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Abstract

De novo assembly of sequence reads from next generation sequencing platforms is a com-

mon strategy for detecting presence and sequencing of viruses in biospecimens. Amplifica-

tion artifacts and presence of several related viruses in the same specimen can lead to

assembly of erroneous, chimeric sequences. We now report that such chimeras can also

occur between viral and non-viral biological sequences incorrectly joined together which

may cause erroneous detection of viruses, highlighting the importance of performing a chi-

mera checking step in bioinformatics pipelines. Using Illumina NextSeq and metagenomic

sequencing, we analyzed 80 consecutive non-melanoma skin cancers (NMSCs) from 11

immunosuppressed patients together with 11 NMSCs from patients who had only developed

1 NMSC. We aligned high-quality reads against a Human Papillomavirus (HPV) database

and found HPV sequences in 9/91 specimens. A previous bioinformatic analysis of the

same crude sequencing data from some of these samples had found an additional 3 speci-

mens to be HPV-positive after performing de novo assembly. The reason for the discrep-

ancy was investigated and found to be mostly caused by chimeric sequences containing

both viral and non-viral sequences. Non-viral sequences were present in these 3 samples.

To avoid erroneous detection of HPV when performing sequencing, we thus developed a

novel script to identify HPV chimeric sequences.

Introduction

Current advancements in next-generation sequencing technologies have enabled researchers

to obtain sequence information from all genomes present in a specimen, without prior knowl-

edge of what genomes are present [1–5]. This metagenomic approach has revolutionized the

field of virology in particular, since the lack of an appropriate phylogenetic marker (e.g. 16S or

18S rRNA genes) and the difficulty or impossibility in culturing, had made virome studies lag

behind bacterial and fungal metagenomics.

A typical virome study from human specimens includes the extraction of all nucleic acids

from a desired specimen, followed by the sequencing of all genomes present to create many ran-

dom short reads. After that, filtering out the human (host) reads is necessary before de novo

genome assembly from short non-human reads, to reduce the number of homology searches

and increase taxon assignment consistency and accuracy. These non-human reads are then
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identified, either by homology matching to non-redundant nucleotide or protein viral sequence

databases, or by protein structure based methods for novel viral etiological agent discovery [6–

10]. The steps for viral identification are straightforward but several difficulties may occur.

Viral nucleic acid preparations often do not reach the minimal limit amount required for

sequencing library preparation [11]. Therefore, these preparations are commonly enriched by

whole genome amplification (WGA), which is prone to assembling chimeric sequences

(sequences erroneously joined together that are not joined together in real life) and amplifica-

tion bias [12–14]. Moreover, due to the fact that the sequence databases are still incomplete or

biased toward the most studied human viruses, up to 80% of the reads of viral metagenomes

yield no significant matches against public sequence databases [15, 16]. Therefore, assembly of

unassigned reads and description of novel organisms can only be achieved if enormous

sequencing efforts are applied.

An accurate genome assembly from short read sequencing data is critical for downstream

analysis, especially for viruses, that are vastly outnumbered by other organisms present. The

combination of extensive viral population diversity together with uneven read depth makes

viral assembly challenging. Furthermore, viruses may exist as a chromosomal insert, such as

prophages, which are integrated in the host genome. This incorporation further confuses the

ability to distinguish viral genomic elements from the host. Consequently, chimera detection

is a very important step in virome analysis as chimeras may be noted as a novel species and

will falsely increase the number of organisms detected.

Of particular interest is the virome study of non-melanoma skin cancers (NMSCs), as this

cancer presents a 100-fold increased incidence among the immunosuppressed patients [1], but

has not been associated with any pathogen yet. Metagenomics studies of viral DNA in NMSCs

have reported that Human papillomavirus (HPV) comprises>95% of viral reads [4], and puta-

tive persistence of the same HPV types in different skin tumors diagnosed over time from the

same patient has also been reported [17], making HPV a very good causative candidate for this

type of cancer.

We aimed to perform metagenomic sequencing to assess the presence and prevalence of

human papillomavirus in consecutive NMSCs (different NMSCs diagnosed over time from

the same individual) from different patients and to assess the reproducibility and accuracy of

assembly algorithms used for viral detection.

Materials and methods

Patients

For this study, we randomly selected 10 transplant recipients (Patients 1–10) from a national

cohort [17] that had been diagnosed with consecutive NMSCs (>1 NMSC) over a 10-year

period between 1993 and 2003. All the respective available diagnostic skin formalin-fixed par-

affin-embedded (FFPE) blocks (n = 84) (FFPE blocks obtained to diagnose the NMSC) were

retrieved for further analysis (Table 1). For comparison, we also identified 10 diagnostic FFPE

blocks from NMSCs in 10 different transplant patients who had not been diagnosed with

NMSCs more than once over the same 10-year period. The matching of these “controls” to the

cases was performed according to 1) gender, 2) diagnosis (ICD7 code 191 “other malignant

neoplasm of skin” including the fourth digit “localization of the body”), 3) county of residence,

4) year of diagnosis (+/-5 years) and 5) age of the patient at diagnosis (+/-10 years) (Table 1).

We also included the raw sequencing data of one patient (Patient 11) where consistent pres-

ence of HPV in 6/8 consecutive tumors (different NMSCs diagnosed over time from the same

patient) had already been reported, together with one control patient with previously reported

data (selected at random) [17] (Table 1).
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The study was approved by the Ethical Review Board of the Stockholm, Sweden with the

permit number "DNR 2013/652-31/3" and, has been conducted according to the principles

expressed in the Declaration of Helsinki. All data were de-identified and analyzed

anonymously.

Sample preparation

Sample preparation was performed for each tumor from the 10 randomly selected patients

(Patient 1–10) and their respective controls in the same manner as had previously been per-

formed for the NMSCs from Patient 11 and the corresponding control [17]. FFPE tumor

blocks from NMSCs (n = 84) were sectioned at a quality-assured, certified commercial section-

ing laboratory (HistoCentre, Gothenburg, Sweden). Empty paraffin blocks were sectioned in-

between each tumor block as negative controls.

All sectioned samples and controls (NMSC specimens and empty paraffin blocks, n = 168)

were subjected to serial DNA extraction, as previously described [17]. Sample adequacy was

assessed by analyzing the presence of a house keeping gene, hemoglobin subunit beta gene,

with real-time PCR [18]. Tumor specimens that were negative for hemoglobin subunit beta,

both the blank-block as well as the case-block were diluted 1/10 (to dilute possible inhibitors)

and re-analyzed to confirm negativity. If negativity was confirmed, negative hemoglobin sub-

unit beta specimens together with their respective empty paraffin blocks were excluded from

further analysis. Paraffin blank blocks that were positive for hemoglobin subunit beta were re-

analyzed to confirm positivity. If positivity was confirmed, both the paraffin blank block and

the respective tumor specimen were excluded from further analysis.

All individual tumor blocks positive for hemoglobin subunit beta together with 13 negative

controls (5 water controls and 8 random blank paraffin controls) were amplified with whole

genome amplification (WGA) using the IllustraTM Ready-To-GoTM GenomiPhiTM DNA

Amplification Kit (GE Health Care, United Kingdom) as described [17], diluted in a ratio of

1:2 in PCR-Grade water and quantified with QuantiFluor-ST (Promega, United States).

Table 1. HPV detection in consecutive NMSCs from 11 patients.

Consecutive tumors

1 2 3 4 5 6 7 8 9 10 11 12 Control

Patient 1 X X X X X

Patient 2 X X X X X X X X X

Patient 3 X X X X 28 X

(2 525 991)

Patient 4 X X X X X X X X X X

Patient 5 X X X X X X

Patient 6 X X X X X X

Patient 7 X X X X X X X X X X X

Patient 8 X X X X X X X X 124 23

(32) (6 166)

Patient 9 23 23 X X X X X 23 X X X X X

(3 944) (136 433) (31)

Patient 10 X X X X X X

Patient 11 X 6, 15, 38 6,15,38 X 15,38 X X X X

(135,25,31) (61,660,815) (483,264)

HPV types are represented in bold and number of sequencing reads detected for each genotype in brackets. NMSC: Non-melanoma skin carcinoma.

https://doi.org/10.1371/journal.pone.0237455.t001
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Illumina sequencing

50 ng of WGA genomic DNA per sample (n = 95) was used for DNA library preparation with

a dual index system using the Nextera DNA Sample Preparation kit according to the user

guide revision B (Illumina). The individual libraries were validated and normalized to 4 nM.

Libraries were then divided in 4 sets, each set containing at least 3 negative controls (1 water

control and 2 blank blocks) and 20 NMSC specimens. Each set was denatured and diluted,

resulting in a 1.8 pM DNA solution, and finally sequenced by paired-end 151+151 cycles using

NextSeq 500 High Output reagent kit (Illumina). The sequencing preparations were made

according to the user guides, Denaturing and Diluting Libraries for the NextSeq500 revision A

and NextSeq500 kit Reference Guide revision F.

Bioinformatics

All raw data from the 11 patients were subjected to the same bioinformatics pipeline. In brief,

indices included in the Illumina adaptors were used to assign raw sequence reads obtained

from the NextSeq 500 (Illumina) platform to the original samples. Demultiplexing was per-

formed using bcl2fastq2 conversion software v2.19 (Illumina). Reads were quality- and adap-

tor-trimmed with Trimmomatic v0.36 [19] using default parameters and a minimal length of

36 bp. High-quality reads were queried against a database of known HPV sequences including

all HPV genomes officially established by the International HPV Reference Center (n = 221

officially established HPV types, https://www.hpvcenter.se, accessed on 2020-01-20), together

with complete genome sequences from HPV types that are not officially established yet

(n = 222, https://pave.niaid.nih.gov, accessed on 2020-01-20), using NextGenMap v0.5.2 [20].

The program was run under default settings, except for -i 0.9, -R 0.75 and–silent-clip. Reads

that mapped with>90% identity over 75% of their length (-i 0.9 -R 0.75) were included for fur-

ther analysis and subjected to visual inspection using Integrative Genomics Viewer to confirm

mapping. We considered a specimen positive for HPV only if it presented at least 5 HPV-posi-

tive reads and 10% complete genome coverage (i.e. >750 bp).

Samples presenting a co-infection of HPV types were subjected to manual investigation to

confirm positivity for the corresponding genotypes in order to avoid false positivity due to

both genotypes presenting close phylogeny.

Confirmation of HPV types detected in several specimens

HPV types that were detected in more than one specimen among patients 1–10, were subjected

to further confirmation to discard possible contamination during WGA amplification as well

as “index hopping”. Index hopping occurs when free adapters in a multiplexed pool anneal to

the pooled library fragments, leading to misassignment of the read to the wrong index sample.

Confirmation was assessed by performing real-time PCR in extracted DNA material (before

amplification) from all specimens (82 individual tumor blocks and 8 paraffin blank blocks).

Real-time PCR was performed twice for each sample to confirm results and, in case of ambigu-

ity, real-time PCR was repeated.

A reference plasmid was used as positive control at different dilutions (from 100,000 to 0.5

copies/μL). The PCR mixtures contained in a total of 25 μL: 1 μL sample, 0.2 μM of each

primer, 0.04 μM HPV probe, 0.62 U Amplitaq Gold, 1× PCRII Buffer and 3.5 mM MgCl2 in

sterile water. Water was used as non-template control in each run. The PCR-analyses were car-

ried out in ABI 7300 Real-Time PCR System, using the 7300 System Software v.2.0.5 (Applied

Biosystems), with the following temperature settings: 2 min at 50˚C and 10 min at 95˚C, fol-

lowed by 40 cycles at 95˚C for 15 sec and 60˚C for 1 min. The threshold was set to 0.1 ΔRn (Rn

PLOS ONE Chimera check for viral de novo assemblies

PLOS ONE | https://doi.org/10.1371/journal.pone.0237455 August 10, 2020 4 / 11

https://www.hpvcenter.se/
https://pave.niaid.nih.gov/
https://doi.org/10.1371/journal.pone.0237455


is the fluorescence of the reporter dye divided by the fluorescence of the passive reference. For

ΔRn the baseline fluorescence has been subtracted).

Reproducibility and accuracy of assembly algorithms

The very same crude sequencing data from the consecutive tumors from Patient 11 that had

been previously analyzed for virus detection [17], were subjected to the bioinformatic pipeline

described above. As the present study revealed presence of HPV 15 and 38 in 3/8 consecutive

tumors and not 6/8 as previously reported, we investigated the HPV contigs generated in the

previous study by comparing their sequences to the NCBI nucleotide collection using a

BLAST program (blastn) with default parameters. We mapped the raw reads to the generated

contigs using NextGenMap [20] as previously described to visualize the coverage and align-

ment (we followed the same methods as in the published article [17]).

Script for detecting chimeras in HPV related contigs

Due to importance of accurate HPV detection and to avoid false calls due to chimeric contigs,

a robust and reproducible script, “HPVChimera”, was developed to detect possible chimeras

among “de novo” assembled HPV related contigs. The script is publicly available at https://

github.com/NIASC/HPVChimera.

In summary, the putative HPV contig´s sequence was compared to the previously described

database of known HPV sequences with BLAST. If the contig´s sequence did not have at least

85% sequence identity to any of the HPV types present in the database, the contig was classi-

fied as a putative chimera and excluded from further analysis. We decided to set the cut-off at

85% identity to give a slight margin for the 90% homology within the HPV L1 gene required

for 2 sequences to be considered the same HPV type. Contigs’ sequences that showed>85%

nucleotide homology to any genotype, were then screened for their alignment coverage. If the

contig’s sequence showed <60% coverage when aligning to the HPV type (top hit), the contig

was considered as a putative chimera and excluded from further analysis. Contigs’ sequences

that showed >60% coverage to the HPV genotype were thereafter divided in 3 equal segments.

The sequences for each segment from every contig were compared to the same database of

known HPV sequences and chimeras were reported if: a) the segments did not share the same

top hit when being compared to the HPV database, b) the top hit obtained from the three seg-

ments was not the same as the top hit obtained from the corresponding (total) contig when

being compared to the HPV database, c) the alignment coverage was <70% for any of the 3

segments and, d) if at least one of the segments had less than 90% similarity, and at least one of

the segments had more than 90% similarity, and if the difference between these segments in

terms of similarity to corresponding overlapping parts was more than 5% (for example, if seg-

ment 1 was 88% similar and segment 2 was 94% similar).

Data availability statement

All the quality filtered non-human sequences are available at the sequence read archive (Bio-

project ID: PRJNA613457). The contig´s fasta sequences from the previous publication [17]

can be found in the S1 File. The HPVChimera script is publicly available at https://github.

com/NIASC/HPVChimera.

Results

A total of 84 NMSC FFPE blocks together with 84 empty paraffin blocks (negative controls)

were retrieved and sectioned for HPV sequence detection. In total, 2/84 tumors were negative

PLOS ONE Chimera check for viral de novo assemblies

PLOS ONE | https://doi.org/10.1371/journal.pone.0237455 August 10, 2020 5 / 11

https://github.com/NIASC/HPVChimera
https://github.com/NIASC/HPVChimera
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544312/
https://github.com/NIASC/HPVChimera
https://github.com/NIASC/HPVChimera
https://doi.org/10.1371/journal.pone.0237455


for hemoglobin subunit beta gene presence and thus, discarded from further analysis. The

empty paraffin blocks were all negative (84/84) for hemoglobin subunit beta gene.

The sequencing of 82 NMSCs from 10 patients (Patients 1–10) and their corresponding

controls, generated high quality sequencing data, with a median of 14.1 M paired reads/sam-

ple. Analysis of HPV presence among the 11 patients (Patient 1–11) and their corresponding

controls, revealed presence of HPV sequences in 9/91 NMSCs, corresponding to types 6

(n = 2), 15 (n = 3), 23 (n = 4), 28 (n = 1), 38 (n = 3), and 124 (n = 1) (Table 1). Two patients

showed presence of HPV in more than 1 NMSC (3/12 and 3/8), while 2/11 patients showed

presence of HPV in just one of their tumors (1/5 and 1/9 HPV positive tumors), and 7/11

patients were negative for HPV in all their respective tumors (n = 46) (Table 1). All the nega-

tive controls of water and paraffin blank blocks (n = 13) were negative for HPV.

Confirmation of HPV types detected in several specimens

Presence of HPV 23 was further investigated and confirmed using real-time PCR in all 95 sam-

ples (82 individual tumor blocks from the 10 patients and 10 controls, together with 13 nega-

tive controls). Primers and probes were designed using the Primer3web v. 4.1.0; HPV23F:

50- CTCCTACAGTGGTCCGCC -30, HPV23R: 50- TATTGATGGTGCTTCGGGGT -3,

HPV23probe: 50-FAM- CCAGTTGACTCAATAGCGCCA–NFQ-30, and produced by DNA

technology, DK.

Realtime PCR confirmed HPV presence in all samples (4/4) that were HPV 23 positive by

sequencing. All 91/95 specimens that were negative for HPV 23 by sequencing were confirmed

negative by real-time PCR.

Reproducibility and accuracy of assembly algorithms

Patient 11’s raw data had been previously analyzed with a different bioinformatics pipeline

which reported that 6/8 tumors were positive for both HPV 15 and 38 [17], and not 3/8 as we

detected. To investigate the reason for the discrepancy, we analyzed the HPV contigs generated

by the previous pipeline. A total of 15 contigs were detected (4 contigs for HPV 38 and 11 con-

tigs for HPV 15) in the 8 tumors of Patient 11 (Table 2). The contigs’ fasta sequences can be

found in the S1 File.

A comparison of the previously assembled contigs’ sequences, that had been classified as

HPV 15 or 38, with the NCBI nucleotide collection using the BLAST program, revealed low

coverage of HPV (<42%) within some of the contigs’ sequences (Table 2). Chimera presence

(sequences formed by two or more biological sequences incorrectly joined) corresponding to a

joining of HPV and other non-human sequences was detected in all contigs where HPV

showed low coverage (6/17 contigs).

The 3 samples that were previously classified as positive, but were negative in the present

study, mapped only to 1/4 putative HPV38 contigs (HPV38 Contig 4) (Table 2). When this

contig was compared to the NCBI nucleotide collection using the BLAST program, HPV 38

was the top hit with an identity of 99.61% but with only 17% coverage. The first 760 nucleo-

tides (contig total length was 4223 nt) corresponded to HPV 38, but from nucleotide 761 to

4223, HPV 38 was not present. This sequence was most similar to plant DNA (Lens culinaris).
When mapping raw reads to the chimeric contigs, the 3/6 samples that were positive in both

the previous and the present study had reads mapping to the HPV part within the contig (nt

1–760), while the 3/6 samples that had been positive only in the previous study, had only reads

mapping to the Lens culiinaris part of the contig (nt 761–4226) (Fig 1).

There were also some HPV 15 positive samples that were positive in the previous study but

not in the present one. The samples where we could not confirm presence of virus had reads
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Table 2. Assembled HPV contigs and chimeras.

HPV Contig Length (nt) Identity (%) Coverage (%) Sample Sample Sample Sample Sample Sample Result

number Q139C Q59C Q76C Q20C Q33C Q63C ”HPV Chimera”

HPV 38 1 553 98,29 100 0 0 0 0 8 28 HPV38

HPV 38 2 2327 98,88 99 0 0 0 0 122 2 HPV38

HPV 38 3 685 99,27 97 0 0 0 0 12 0 HPV38

HPV 38 4 4223 99,61 17 26 76 8 28 1006 20 Chimera1

HPV 15 1 675 94,67 100 0 0 0 4 22 2 HPV15

HPV 15 2 562 93,64 100 0 0 0 2 16 24 HPV15

HPV 15 3 592 96,59 100 0 0 0 0 6 12 HPV15

HPV 15 4 1031 95,31 100 0 0 0 0 20 30 Chimera2

HPV 15 5 1034 95,44 100 0 0 0 0 14 22 HPV15

HPV 15 6 3699 95,19 100 0 0 0 4 114 192 HPV15

HPV 15 7 988 90,37 42 0 2 0 0 2 182 Chimera1

HPV 15 8 874 94,87 35 10 8 0 10 8 78 Chimera1

HPV 15 9 4603 89,67 30 34 0 132 10 152 2348 Chimera1

HPV 15 10 4830 96,79 27 4 0 0 4 2528 8 Chimera1

HPV 15 11 3275 95,6 17 0 8 0 0 10 2402 Chimera1

Contigs assembled in a previous publication (17) presumably classified as HPV 38 and HPV 15. All 6 samples were classified as positive (HPV reads shown in the table)

for both genotypes.
1) Chimeric sequence was reported due to the low coverage of the contig´s sequence.
2) Chimeric sequence was reported due to one of the three segments showing <75% coverage. Columns highlighted in grey correspond to the samples classified as

positive in the previous classification but not in the present study.

https://doi.org/10.1371/journal.pone.0237455.t002

Fig 1. False positive specimen´s reads mapping a chimeric HPV 38 contig (Contig 4). Visual example of the 3 samples previously reported to be HPV 38 positive and

their sequencing reads mapping to the chimeric contig classified as HPV 38. The fragment corresponding to HPV 38 lays within the region 1–760 bp.

https://doi.org/10.1371/journal.pone.0237455.g001
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mapping to contigs which showed presence of HPV in <42% coverage (HPV15 Contig 7–11),

and the respective reads only mapped to the non-viral part of the contig (Table 2). These reads

were sequences closely related to P.Sativum and Lotus Japonicus.
We investigated if RNA assemblers (Trinity and SOAPdenovo-Trans) or DNA sequence

assemblers (IDBA-UD) had a higher likelihood of generating chimeric sequences, but did not

find any differences.

HPV assembly chimera script

We subjected all 15 contigs from the 8 tumors from Patient 11 to the developed “HPVChi-

mera” script and obtained 7/15 putative chimeras (Table 2). While the script detected all chi-

meras found by manual inspection (6/15 contigs), it detected another chimeric contig (HPV15

Contig 4), due to one of its 3 segments not showing 75% coverage for the HPV.

Manual inspection of this contig, HPV15 Contig 4, showed that the entire sequence

belonged to HPV 15, but that it had been miss-assembled, with nt 1–169 showing a 92% iden-

tity +/+ alignment with the HPV 15 region nt 5913–6081, nt 163–909 showing a 95% identity

+/- alignment with the HPV 15 region nt 4201–4946, and nt 896–1031 showing an 89% iden-

tity +/+ alignment with the HPV 15 region nt 5804–5939.

Discussion

Metagenomics studies of viral DNA have detected a broad number of HPVs in both healthy

skin and skin tumor samples [21–26]. Studies based on HPV detection using specific PCRs are

limited by the fact that HPV types with no homology to the sequences present in primers and

probes might have escaped amplification [2, 4]. Therefore, it is essential to perform an unbi-

ased metagenomic sequencing approach (not based on PCR) to detect all viruses present in a

sample to assess the frequency and prevalence of viruses in skin tumors.

We detected HPV sequences in 9/91 NMSCs after performing an unbiased approach. A

strength of our study is that we aligned our raw sequencing reads directly to all HPV sequences

present in the International HPV Reference Center database together with another HPV data-

base (PaVe), not to miss a large number of recently reported non-established HPV types. We

opted to align high-quality reads directly to the HPV database and not to assemble them into

contigs mainly because a) we had a very well-known HPV database with complete genome

sequences (n = 443), b) we did not aim to perform de novo analysis, and c) we wanted to avoid

the possibility of having the majority of reads filtered out if resulting contigs were short. How-

ever, if novel HPV types are to be detected, de novo assembly would be needed.

When analyzing putative HPV contigs assembled after de-novo assembly, we found that

some putative HPV sequences contained non-human DNA from plants, confirming that de

novo assembly of non-human sequences may result in constructing chimeric sequences of

both virus and non-virus sequences, falsely giving the impression that a novel sequence has

been detected. We detected cutaneous HPV types in some consecutive NMSCs, but in some

specimens previously found to be positive, we did not detect viral sequences [17]. Aligning

raw reads directly to the HPV database avoided presence of chimeras consisting of both viral

and non-viral sequences.

Performing a post-assembly analysis after de novo assembly is essential for accuracy and

reproducibility [27, 28] and we want to stress the importance of chimera checking after de

novo assembly. NCBI has reported that as many as 30% of the sequences from mixed template

environmental samples may be chimeric (https://www.ncbi.nlm.nih.gov/genbank/

rrnachimera, accessed on 2020-01-08) and uses Uchime2_ref in reference database mode to

scan for them.
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In this study, performing a post-assembly analysis, or simply comparing the generated contigs’

sequences to public databases using a BLAST program as well as considering both identity and

coverage parameters, would have detected chimeric presence. However, to make a reproducible

and robust method for chimera detection in putative HPV contigs, we designed “HPVChimera”,

which has proven to detect both chimeras, as well as “wrong-assembled” contigs. We thus propose

that to avoid false perceptions of sample diversity and false identification and pollution of the pub-

lic databases it is critical to evaluate the quality and completeness of assemblies, by performing a

post-assembly analysis that includes checking for chimeric sequences.

Supporting information
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