organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-(4-Chlorophenylsulfanyl)-1-[(E)-2-(4chlorophenylsulfanyl)-1-phenylethenyl]-3-phenyl-1*H*-pyrazole

P. Ramesh,^a A. Subbiahpandi,^a Ramaiyan Manikannan,^b S. Muthusubramanian^b and M. N. Ponnuswamy^{c*}

^aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, ^bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600.025 India

Correspondence e-mail: mnpsy2004@yahoo.com

Received 13 September 2008; accepted 26 September 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.050; wR factor = 0.142; data-to-parameter ratio = 20.9.

In the title compound, C₂₉H₂₀Cl₂N₂S₂, the pyrazole ring adopts a planar conformation. The chlorophenyl rings are twisted from the pyrazole ring at angles of 52.74 (14) and $29.92 (13)^{\circ}$, respectively. The crystal structure is stabilized by $C-H \cdots N$ and $C-H \cdots \pi$ interactions.

Related literature

For the pharmacological and medicinal properties of the title compound, see: Baraldi et al. (1998); Bruno et al. (1990); Cottineau et al. (2002); Londershausen (1996); Chen & Li (1998); Mishra et al. (1998); Smith et al. (2001). For hybridization, see: Beddoes et al. (1986). For a related structure, see: Jin et al. (2004).

Experimental

Crystal data

CapHapClaNaSa	$V = 2633.16(16) Å^3$
$M_r = 531.49$	Z = 4 (10) T
Monoclinic, $P2_1/c$	Mo Ka radiation
a = 12.3808 (4) Å	$\mu = 0.43 \text{ mm}^{-1}$
b = 21.4667 (7) Å	T = 293 (2) K
c = 10.4281 (4) Å	$0.30 \times 0.20 \times 0.18 \text{ mm}$
$\beta = 108.181 \ (2)^{\circ}$	

Data collection

Bruker Kappa APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\min} = 0.883, T_{\max} = 0.927$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	6 restraints
$wR(F^2) = 0.142$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.58 \text{ e} \text{ Å}^{-3}$
6594 reflections	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$
316 parameters	

31420 measured reflections

 $R_{\rm int} = 0.027$

6594 independent reflections

4292 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C26-C31 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C7-H7\cdots N1$ $C21-H21\cdots Cg^{i}$	0.93 0.93	2.44 2.96	2.772 (3) 3.808 (3)	101 153
Summer at my and as (i) as	1 1			

Symmetry code: (i) $x, \frac{1}{2} - y, \frac{1}{2} + z$.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

PR thanks Dr Babu Varghese, SAIF, IIT Madras, Chennai, India, for his help with the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2789).

References

- Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165-2171.
- Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Il Farmaco, 45, 147-166.
- Chen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572-576.
- Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105–2108.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, 0642-0643.
- Londershausen, M. (1996). Pestic. Sci. 48, 269-274.
- Mishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199.

Sheldrick, G. M. (2001). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A**64**, 112–122.

Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107–119.
 Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

Acta Cryst. (2008). E64, o2054-o2055 [doi:10.1107/S1600536808031231]

$\label{eq:chlorophenylsulfanyl} 4-(4-Chlorophenylsulfanyl)-1-[(E)-2-(4-chlorophenylsulfanyl)-1-phenylethenyl]-3-phenyl-1H-pyrazole$

P. Ramesh, A. Subbiahpandi, R. Manikannan, S. Muthusubramanian and M. N. Ponnuswamy

Comment

Pyrazole derivatives possess significant antiarrhythmic and sedative (Bruno *et al.*, 1990), hypoglycemic (Cottineau *et al.*, 2002), antiviral (Baraldi *et al.*, 1998), and pesticidal (Londershausen *et al.*, 1996) properties. Some pyrazole derivatives are successfully tested for their antifungal (Chen & Li, 1998), antihistaminic (Mishra *et al.*, 1998) and anti-inflammatory (Smith *et al.*, 2001) activities.

An *ORTEP* plot of the molecule is shown in Fig. 1. The pyrazole ring adopts a planar conformation. The sum of the bond angles at N2 of the pyrazole ring (359.34°) is in accordance with sp^2 hybridization (Beddoes *et al.*, 1986). The C—N bond lengths in the pyrazole ring are 1.340 (3) and 1.325 (3) Å, which are shorter than a C—N single bond length of 1.443 Å, but longer than a double bond length of 1.269 Å (Jin *et al.*, 2004), indicating electron delocalization. The chlorophenyl rings are twisted from the pyrazole ring at angles of 52.74 (14)° and 29.92 (13), respectively. The crystal packing shows weak C—H…N (Tab. 1) and C—H… π interactions [C21-H21…cogⁱ(C26,C27,C28,C29,C30,C31); symmetry operator (i) x, 1/2-y, 1/2+z: H…cog 2.956Å, C21…cog 3.808Å, C21-H21…cog 152.9°] in addition to van der Waals forces.

Experimental

To a mixture of 2-[(4-chlorophenyl)sulfanyl]-1-phenyl-1-ethanone N-(E)-2- [(4-chlorophenyl)sulfanyl]-1-phenylethylidenehydrazone (0.003 mole) and 3 ml of dimethyl formamide kept in ice bath at 0° C, phosphorus oxycholride (0.024 mole) was added dropwise for 5–10 minutes. The reaction mixture was then kept in a microwave oven at 600 W for 30–60 sec. The process of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and extracted with dichloromethane. The organic layer was dried in anhydrous sodium sulfate. The different compounds present in the mixture were separated by column chromatography using petroleum ether and ethyl acetate mixture as eluent. This isolated compound was recrystallized in dichloromethane to obtain 4-[(4-chlorophenyl)sulfanyl]-1-(*E*)-2-[(4-chlorophenyl)sulfanyl]-1-phenylethenyl-3-phenyl-1*H*-pyrazole in 86% yield.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$ for all H atoms. The atom S1 was restrained within an effective standard deviation of 0.1 so that their U_{ij} components approximate to isotropic bahavior.

Figures

Fig. 1. Molecular structure of the title compound, showing the atomic numbering and 50% probability displacement ellipsoids.

4-(4-Chlorophenylsulfanyl)-1-[(E)-2-(4-chlorophenylsulfanyl)-1- phenylethenyl]-3-phenyl-1H-pyrazole

Crystal data

$C_{29}H_{20}Cl_2N_2S_2$	$F_{000} = 1096$
$M_r = 531.49$	$D_{\rm x} = 1.341 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4538 reflections
a = 12.3808 (4) Å	$\theta = 1.9 - 28.4^{\circ}$
b = 21.4667 (7) Å	$\mu = 0.43 \text{ mm}^{-1}$
c = 10.4281 (4) Å	T = 293 (2) K
$\beta = 108.181 \ (2)^{\circ}$	Block, colorless
$V = 2633.16 (16) \text{ Å}^3$	$0.30\times0.20\times0.18~mm$
Z = 4	

Data collection

Bruker Kappa APEXII diffractometer	6594 independent reflections
Radiation source: fine-focus sealed tube	4292 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.027$
T = 293(2) K	$\theta_{max} = 28.4^{\circ}$
ω and ϕ scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)	$h = -9 \rightarrow 16$
$T_{\min} = 0.883, T_{\max} = 0.927$	$k = -28 \rightarrow 28$
31420 measured reflections	$l = -13 \rightarrow 13$

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.050$
$wR(F^2) = 0.142$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0499P)^2 + 1.5769P]$ where $P = (F_o^2 + 2F_c^2)/3$

<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
6594 reflections	$\Delta \rho_{max} = 0.58 \text{ e} \text{ Å}^{-3}$
316 parameters	$\Delta \rho_{min} = -0.56 \text{ e } \text{\AA}^{-3}$
6 restraints	Extinction correction: none
Primary atom site location: structure invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	-0.05360 (11)	0.97426 (6)	1.29295 (10)	0.1304 (4)
C12	0.49992 (8)	0.55063 (4)	0.67733 (9)	0.0936 (3)
S1	-0.22821 (6)	0.89305 (5)	0.68804 (10)	0.0988 (3)
S2	0.13985 (5)	0.72882 (3)	0.29751 (6)	0.05543 (17)
N2	-0.03047 (14)	0.82027 (8)	0.48954 (18)	0.0442 (4)
N1	0.06227 (14)	0.85803 (8)	0.52541 (18)	0.0458 (4)
C4	0.08940 (18)	0.77699 (10)	0.4007 (2)	0.0457 (5)
C5	0.13504 (17)	0.83241 (10)	0.4710 (2)	0.0432 (5)
C3	-0.01665 (18)	0.77170 (10)	0.4154 (2)	0.0474 (5)
Н3	-0.0692	0.7402	0.3804	0.057*
C6	-0.12269 (18)	0.83142 (11)	0.5402 (2)	0.0487 (5)
C7	-0.1128 (2)	0.87324 (13)	0.6357 (3)	0.0660 (7)
H7	-0.0430	0.8924	0.6756	0.079*
C8	-0.1672 (2)	0.91670 (13)	0.8564 (3)	0.0708 (7)
С9	-0.0600 (2)	0.90247 (14)	0.9387 (3)	0.0749 (8)
Н9	-0.0108	0.8804	0.9040	0.090*
C10	-0.0243 (3)	0.92044 (15)	1.0718 (4)	0.0844 (9)
H10	0.0490	0.9110	1.1262	0.101*
C11	-0.0963 (3)	0.95220 (14)	1.1244 (3)	0.0815 (9)
C12	-0.2020 (3)	0.96751 (19)	1.0443 (4)	0.1049 (12)
H12	-0.2504	0.9899	1.0797	0.126*
C13	-0.2377 (3)	0.95004 (19)	0.9112 (4)	0.1074 (13)
H13	-0.3104	0.9608	0.8570	0.129*
C14	-0.22593 (18)	0.79358 (11)	0.4766 (2)	0.0521 (5)
C15	-0.3037 (2)	0.81280 (15)	0.3589 (3)	0.0748 (8)
H15	-0.2918	0.8497	0.3186	0.090*

C16	-0.4000 (3)	0.7778 (2)	0.2995 (4)	0.0977 (11)
H16	-0.4524	0.7911	0.2192	0.117*
C17	-0.4182 (3)	0.7247 (2)	0.3572 (4)	0.1013 (13)
H17	-0.4834	0.7014	0.3171	0.122*
C18	-0.3416 (4)	0.7046 (2)	0.4741 (4)	0.1147 (15)
H18	-0.3544	0.6677	0.5137	0.138*
C19	-0.2445 (3)	0.73921 (16)	0.5344 (3)	0.0901 (10)
H19	-0.1919	0.7254	0.6141	0.108*
C20	0.23637 (18)	0.67789 (10)	0.4109 (2)	0.0465 (5)
C21	0.3060 (2)	0.64266 (12)	0.3584 (3)	0.0584 (6)
H21	0.2985	0.6456	0.2670	0.070*
C22	0.3863 (2)	0.60336 (12)	0.4394 (3)	0.0656 (7)
H22	0.4333	0.5801	0.4035	0.079*
C23	0.3961 (2)	0.59894 (11)	0.5732 (3)	0.0615 (6)
C24	0.3265 (2)	0.63248 (13)	0.6277 (3)	0.0653 (7)
H24	0.3333	0.6286	0.7187	0.078*
C25	0.2463 (2)	0.67213 (12)	0.5457 (2)	0.0571 (6)
H25	0.1989	0.6950	0.5817	0.069*
C26	0.24546 (18)	0.86348 (11)	0.4912 (2)	0.0471 (5)
C27	0.34364 (19)	0.83066 (12)	0.5004 (2)	0.0544 (6)
H27	0.3402	0.7878	0.4864	0.065*
C28	0.4473 (2)	0.86127 (14)	0.5304 (3)	0.0653 (7)
H28	0.5130	0.8389	0.5364	0.078*
C29	0.4531 (2)	0.92423 (15)	0.5512 (3)	0.0738 (8)
H29	0.5228	0.9445	0.5725	0.089*
C30	0.3564 (2)	0.95734 (14)	0.5405 (3)	0.0780 (8)
H30	0.3604	1.0003	0.5534	0.094*
C31	0.2524 (2)	0.92733 (12)	0.5107 (3)	0.0637 (7)
H31	0.1870	0.9502	0.5039	0.076*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C11	0.1506 (10)	0.1492 (10)	0.0782 (6)	0.0227 (8)	0.0167 (6)	-0.0108 (6)
C12	0.0875 (6)	0.0736 (5)	0.1054 (6)	0.0208 (4)	0.0094 (5)	0.0060 (4)
S1	0.0426 (4)	0.1458 (8)	0.1049 (6)	0.0127 (4)	0.0184 (4)	-0.0526 (6)
S2	0.0496 (3)	0.0730 (4)	0.0426 (3)	0.0013 (3)	0.0128 (2)	-0.0085 (3)
N2	0.0340 (9)	0.0478 (10)	0.0491 (10)	-0.0018 (7)	0.0103 (7)	0.0014 (8)
N1	0.0401 (9)	0.0447 (9)	0.0511 (10)	-0.0051 (7)	0.0119 (8)	0.0017 (8)
C4	0.0388 (11)	0.0537 (12)	0.0425 (11)	-0.0019 (9)	0.0097 (9)	-0.0018 (9)
C5	0.0382 (11)	0.0498 (12)	0.0404 (10)	-0.0024 (9)	0.0103 (8)	0.0055 (9)
C3	0.0373 (11)	0.0513 (12)	0.0504 (12)	-0.0036 (9)	0.0089 (9)	-0.0035 (10)
C6	0.0351 (11)	0.0543 (13)	0.0546 (13)	0.0051 (9)	0.0109 (9)	0.0013 (10)
C7	0.0375 (12)	0.0774 (17)	0.0822 (18)	0.0019 (11)	0.0173 (12)	-0.0179 (15)
C8	0.0533 (15)	0.0706 (17)	0.089 (2)	0.0111 (13)	0.0222 (14)	-0.0161 (15)
C9	0.0548 (16)	0.0710 (18)	0.099 (2)	0.0148 (13)	0.0241 (15)	-0.0101 (16)
C10	0.0685 (19)	0.084 (2)	0.092 (2)	0.0161 (16)	0.0113 (16)	0.0015 (18)
C11	0.091 (2)	0.0686 (18)	0.080 (2)	0.0153 (16)	0.0203 (17)	-0.0020 (15)

C12	0.103 (3)	0.118 (3)	0.092 (2)	0.049 (2)	0.028 (2)	-0.021 (2)
C13	0.074 (2)	0.142 (3)	0.098 (3)	0.051 (2)	0.0150 (18)	-0.031 (2)
C14	0.0384 (11)	0.0631 (14)	0.0565 (13)	-0.0014 (10)	0.0175 (10)	-0.0032 (11)
C15	0.0466 (14)	0.087 (2)	0.0811 (19)	-0.0006 (13)	0.0055 (13)	0.0086 (16)
C16	0.0480 (16)	0.140 (3)	0.090 (2)	-0.0098 (19)	-0.0007 (15)	-0.009 (2)
C17	0.072 (2)	0.147 (4)	0.092 (3)	-0.055 (2)	0.0362 (19)	-0.042 (2)
C18	0.135 (4)	0.118 (3)	0.096 (3)	-0.071 (3)	0.043 (3)	-0.011 (2)
C19	0.099 (2)	0.091 (2)	0.0697 (19)	-0.0358 (19)	0.0118 (17)	0.0075 (17)
C20	0.0432 (11)	0.0498 (12)	0.0489 (12)	-0.0083 (9)	0.0177 (9)	-0.0106 (10)
C21	0.0645 (15)	0.0629 (15)	0.0545 (14)	-0.0016 (12)	0.0283 (12)	-0.0093 (12)
C22	0.0661 (16)	0.0593 (15)	0.0797 (18)	0.0048 (13)	0.0347 (14)	-0.0102 (13)
C23	0.0583 (15)	0.0484 (13)	0.0731 (17)	-0.0009 (11)	0.0136 (13)	-0.0042 (12)
C24	0.0750 (18)	0.0684 (16)	0.0510 (14)	0.0034 (14)	0.0175 (12)	-0.0034 (12)
C25	0.0569 (14)	0.0674 (15)	0.0510 (13)	0.0055 (12)	0.0227 (11)	-0.0067 (11)
C26	0.0421 (11)	0.0585 (13)	0.0391 (11)	-0.0097 (10)	0.0103 (9)	0.0051 (9)
C27	0.0453 (12)	0.0629 (14)	0.0555 (13)	-0.0062 (11)	0.0164 (10)	-0.0006 (11)
C28	0.0421 (13)	0.0853 (19)	0.0682 (16)	-0.0075 (12)	0.0167 (11)	0.0051 (14)
C29	0.0478 (15)	0.085 (2)	0.0841 (19)	-0.0233 (14)	0.0140 (13)	0.0101 (16)
C30	0.0644 (18)	0.0612 (16)	0.102 (2)	-0.0207 (14)	0.0169 (16)	0.0073 (15)
C31	0.0503 (14)	0.0570 (15)	0.0802 (18)	-0.0086 (11)	0.0150 (12)	0.0087 (13)

Geometric parameters (Å, °)

Cl1—C11	1.735 (3)	C15—H15	0.9300
Cl2—C23	1.742 (3)	C16—C17	1.340 (5)
S1—C7	1.734 (3)	C16—H16	0.9300
S1—C8	1.756 (3)	C17—C18	1.360 (6)
S2—C4	1.742 (2)	C17—H17	0.9300
S2—C20	1.772 (2)	C18—C19	1.386 (5)
N2—C3	1.340 (3)	C18—H18	0.9300
N2—N1	1.359 (2)	С19—Н19	0.9300
N2—C6	1.420 (3)	C20—C25	1.378 (3)
N1—C5	1.325 (3)	C20—C21	1.382 (3)
C4—C3	1.373 (3)	C21—C22	1.375 (4)
C4—C5	1.419 (3)	C21—H21	0.9300
C5—C26	1.476 (3)	C22—C23	1.366 (4)
С3—Н3	0.9300	С22—Н22	0.9300
C6—C7	1.318 (3)	C23—C24	1.374 (4)
C6—C14	1.485 (3)	C24—C25	1.383 (4)
С7—Н7	0.9300	C24—H24	0.9300
C8—C9	1.371 (4)	С25—Н25	0.9300
C8—C13	1.383 (4)	C26—C27	1.382 (3)
C9—C10	1.374 (4)	C26—C31	1.384 (3)
С9—Н9	0.9300	C27—C28	1.388 (3)
C10-C11	1.366 (4)	С27—Н27	0.9300
С10—Н10	0.9300	C28—C29	1.367 (4)
C11—C12	1.355 (5)	C28—H28	0.9300
C12—C13	1.371 (5)	C29—C30	1.367 (4)
C12—H12	0.9300	С29—Н29	0.9300

C13—H13	0.9300	C30—C31	1.386 (3)
C14—C19	1.365 (4)	С30—Н30	0.9300
C14—C15	1.366 (4)	C31—H31	0.9300
C15—C16	1.382 (4)		
C7—S1—C8	104.26 (13)	C15—C16—H16	119.9
C4—S2—C20	104.53 (10)	C16—C17—C18	120.2 (3)
C3—N2—N1	111.96 (17)	С16—С17—Н17	119.9
C3—N2—C6	127.43 (18)	С18—С17—Н17	119.9
N1—N2—C6	120.35 (17)	C17—C18—C19	120.0 (4)
C5—N1—N2	105.27 (17)	С17—С18—Н18	120.0
C3—C4—C5	104.59 (19)	C19—C18—H18	120.0
C3—C4—S2	124.02 (17)	C14—C19—C18	120.0 (3)
C5—C4—S2	130.90 (16)	С14—С19—Н19	120.0
N1—C5—C4	110.79 (18)	C18—C19—H19	120.0
N1	118.32 (19)	C25—C20—C21	119.2 (2)
C4—C5—C26	130.9 (2)	C25—C20—S2	124.29 (17)
N2—C3—C4	107.39 (19)	C21—C20—S2	116.56 (18)
N2—C3—H3	126.3	C22—C21—C20	120.9 (2)
С4—С3—Н3	126.3	C22—C21—H21	119.6
C7—C6—N2	120.0 (2)	C20—C21—H21	119.6
C7—C6—C14	125.0 (2)	C23—C22—C21	119.2 (2)
N2—C6—C14	114.93 (19)	С23—С22—Н22	120.4
C6—C7—S1	120.9 (2)	C21—C22—H22	120.4
С6—С7—Н7	119.5	C22—C23—C24	121.3 (2)
S1—C7—H7	119.5	C22—C23—Cl2	119.4 (2)
C9—C8—C13	117.9 (3)	C24—C23—Cl2	119.3 (2)
C9—C8—S1	126.3 (2)	C23—C24—C25	119.2 (2)
C13—C8—S1	115.7 (2)	C23—C24—H24	120.4
C8—C9—C10	120.9 (3)	C25—C24—H24	120.4
С8—С9—Н9	119.6	C20—C25—C24	120.3 (2)
С10—С9—Н9	119.6	C20—C25—H25	119.8
C11—C10—C9	120.1 (3)	С24—С25—Н25	119.8
C11—C10—H10	120.0	C27—C26—C31	118.8 (2)
C9—C10—H10	120.0	C27—C26—C5	122.3 (2)
C12-C11-C10	119.9 (3)	C31—C26—C5	118.7 (2)
C12—C11—Cl1	119.3 (3)	C26—C27—C28	120.4 (2)
C10—C11—Cl1	120.8 (3)	С26—С27—Н27	119.8
C11—C12—C13	120.1 (3)	С28—С27—Н27	119.8
C11—C12—H12	119.9	C29—C28—C27	120.2 (3)
C13—C12—H12	119.9	C29—C28—H28	119.9
C12—C13—C8	121.0 (3)	C27—C28—H28	119.9
C12—C13—H13	119.5	C30—C29—C28	120.0 (2)
C8—C13—H13	119.5	С30—С29—Н29	120.0
C19—C14—C15	119.1 (3)	C28—C29—H29	120.0
C19—C14—C6	120.7 (2)	C29—C30—C31	120.4 (3)
C15—C14—C6	120.2 (2)	С29—С30—Н30	119.8
C14—C15—C16	120.4 (3)	С31—С30—Н30	119.8
C14—C15—H15	119.8	C26—C31—C30	120.2 (3)
C16—C15—H15	119.8	C26—C31—H31	119.9

C17—C16—C15	120.2 (3)	C30-C31-H31	119.9
С17—С16—Н16	119.9		
C3—N2—N1—C5	0.5 (2)	C7—C6—C14—C15	94.6 (3)
C6—N2—N1—C5	175.07 (18)	N2-C6-C14-C15	-84.7 (3)
C20—S2—C4—C3	-104.7 (2)	C19—C14—C15—C16	0.2 (5)
C20—S2—C4—C5	84.6 (2)	C6-C14-C15-C16	-179.9 (3)
N2-N1-C5-C4	-0.8 (2)	C14—C15—C16—C17	0.3 (5)
N2—N1—C5—C26	179.40 (17)	C15—C16—C17—C18	-0.5 (6)
C3—C4—C5—N1	0.8 (2)	C16—C17—C18—C19	0.1 (7)
S2-C4-C5-N1	172.85 (17)	C15—C14—C19—C18	-0.5 (5)
C3—C4—C5—C26	-179.5 (2)	C6-C14-C19-C18	179.6 (3)
S2—C4—C5—C26	-7.4 (4)	C17—C18—C19—C14	0.3 (6)
N1—N2—C3—C4	-0.1 (2)	C4—S2—C20—C25	11.8 (2)
C6—N2—C3—C4	-174.1 (2)	C4—S2—C20—C21	-167.52 (18)
C5—C4—C3—N2	-0.4 (2)	C25—C20—C21—C22	-1.6 (4)
S2—C4—C3—N2	-173.19 (16)	S2-C20-C21-C22	177.8 (2)
C3—N2—C6—C7	164.7 (2)	C20—C21—C22—C23	0.6 (4)
N1—N2—C6—C7	-8.9 (3)	C21—C22—C23—C24	0.7 (4)
C3—N2—C6—C14	-15.9 (3)	C21—C22—C23—Cl2	-178.5 (2)
N1-N2-C6-C14	170.50 (18)	C22—C23—C24—C25	-1.0 (4)
N2-C6-C7-S1	173.84 (18)	Cl2—C23—C24—C25	178.2 (2)
C14—C6—C7—S1	-5.5 (4)	C21—C20—C25—C24	1.2 (4)
C8—S1—C7—C6	152.2 (2)	S2-C20-C25-C24	-178.1 (2)
C7—S1—C8—C9	-19.9 (3)	C23—C24—C25—C20	0.0 (4)
C7—S1—C8—C13	163.8 (3)	N1-C5-C26-C27	147.7 (2)
C13—C8—C9—C10	0.5 (5)	C4—C5—C26—C27	-32.0 (3)
S1—C8—C9—C10	-175.8 (3)	N1-C5-C26-C31	-27.8 (3)
C8—C9—C10—C11	0.9 (5)	C4—C5—C26—C31	152.5 (2)
C9—C10—C11—C12	-1.8 (6)	C31—C26—C27—C28	0.8 (3)
C9—C10—C11—Cl1	179.0 (3)	C5-C26-C27-C28	-174.7 (2)
C10-C11-C12-C13	1.4 (6)	C26—C27—C28—C29	0.0 (4)
Cl1—C11—C12—C13	-179.4 (3)	C27—C28—C29—C30	-0.9 (4)
C11—C12—C13—C8	0.0 (7)	C28—C29—C30—C31	1.0 (5)
C9—C8—C13—C12	-1.0 (6)	C27—C26—C31—C30	-0.7 (4)
S1—C8—C13—C12	175.7 (4)	C5—C26—C31—C30	174.9 (2)
C7—C6—C14—C19	-85.5 (4)	C29—C30—C31—C26	-0.1 (5)
N2-C6-C14-C19	95.2 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
C7—H7…N1	0.93	2.44	2.772 (3)	101

