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Background
Protein secretion is of paramount relevance for cellular communication [1]. In eukary-
otes, most secreted proteins follow the classical endoplasmic reticulum (ER)-Golgi path-
way. This pathway requires the presence of a signal peptide in the N-terminus of proteins 
(leader sequence), which promotes the delivery of nascent proteins into the lumen of the 
ER. Proteins are then transported to the Golgi apparatus and from there to the cellular 
surface via vesicular transport [2, 3].

In addition, there are unconventional pathways of protein secretion, which actually 
enable the secretion of leaderless proteins. Unconventional secretion of proteins can 
occur through vesicular and non-vesicular pathways [3, 4]. In non-vesicular pathways, 
proteins are released directly to the extracellular space, while in vesicular pathways, pro-
teins are released within vesicles. Cells can secrete to the extracellular environment a 
variety of vesicular structure, among which exosomes stand out [5].
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Exosomes are microvesicles ranging from 30 to 100 nm in size, playing an important 
role in intercellular communication thanks to their capacity to transport and transfer 
proteins, lipids and nucleic acids to other cells [6]. Exosome secretion has been involved 
in many biological processes, both in health and disease [7]. For example, exosomes are 
involved in the regulation of coagulation and inflammation [6, 8]. Interestingly, the con-
tent of exosomes can change under pathological conditions such as cancer, neurodegen-
erative ailments and cardiovascular diseases [7, 9, 10].

Exosomes are generated in the cytosol from inward budding invaginations of late 
endosomes, which results in intraluminal vesicles (ILV) within a large multivesicular 
body (MVB) [11]. When MVBs fuse with the plasma membrane, ILV are secreted into 
the extracellular space as exosomes [2, 12, 13]. Exosomes incorporate transmembrane 
proteins and a great variety of luminal cargo proteins, including cytosolic and nuclear 
proteins, lacking a signal peptide [14, 15].

Given the biological relevance of exosomes and their role in unconventional pro-
tein secretion, it is of great interest to identify and predict proteins secreted by these 
vesicles. Currently, there are several bioinformatics tools to predict proteins secreted 
through unconventional pathways [16], including SecretomeP [17], SPRED [18], SecretP 
[19, 20] and OutCyte [21]. All these tools are based on machine learning models that 
were not trained for the specific task of predicting protein secretion by exosomes. Here, 
we present ExoPred, a bioinformatic tool that is specific to predict proteins secreted 
by exosomes. ExoPred implements a Random Forests (RF) model that was trained on 
a sequence dataset including 2992 exosome luminal proteins assembled ex profeso. The 
dataset only included non-transmembrane and leaderless proteins from vertebrata. In 
tenfold cross-validation the model reached an accuracy of 69.88% ± 2.08 and an area 
under the curve (AUC) of 0.76 ± 0.03. Moreover, when tested in an independent dataset, 
this model reached an accuracy of 75.73%.

Results and discussion
Exosome training dataset

Proteins secreted by exosomes are really diverse with regard to structure, function 
and sub-cellular location [22, 23]. Here, we aimed to predict proteins secreted within 
exosomes: luminal cargo proteins. To that end, we generated a non-redundant data-
set containing 2992 proteins found within exosomes and 2961 that are not found in 
exosomes. In the dataset, we only considered highly curated proteins from verte-
brates with less than 80% identity, discarding membrane bound proteins or carrying 
a leader sequence, as they could be secreted by other means (details in Methods). The 
average sequence identity between exosome proteins included in the training data-
set is 12.22 ± 2.02 (%), while the sequence identity between non-exosome proteins 
is 12.23 ± 2.38 (%). Overall, the average sequence identity in the training dataset is 
12.19 ± 2.08 (%). In Additional file 1: Figure S1, we show additional measures of identity 
in the training dataset.

We investigated the sub-cellular location of exosome proteins upon UNIPROT anno-
tations as a mean to select appropriated non-exosome proteins for inclusion in the train-
ing dataset (details in Methods). As shown in Fig. 1a, some exosome proteins have no 
sub-cellular location annotations (456) while many others (1225) have more than one 
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sub-cellular location. The dataset also includes 639, 516, 12, 38 and 106 exosome pro-
teins that are annotated with exclusive sub-cellular locations in the nucleus, cytosol, 
ER, GA and mitochondrion, respectively. Likewise, non-exosome proteins included in 
the training dataset exhibit sub-cellular locations that mirror those of exosome proteins 
(Fig. 1b). By including in the training dataset exosome and non-exosome proteins with 
balanced sub-cellular locations, we aimed to obtain prediction models that were robust 
and unbiased.

Generation and evaluation of RF models predicting proteins secreted by exosomes

Luminal exosome proteins are very heterogeneous and, unlike proteins secreted by the 
classical secretion pathway, do not have any recognizable pattern determining their 
secretion by exosomes. Under this scenario, machine learning techniques provide a suit-
able approach to predict proteins secreted by exosomes. In this work, we specifically 
used RF, as they have been shown to exhibit high prediction accuracy in many biological 
problems and with different types of data [24]. Moreover, RF are more intuitive and have 
less parameters that need optimization than other machine learning algorithms such as 
support vector machines, which are often applied in classification [25].

To generate prediction models, we trained and evaluated various RF under ten-
fold cross-validation classification experiments (details in Methods) in the described 
training dataset translated into feature vectors consisting of amino acid composition, 
physico-chemical properties, dipeptide composition, the combination of amino acid 
composition plus physico-chemical properties and the combination of all of them 
(details in Methods). We chose these features since they can be obtained from the 
sequences alone. Hereinafter, we will refer to the RF models generated to predict pro-
tein secretion by exosomes as esRF. As shown in Fig. 2, in all sequence feature vectors 
the accuracy of esRF improved as the interaction value increased, stabilizing approxi-
mately at a value of 1500. An esRF model trained on dipeptide composition with an 

Fig. 1  Sub-cellular location of proteins included in the training dataset. Venn diagrams indicating the 
sub-cellular location of exosome (a) and non-exosome proteins (b) as annotated in UNIPROT. Note that the 
preferential sub-cellular location for exosome and non-exosome proteins was cytosolic and nuclear
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interaction value of 3000 reached the top classification accuracy, 69.88% ± 2.08. This 
esRF model produced classifications with AUC of 0.76 ± 0.03 and MCC of 0.40 ± 0.05 
(Table  1). Note that training esRF models on additional features to dipeptide com-
position, such as physico-chemical properties and amino acid composition, did not 
improve the accuracy of the predictions.

Fig. 2  Performance of esRF models predicting proteins secreted by exosomes. Figure shows the accuracy 
(ACC, Y-axis) in percentage of esRF models trained on exosome training datasets with sequence features 
consisting of physico-chemical properties (orange), amino acid (AA) composition (blue), combination of 
amino acid composition and physico-chemical properties (red), dipeptide composition (DP) (green) and 
combination of all of them (purple) at increasing interaction values (X-axis). Accuracy was obtained under 
tenfold-cross validation experiments (standard deviations not shown) that were repeated 10 times

Table 1  Performance of top esRF models generated in this study

Table reports the accuracy (ACC), area under the curve (AUC) and Matthews correlation coefficient (MCC) of the top 
performing esRF models obtained with the indicated interaction value (I) by training in physico-chemical properties 
(PCP), amino acid composition (AA), combination of physico-chemical properties and amino acid composition (PCP + AA), 
dipeptide composition (DP) and combination of physico-chemical properties, amino acid composition and dipeptide 
composition (PCP + AA + DP). Performance values were obtained under 10-cross validation experiments that were repeated 
10 times

Dataset translation

PCP AA PCP + AA DP PCP + AA + DP

I 4500 3500 3000 3000 5000

ACC (%) 64.74 ± 1.94 68.61 ± 2.05 67.94 ± 2.02 69.88 ± 2.08 69.74 ± 1.93

AUC​ 0.69 ± 0.04 0.75 ± 0.03 0.72 ± 0.06 0.76 ± 0.03 0.76 ± 0.04

MCC 0.29 ± 0.06 0.37 ± 0.04 0.36 ± 0.05 0.40 ± 0.05 0.39 ± 0.05
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The features used for training have a major impact in the performance of the mod-
els and we cannot discard the potential benefit of having considered more complex 
and/or additional features like gene ontology (GO) [26], evolutionary information 
[27, 28] and/or protein profile-alignments [29]. The inclusion of evolutionary and 
profile-alignment features is an ingenious manner to enhance datasets and it is of par-
ticularly interest when instances for training are limited. However, the use of these 
types of features, in particular those based on profile-alignments, can cloud former 
efforts to decrease sequence similarity in the training datasets and demands much 
computational power. The use of knowledge-based annotations such as GO terms has 
shown promising results in protein classification problems [26, 30]. However, these 
annotations are not readily available for all the proteins and will need to be predicted 
or skipped, thus hampering the utility of the resulting models. Combining differ-
ent features like those mentioned above could also lead to gains in performance but 
model overfitting becomes a concern when training in numerous features [31]. More-
over, combining complex features is not trivial and can impact the performance of the 
models [32, 33]. Therefore, in this work we trained and evaluated models on simple 
and few sequence-features that could be easily extracted and combined.

To further assess the predictive power of top esRF models selected in cross-vali-
dation, we tested them in an independent test dataset consisting of 2346 exosome 
proteins and 3443 non-exosome proteins generated as indicated in Methods. The 
similarity between the training and the independent test dataset was very low; over-
all the average sequence identity between the two datasets was of 12.01 ± 3.30 (%). 
More measures of identity between these two datasets are provided in Additional 
file 1: Figure S1. For testing, the independent dataset was translated into feature vec-
tors matching the relevant esRF and their performance is shown in Table 2. All esRF 
models were able to discriminate proteins secreted by exosomes better than in cross-
validation exhibiting an ACC over 68%. The largest ACC was reached again by the 
esRF model trained on dipeptide composition (ACC = 75.73%). The fact that the per-
formance of esRF models in the independent test dataset was better than in cross-
validation along with the larger number of sequences used for model building sharing 
little sequence similarity supports the robustness of our esRF models to predict pro-
teins secreted by exosomes.

Table 2  Performance of esRF models in an independent testing dataset

Table reports the accuracy (ACC %), area under the curve (AUC) and Matthews correlation coefficient (MCC) reached in the 
independent dataset by the top performing esRF model obtained by training in sequence features consisting of physico-
chemical properties (PCP), amino acid composition (AA), combination of global properties and amino acid composition 
(PCP + AA), dipeptide composition (DP) and all of them (PCP + AA + DP)

Dataset translation

PCP AA PCP + AA DP PCP + AA + DP

ACC (%) 68.99 71.49 71.41 75.73 75.54

AUC​ 0.765 0.793 0.795 0.840 0.839

MCC 0.378 0.424 0.422 0.505 0.503
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Comparison of esRF with related methods

Currently, there is not any specific tool to predict protein secretion by exosomes. How-
ever, there are a few bioinformatics tools aimed to predict proteins secreted by uncon-
ventional pathways [16], and among them, we selected SecretomeP [17] and OutCyte 
[21], which are both available for free public use over the internet, for comparison with 
our method. SecretomeP is based on neural networks trained on a dataset of 3654 mam-
malian proteins that are secreted by unconventional pathways, including exosome cargo 
proteins [17], and it is often considered as a reference tool. OutCyte is a novel tool 
related with SecretomeP, also based on neural networks, but yielding contrasting predic-
tions when tested in the human proteome [21].

We evaluated the SE, SP and ACC of SecretomeP and OutCyte in our independent 
dataset and compared the results with those obtained by our top esRF model trained on 
dipeptide composition. As shown in Table 3, our esRF model produced values of SE and 
SP of 0.73 and 0.78 respectively, both clearly superior to those obtained with SecretomeP 
and OutCyte. The ACC of our esRF model in the test dataset was also clearly superior to 
that of SecretomeP and OutCyte (75.73% vs 45.14% and 54.39%, respectively). Overall, 
these results indicate that SecretomeP and OutCyte are surprisingly unable to predict 
proteins secreted by exosomes, which highlights the utility of the esRF models devel-
oped here.

It is worth nothing that exosome secretion of proteins could have been approached 
as a sub-cellular location problem. However, the fact that proteins in exosomes can also 
have different locations complicates this approach. A suitable solution, already applied 
to predict sub-cellular location of proteins, would be to train classification models con-
sidering multi-labels [26, 29, 30]. However, to our knowledge, not even the most recent 
methods of sub-cellular location prediction consider exosomes within their predicted 
locations [26–30, 32–34]. Therefore, we suggest combining our models of exosome 
secretion with those that can predict sub-cellular location.

ExoPred web server

Given the results described above and the relevance of predicting proteins secreted by 
exosomes, we developed a web-based tool, ExoPred, which implements our top esRF for 
free public use (http://​imath.​med.​ucm.​es/​exopr​ed/). The ExoPred interface, shown in 
Fig. 3a, has been designed for simple and intuitive use. The input data for ExoPred can 
be one or several protein sequences in FASTA format, which can be pasted or uploaded 

Table 3  Comparative performance of Outcyte, SecretomeP and esRF

SecretomeP, OutCyte and esRF models were evaluated in our independent dataset and compared with regard to sensitivity 
(SE), specificity (SP) and accuracy (ACC). SecretomeP predictions were obtained at http://​www.​cbs.​dtu.​dk/​servi​ces/​Secre​
tomeP/ selecting the mammalian option and the default prediction threshold of 0.6. OutCyte predictions were obtained at 
http://​www.​outcy​te.​com selecting the “OutCyte-UPS” model and default settings

Prediction method

OutCyte SecretomeP esRF

SE 0.32 0.25 0.73

SP 0.72 0.65 0.78

ACC (%) 54.39 45.14 75.73

http://imath.med.ucm.es/exopred/
http://www.cbs.dtu.dk/services/SecretomeP/
http://www.cbs.dtu.dk/services/SecretomeP/
http://www.outcyte.com
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to the server. In ExoPred, users can also select to retrieve the sub-cellular location of 
input proteins as annotated in UNIPROT and/or predict such sub-cellular location using 
PSORT (version II) [35]. After submission, ExoPred first runs a BLASTP [36] against the 
UNIPROT database and processes the BLAST output to identify the UNIPROT identi-
fier (ID) of protein hits with identity higher than 90% and over 90% of their entire length. 
After these identifiers, ExoPred will then retrieve taxa and sub-cellular location informa-
tion from UNIPROT annotations and transfer it to the relevant input query proteins. 

Fig. 3  ExoPred web server. a ExoPred interface. b ExoPred result page with sub-cellular and PSORT 
predictions selected. The information shown is the following (from left to right): Number of the sequence; 
name of the sequence in the FASTA file; belonging to vertebrates (Y/N); UNIPROT ID; presence of predicted 
signal peptides (Y/N) or transmembrane regions (Y/N); sub-cellular location annotated in UNIPROT; 
sub-cellular location predicted by PSORT [35]; and, finally, exosome secretion prediction (Y/N)
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ExoPred will also detect those proteins with leader sequences and transmembrane 
regions using SignalP [37] and TMHMM [38] and predict sub-cellular locations using 
PSORT [35].

The model for predicting exosome secretion is only executed in proteins from verte-
brate and without a signal peptide or transmembrane regions. ExoPred output consists 
of a table reporting by default whether input proteins are from vertebrate (Y/N), con-
tain a signal peptide (Y/N) or transmembrane regions (Y/N) and can be secreted via 
exosomes (Y/N). As show in Fig. 3b, ExoPred will also show the sub-cellular location of 
input proteins annotated in UNIPROT and predicted by PSORT if the relevant options 
were checked at submission. Exosome secretion predictions will show as NA (not availa-
ble) for input proteins that do not meet the criteria mentioned above. For proteins with-
out UNIPROT equivalents, ExoPred will still determine whether they can be secreted by 
exosomes as long as they have no predicted signal peptide or transmembrane regions. In 
these cases, the field taxa, and UNIPROT sub-cellular-location, when selected, will show 
as not found.

Conclusions
Exosomes have a relevant role in intercellular communication in eukaryotes, represent-
ing a major vehicle to secret leaderless proteins. Currently, no method is available to 
specifically predict protein secretion by exosomes. Here, we developed ExoPred, a web-
based tool to predict proteins secreted by exosomes. ExoPred predictions are based on 
random forests models that achieved 75.73% accuracy in an independent dataset. Pre-
dicting and annotating that a particular protein can be secreted by exosomes is clearly 
relevant, as it is indicative of a potential role in cell communication and suggests new 
untapped functions. Therefore, we plan to release a standalone version for resources and 
bioinformaticians providing protein sequence annotations.

Methods
Generation of exosome protein datasets

In this study, we assembled two non-overlapping protein datasets, a training dataset and 
an independent test dataset, both including exosome and non-exosome proteins. Exo-
some proteins in the training dataset where obtained from QuickGo [39] after the GO 
term “extracellular exosome” ([GO: 0070062]) and from ExoCarta database [40]. Non-
vertebrate proteins and ExoCarta proteins without UNIPROT [41] representation were 
not considered as well as unreviewed proteins and those with a global annotation score 
lower than 3 out of 5 as annotated by UNIPROT. Likewise, exosome proteins including 
signal peptides and/or transmembrane regions were discarded. CD-HIT software [42] 
was applied to reduce sequence similarity so that exosome proteins in the training data-
set do not share more than 80% identity. Non-exosome proteins in the training dataset 
were randomly collected from UNIPROT and obeyed to the same criteria than exosome 
proteins (reviewed, from vertebrate, global annotation ≥ 3, sequence similarity under 
80% and exclusion of proteins with a leader sequence and/or transmembrane regions). 
Exosome proteins in the test dataset met the same criteria than those in the train-
ing dataset but were obtained from ExoCarta without considering UNIPROT quality 
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annotations. Non-exosome proteins in the test dataset were also obtained as described 
earlier. Datasets are available at http://​imath.​med.​ucm.​es/​exopr​ed/​datas​ets/.

Sequence similarity analyses

Sequence similarity in training and independent datasets was analyzed after pairwise 
sequence alignments generated using the Needleman-Wunsch global alignment algo-
rithm implemented by the needle application of the EMBOSS package [43]. To obtain a 
measure of sequence similarity in a dataset, all sequences were aligned pairwise but with 
themselves (for a dataset with N sequences there will be N x N-1 alignments), identities 
were obtained for each alignment and the average identity was computed.

Model building and evaluation

Models to predict proteins secreted by exosomes were built using the Waikato Environ-
ment for Knowledge Analysis (WEKA) package [44]. WEKA provides a framework for 
data classification, clustering and feature selection using a large collection of machine 
learning algorithms. In WEKA, exosome protein secretion models were trained and 
evaluated under the application EXPLORER, using RF as classification algorithms. Clas-
sification with RF operate by applying multiple decision trees generated during training 
and outputting a modal decision [45, 46]. Different RF models were obtained by vary-
ing the interaction value of the algorithm (100, 150, 200, 250, 300, 350, 400, 450, 500, 
550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 
4500, 5000, 5500, 6000, 8000, 10,000). The interaction value indicates the number of 
trees in RF. As input for WEKA, we used five distinct training datasets in ARFF for-
mat resulting of translating the amino acid sequences in the exosome training dataset 
into feature vectors of equal length. Sequence feature vectors consisted of amino acid 
composition, physico-chemical properties, dipeptide composition, the combination of 
amino acid composition and physico-chemical properties, and the combination of all of 
them. Amino acid and dipeptide compositions of protein sequences were computed as 
described elsewhere [47]. The amino acid composition feature vector contains 20 values 
indicating the proportion of each of the 20 natural amino acids in the sequence. The 
dipeptide composition feature vector contains 400 values depicting the proportion of all 
possible pair of amino acids (20 × 20) in the sequences. The physico-chemical property 
feature vector contains 11 values, Pi, computed for each sequence after 11 distinct amino 
acid properties. For each physico-chemical property, i, Pi, was computed using Eq.  1 
where pian is the relevant normalized physico-chemical property of amino acid, a, at the 
n position of a given protein sequence, and N is the total number of amino acid residues 
in the sequence.

The 11 amino acid physico-chemical properties used in this study included average 
flexibility indices [48], residue volume [49], relative mutability [50], net charge [51], 
optimized side chain interaction parameter [52], polarity [53], alpha-helix propensity 
derived from designed sequences [54], beta-sheet propensity derived from designed 
sequences [54], amphiphilicity index [55], modified Kyte-Doolittle hydrophobicity scale 

(1)Pi =
∑N

n=1
pian

N

http://imath.med.ucm.es/exopred/datasets/
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[56] and aromaticity. Combination feature vectors were obtained by merging the rele-
vant vectors. As a result, the amino acid composition and physico-chemical property 
feature vector contains 33 values resulting of merging 20 amino acid composition values 
and 11 physico-chemical property values per sequence into a single vector. Likewise, the 
combined feature vector containing amino acid and dipeptide compositions, and phys-
ico-chemical properties contains 433 values.

RF models were trained and evaluated in tenfold cross-validation classification experi-
ments that were repeated 10 times. Best performing models that were obtained by train-
ing in the noted sequence features were also evaluated in the test dataset.

Measures of performance

The performance of RF models was obtained by computing threshold-dependent meas-
ures such as sensitivity (SE), specificity (SP), Matthews correlation coefficient (MCC) 
and accuracy (ACC) using Eqs.  2, 3, 4 and 5, respectively. These measurements are 
expressed in terms of true positive (TP), false negative (FN), true negative (TN) and false 
positive (FP) predictions.

The performance of RF models was also evaluated by computing the area under 
the curve (AUC) resulting from plotting SE vs 1—SP at different thresholds. An AUC 
value of 0.5 corresponds to a random prediction, while a value of 1 reflects a perfect 
prediction.

Prediction of unconventional protein secretion using SecretomeP and OutCyte

SecretomeP [17] is a web-based tool for predicting unconventional protein secretion 
available at http://​www.​cbs.​dtu.​dk/​servi​ces/​Secre​tomeP/. For comparative analysis, 
SecretomeP was used to predict exosome and non-exosome proteins in the test data-
set selecting the “Mammalian” option. Proteins with “NN-scores” higher than 0.6 were 
considered as secreted by an unconventional pathway, as indicated in the web page. Out-
Cyte [21] is another web-tool, available at http://​www.​outcy​te.​com, for the prediction 
of unconventional protein secretion based on convolutional neural networks. For com-
parative analysis, proteins included in the test dataset were subjected to OutCyte predic-
tions, using the model “OutCyte-UPS” with the  default settings.

(2)SE =
TP

TP + FN

(3)SP =
TN

TN + FP

(4)MCC =
(TP × TN )− (FN × FN )

√
(TN + FN )(TP + FN )(TN + FP)(TP + FP)

(5)ACC =
(TP + TN )

(TP + FP + TN + FN )
× 100

http://www.cbs.dtu.dk/services/SecretomeP/
http://www.outcyte.com
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Web implementation

Exosome prediction models were implemented for free public use on the Web using a 
Python CGI (Common Gateway Interface) script that executes the predictions on user-
provided input data and returns the results to the browser. The front-end web interface 
was developed using Hyper Text Markup Language (HTML) in combination with Cas-
cading Style Sheets (CSS) and JavaScript. Web page administration is done using Apache 
HTTP Server (https://​httpd.​apache.​org).
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