QU-DB 0.8 5000 9 600–700 2.5 0 [64]

Lymph Lymphoma HuT78 41.9 59.7 2 630 4 24 [66]
Lymphoma Ramos (RA1) 16.8 59.7 2 630 10 24 [66]

Nasopharynx Carcinoma HNE-1 3.0 328 4 630 10 24 [67]
Carcinoma KJ-1 3.6 1000 3 633 2.8 24 [60]

Oral Cavity Dysplasia DOK 1.2 810 4 635 10 24 [68]

Ovary Adenocarcinoma ES2 1.1 882 4 631 10.4 24 [69]
Adenocarcinoma KOC7C 1.1 857 4 631 10.4 24 [69]
Adenocarcinoma OV2774 1.3 1000 4 635 8 48 [48]
Adenocarcinoma OVMANA 9.9 97 4 631 10.4 24 [69]
Adenocarcinoma OVTOKO 3.9 244 4 631 10.4 24 [69]

Adenocarcinoma RMG1 17.1 56 4 631 10.4 24 [69]
Adenocarcinoma RMG2 17.1 56 4 631 10.4 24 [69]
Adenocarcinoma TOV21G 2.9 330 4 631 10.4 24 [69]

Prostate Adenocarcinoma LNCaP 11.2 298 4 631 3 24 [70]

Skin Melanoma A375 2.0 500 4 636 10 24 [71]
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Table 1. Cont.

Organ Classification
Name

[s]: Sphere
Effectiveness

(×10−4 cm2/(J·µM)) LC50 (µM)

Duration
of

Incubation
(h)

Irradiation
Wavelength

(nm)
Fluence
(J/cm2)

Duration between
Irradiation and

Viability Assay (h) Ref.

Skin (cont.) Melanoma A375 0.6 358 4 420–1400 45 24 [72]

Melanoma LOX 0.03 4000 4 635 100 20 [73]

SCC A431 0.6 6000 3 635 ± 9 3 0 [74]

SCC A431 17.0 393 20 630 1.5 24 [30]

SCC A431 12.5 100 24 632.8 8 24 [75]

SCC A431 0.1 2000 4 635 40 24 [76]

SCC A431 1131.9 1.77 48 630 ± 15 5 48 [77]

SCC HSC-5 1.0 200 2 545–700 50 3 [78]

SCC SCC-13 0.1 6000 1 635 ± 9 12.21 0 [74]

Stomach Adenocarcinoma KKLS 13.2 700 4 630 1.08 24 [79]

Adenocarcinoma MKN28 23.1 400 4 630 1.08 24 [79]

Adenocarcinoma MKN45 185.2 50 4 630 1.08 24 [79]

Tongue SCC CAL-27 1.6 620 4 635 10 24 [68]

SCC SCC-15 11.2 59.7 12 630 15 6 [80]

SCC SCC-4 5.3 187 4 640 10 24 [81]

SCC SCC-4 2.7 375 4 640 10 24 [82]

Uterus Adenocarcinoma BCC 16.7 500 4.5 532 ± 20 1.2 20 [83]

Adenocarcinoma HeLa 4.0 500 4 635 5 24 [84]

Adenocarcinoma HeLa 100.0 200 8 630 0.5 24 [85]

Adenocarcinoma HeLa 98.0 10.2 6 630 10 3 [86]

Adenocarcinoma HeLa 0.3 300 4 635 100 20 [87]

Adenocarcinoma HeLa 16.7 1000 24 635 0.6 24 [88]

Adenocarcinoma KB 1.3 200 6 580–740 40 24 [36]

SCC C-33A 588.2 1.7 6 630 10 3 [86]

SCC C-4 I 12.9 77.7 6 630 10 3 [86]

SCC Ca Ski 28.4 35.2 6 630 10 3 [86]

SCC HT-3 3.0 332 6 630 10 3 [86]

SCC Me-180 1373.6 0.728 6 630 10 3 [86]

SCC Me-180 660.1 0.505 4 632.8 30 4 [89]

SCC SiHa 3.0 332 6 630 10 3 [86]

AT/RT: atypical teratoid/rhabdoid tumor, GSC: glioblastoma stem cell, SCC: squamous cell carcinoma, PNET: primitive neuroectodermal
tumor, O/N: overnight; LC50, median lethal concentration.

3.2. 5-ALA PDT Effect on Cells of Different Cancer Classifications

The effectiveness against cells of the same cancer classifications was averaged and
compared with each class (Figure 1). Several reports showed that the feature of the cells
was altered by their microenvironments, such as 2D monolayer culture or 3D aggregation-
forming spheres [90–93]. In the present review, because the inclusion and exclusion of
the data from sphere cultures did not show any statistical differences, all of the data were
included and averaged. Although there were no statistical significances, adenocarcinoma,
glioblastoma stem cell (GSC), and glioma stem cell tended to show higher effectiveness
values than squamous cell carcinoma (SCC), glioblastoma, and carcinoma, which may
suggest that the effects of 5-ALA PDT are cancer-classification-dependent.
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Figure 1. Effectiveness of 5-ALA PDT in cells of different cancer classifications. GSC: glioblastoma stem cell, SCC: squamous
cell carcinoma. There were no statistical significances (one-way analysis of variance (ANOVA) with the post hoc Tukey–
Kramer test). Adenocarcinoma (n = 16) and glioblastoma (n = 10) were statistically assessed using the Wilcoxon rank-sum
test but showed no significant differences.

3.3. 5-ALA PDT Effect on Cells of Different Cancer Origins

Next, the effectiveness against cells of the same cancer origin was averaged and
compared with each origin (Figure 2). Because the inclusion and exclusion of the data
from sphere cultures and outliers did not show any statistical differences, all of the data
were included and averaged. As a result, the stomach was identified as the organ most
affected by 5-ALA PDT. Among the other organs, there were no statistically significant
differences. However, the number of experiments using stomach-derived cells (n = 3) was
small, and these experiments were performed in the same study. Therefore, this result
should be considered carefully.

Figure 2. Effectiveness of 5-ALA PDT on cells of different cancer origins. The stomach was identified as the organ most
affected by 5-ALA PDT (one-way analysis of variance (ANOVA) with the post hoc Tukey–Kramer test). * p < 0.05 and **
p < 0.01 compared with the stomach. The brain (n = 18) and ovary (n = 7) were statistically assessed using the Wilcoxon
rank-sum test but showed no significant differences.

4. Discussion and Future Perspective

In the present review, we summarized past and recent (until the end of 2019) in vitro
experiments investigating 5-ALA PDT for cancer cells and compared these data by cal-
culating the effectiveness value. In total, 116 in vitro assays for human cancer cells were
extracted, including cancer cells from 21 origins and 16 cancer classifications. Effectiveness
values were calculated from the LC50 and fluence to compare the sensitivity of each cancer
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cell type to 5-ALA PDT. These data suggest that there are some tendencies of sensitivity to
5-ALA PDT in cells of different origins and classifications.

Several potential mechanisms may contribute to the differences in the sensitivity of
each origin and classification to 5-ALA PDT. The most important candidate that influences
the PDT sensitivity is the protein family associated with redox reactions. Oxidative stress-
related proteins, such as superoxide dismutase [94], catalase [95], and NO synthase [96],
are reported to affect PDT sensitivity. Glutathione and related proteins, such as glutathione
peroxidase, glutathione-S-transferase, glutathione transferase omega-1, and glutathione
synthase, are also thought to be associated with cell resistance to PDT [94,97,98]. Heme
oxygenase-1 (HO-1) is an inducible cytoprotective enzyme that protects cells from oxidative
stress, and its expression is induced by PDT [99]. Apurinic/apyrimidinic endonuclease
1/redox factor-1 (APE1/Ref-1) regulates cell responses to oxidative stress, which affects
the PDT sensitivity [100]. The NAD(P)H/FAD redox status has been reported to affect
PDT sensitivity [101]. The expression levels of these redox-related proteins, peptides, and
compounds can be altered in cancer cells and may influence their sensitivity to 5-ALA PDT.

Several papers have reported the anti-cancer property of 5-ALA PDT; however, most
articles do not describe all of the experimental protocols, preventing reproducibility. Al-
though similar problems occur and should be considered in all manuscripts, it is still
important for authors to describe their detailed experimental protocols to ensure repro-
ducibility by other researchers and for reviewers to carefully assess the manuscripts. For
the in vitro PDT experiments, complete chemical formulation of 5-ALA (such as 5-ALA
hydrochloride) should be described, not 5-ALA alone; otherwise, the dimerization is re-
ported [102]. Moreover, the parameters we mention in Table 1 (cell name, duration of
incubation, irradiation wavelength, fluence, and duration between irradiation and viability
assays) should be clearly mentioned in Section 2 because all of these parameters possibly
affect the sensitivity of cells to 5-ALA PDT and the results of cell viability assays. Com-
parisons of the duration of 5-ALA incubation [35,68,103], irradiation wavelength [104,105],
and fluence [30,31] showed that each parameter strongly affected cell viability. In addition,
the duration between irradiation and viability assays can also affect the results because cell
proliferation after light irradiation can be influenced by the number of viable cells with a
sigmoid shape.

In this review, we compared the effectiveness calculated from the LC50 and fluence.
The calculated effectiveness may be a useful parameter to compare the sensitivity of cells
to 5-ALA PDT among individual manuscripts; however, it has some limitations to consider.
Although both LC50 and fluence parameters are roughly inversely proportional to the sensi-
tivity of the cells in PDT experiments, this inverse relationship (especially for fluence) does
not show absolute linearity [31]. Based on our calculation, high fluence usually showed a
relatively high effectiveness [30,57,106,107]. Therefore, the calculated effectiveness may be
overestimated in the experiments using high fluence. The cellular microenvironments, such
as 2D or 3D culture, are also possible candidates that may affect 5-ALA PDT sensitivity.
Therefore, 2D/3D comparisons might be required. In this manuscript, the inclusion and
exclusion of 3D culture data did not show any statistical changes, but this might be caused
by the small number of datasets. We discarded several potential parameters that may affect
in vitro PDT assays, such as the components of 5-ALA (hydrochloric acid, nitrate, and
phosphate), initial cell density, light source (laser, lamp (halogen, mercury, or xenon), or
LED), light irradiance, wash conditions, and completeness of light shielding except for
light irradiation. These parameters can also affect the PDT results. For example, the value
of light irradiance strongly influences cell viability [105,108,109]. Therefore, especially for
the reproducibility, these parameters should be described in the individual manuscript
together with the parameters described above.

For the meta-analysis and data comparison between each report, the experimental
procedure for in vitro 5-ALA PDT experiments should be standardized as much as pos-
sible. We propose a standardized protocol developed with reference to papers listed in
Table 1 (Scheme 1), and a similar protocol for investigating 5-ALA PDT in breast cancer
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cells has been recommended previously [110]. This protocol is for in vitro 5-ALA PDT
experiments, but it can potentially be used for other in vitro PDT experiments using dif-
ferent photosensitizers with some modifications. The steps of this protocol are culturing
cells to ~80% confluency, incubating cells with 5-ALA for 4 h, irradiating immediately
after providing cells with fresh medium, and performing the viability assay 24 h after
irradiation. A cell confluency of approximately 80% should be used for prevention of
the effect of contact inhibition (including initiation of cell cycle arrest, downregulation
of proliferation, and mitogen signaling pathways) [111]. It has been reported that a 4 h
incubation time of 5-ALA is usually sufficient to induce maximal PDT effect for several
cancer cells [60,65,112]. In addition, many studies including the references in this review
used 4 h for their general experimental condition. However, some cells and experimental
conditions require the incubation time of 5-ALA to be more than 4 h [62,85,107,113] and the
time may also be affected by the 5-ALA concentration [35]. The timing of irradiation should
be performed immediately after washout of 5-ALA because intracellular concentration
of PpIX is gradually reduced after washout by cell metabolism [114]. We hope that this
standardized protocol may help researchers conducting 5-ALA (or other photosensitizer)
PDT experiments.

Scheme 1. Recommended experimental protocol for 5-ALA PDT. This protocol can be used as a standard protocol for
in vitro 5-ALA PDT experiments. The duration of incubation (4 h may be a standard) can be changed if incubation time-
dependency is investigated (*). Irradiance is particularly difficult to adjust because the light source is different in each
lab, but the recommended irradiance is around 1 to 100 mW/cm2. Note that the experimental procedure indicated inside
the gray box should be performed in the dark as much as possible because undesirable irradiation from the fluorescent
lights of laminar flow cabinets and/or experimental rooms can increase ROS production and subsequent cell death. PBS:
phosphate-buffered saline.

More in vitro and in vivo 5-ALA PDT experiments for cancer should be performed to
facilitate the clinical application of 5-ALA PDT in the future. In addition, 81 clinical trials
have been registered in the U.S. National Library of Medicine. There are potential risks and
side effects that should be considered during these trials and experiments; however, these
efforts might advance the development of novel clinical approaches for the treatment of
several cancers. To expand 5-ALA applications for several cancers, further in vitro 5-ALA
PDT experiments are still required and should be continued.
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