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Abstract: The miniaturization of ion trap mass analyzers is an important direction in the development
of mass spectrometers. In this work, we proposed two models of miniaturized HreLIT with a field
radius of about 2 mm based on the existing research on conventional HreLIT and other ion traps,
one with ions ejection slits on one pair of electrodes only (2-slit model) and the other with the same
slits on all electrodes (4-slit model). The relationship of mass resolution with r/rx and the “stretch”
distance of electrodes in the ejection direction is investigated by theoretical simulations. Trends of
electric fields inside the ion traps were discussed as well. The comparable maximum resolution is
observed at r/rx = 2/1.4 in both models, but stretching simulations revealed that the peak resolution
of the 2-slit model was higher than that of the other model by about 8%. The highest value of 517 was
obtained when stretching 1.1 mm. Furthermore, the resolution of ions with m/z = 119 could exceed
1000 when the scan rate was reduced to 800 Th/s. The mass spectrometry capability of miniature
HreLIT has been confirmed theoretically, and it laid the foundation for the subsequent fabrication
with MEMS technology.

Keywords: linear ion trap; theoretical simulation; mass resolution; round rod electrodes; MEMS

1. Introduction

Mass spectrometry (MS) is an essential analytical technique for measuring the m/z of
ions. Recent developments in mars and lunar exploration [1,2] and public health emergen-
cies [3] have heightened the need for portable mass spectrometers capable of rapid on-site
detecting, and the miniaturization of mass analyzers is the key to reducing the size of MS
devices. Ion traps consist of simple structures, possessing the capability to multi-stage
tandem mass analysis with only one single device, and are superior in miniaturization
compared with other mass analyzers. In addition, the low requirements for the supporting
experimental conditions are of benefit to satisfying the needs of diverse real-time analysis.

The three-dimensional (3D) ion trap reported by Paul [4] and the two-dimensional
linear ion trap (LIT) proposed by Schwartz [5] laid the foundation for modern research of
ion trap mass analyzers. The latter provided higher ion capacity and trapping efficiency.
Both ion traps were built with hyperbolic-shaped electrodes that require extremely high
machining and assembly accuracy, and the performance is sensitive to machining errors.
Therefore, a growing number of ion traps with simplified electrodes based on the two
models were reported to reduce the difficulties of preparation with acceptable performance
loss. For example, a cylindrical ion trap [6,7] (CIT) was proposed to simplify the electrodes
of a 3D ion trap; a rectilinear ion trap [8] (RIT) with planar-shaped electrodes combined
some advantages of LIT and CIT; a triangular-electrode linear ion trap [9] (TeLIT) was built
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by modifying RIT, etc. Offering a resolution higher than 4000, the LIT-based half-round
rod electrodes linear ion trap (HreLIT) reported by Li et al. [10] is conducive to fabricating
compact analyzers. Various novel ion traps with electrodes that are easy to prepare could
have significant applications for miniaturization.

The common ion traps with simplified electrodes were reported with field radii
ranging from 4 mm to 6 mm and have been applied in benchtop or over-the-shoulder mass
spectrometers. Despite the certain size reduction, there has been an increasing interest
in high-performance palm portable mass spectrometers with miniature mass analyzers
because of nowadays timely detection requirements under complicated conditions. For
example, a palm portable mass spectrometer (PPMS) reported by Sam Yang Chemical
Company [11] has a size of 82 × 77 × 245 mm; the MX908 developed by 908 Devices [12]
is a little bigger but just 298 × 216 × 122 mm in size, both instruments are capable of
detecting environmental components with single-handed operation. In order to miniaturize
ion traps, micro electro mechanical system (MEMS) technology, which could break the
bottleneck of conventional processing methods, has been exerting a tremendous fascination
on researchers. In this case, a Halo ion trap [13] with a field radius of only 0.5 mm was
fabricated with MEMS technology, but the low resolution was confirmed; Yu et al. [14]
reported an RIT with a field radius of 1.5 mm, being built by stereo lithography apparatus
(SLA) and offering a slightly higher resolution of 100; Huang and co-worker [15] optimized
a MEMS-based RIT by working on the relationships of ion trapping efficiency with length–
width ratio and radio frequency (RF) voltage; Szyszka et al. [16] combined the MEMS with
3D printing technology successfully to fabricate a miniature quadrupole mass analyzer,
but this structure has lower resolution and ion capacity compared with ion traps. The
miniature RIT array proposed in our laboratory [17] was prepared by MEMS technology,
and the resolution could exceed 700. However, there remains much room for improvement
compared with ion traps in conventional size. Definitely, MEMS technology plays a
prominent role in the miniaturization of mass analyzers, and there exists an obvious conflict
between mini size and high performance. The exploration of more balanced miniature ion
traps with different structures is indispensable.

LIT, CIT, and RIT are widely applied in miniaturized ion traps. Although CIT facilitates
miniaturization, the physical limits of 3D ion traps determine the low resolution and
charge capacity. For LIT and RIT, on the one hand, the closer the shape of electrodes is
to the hyperboloid, the more ideal the quadrupole field will be. On the other hand, the
mass resolution could be improved significantly by optimizing the geometric parameters
in a fixed shape of electrodes [5,18]. The excessive high-order fields introduced by the
oversimplified planar-shaped electrodes of the RIT are more pronounced at micro size,
and in consequence, the resolution would be limited to an unremarkable range even with
sufficient optimization [17]. Meanwhile, the promising HreLIT with a field radius of about
5 mm provides excellent MS capability, and the performance could be further improved
after optimization [19,20]. Its performance at micro size is worth investigating accordingly.

In the present work, the miniature HreLIT with a field radius of about 2 mm was
modeled and optimized, referring to the methods applied by conventional ion traps. How
the slits on electrodes, field radius, and “stretch” distance of electrodes in ejection direction
affect, MS capability was investigated by computer simulations. The objective was to
explore the feasibility of miniaturizing HreLIT and lay the foundation for future fabrication
based on the non-silicon MEMS technology in our laboratory.

2. Simulation Methods
2.1. Calculation of Electric Fields

The motion of ions in HreLIT would be determined directly by the internal electric
fields. Its two-dimensional electric potential ϕ(x, y) satisfies the Laplace equation:

∇2 ϕ(x, y) = 0, (1)
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and there is no analytical solution, and ϕ(x, y) could be described by the real part of the
accumulation of fields [18]:

ϕ(x, y)= VRFRe
[
∑∞

n=0 An

(
x + iy

r0

)n]
, n ∈ N, (2)

where r0 is the field radius, VRF means the amplitude of RF voltage, An represents the
amplitude of 2n-order fields, and i is the imaginary unit.

SIMION (Adaptas Scientific Instrument Services (Adaptas SIS), Palmer, MA, USA)
could solve the approximate potential at each lattice point inside the model by the finite
difference method (FDM) and generate potential array (PA) files. Then the fast Fourier
transform (FFT) in PAN33 [21] provides an efficient approach to calculating the high-order
fields according to it.

2.2. Modeling and Simulation

Optimizing the fields remains a key process in the design of ion traps since appropriate
high-order fields could be mutually compensated [18] and improve the MS capability. For
this purpose, adjusting the ratio of electrode size to field radius (r/r0) and “stretching” elec-
trodes in the ejection direction were reported to be effective. Douglas and co-workers [18]
indicated that the r/r0 of LIT with round rod electrodes significantly affected the perfor-
mance. Schwartz and co-workers [5] “stretched” the electrodes in the ejection direction by
0.75 mm away from the geometric center to compensate for the fields, and this approach
was referred to in our research.

Therefore, with a fixed electrode radius, the effect of varying the field radius and
“stretching” the electrodes in the ejection direction on the resolution was investigated by
calculating fields and simulating the motion of ions. In view of the harmful high-order
fields introduced by slits on electrodes [10,22], two HreLIT models have been developed
for discussion according to the TeLIT with four slits [9], one with ions ejection slits on one
pair of electrodes only (2-slit model, Figure 1a) and the other with the same slits on all
electrodes (4-slit model, Figure 1b). The width of slits (d) was 300 µm. The radius of all
electrodes represented by r remained 2 mm. The shortest distance from electrodes to the
geometric center (field radius) was rx, and that from the electrodes in the ejection direction
was ry.
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Figure 1. Cross-section of miniature HreLIT. (a) 2-slit model; (b) 4-slit model.

Describing the models with Geometry Files, the potential inside ion traps was solved
by SIMION 8.1, and the following PA files were generated. Based on this, the fields and
motion of ions have been calculated with PAN33 and AXSIM (PAN33 version 3.3.5 and
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AXSIM version 5.9.0 were developed by Shimadzu Research Laboratory (Europe) Ltd,
Manchester, United Kingdom.), respectively.

When simulated with a hard sphere collision model, ions (m/z = 117, 119, and 121,
each with the number of 100) with no initial velocity were placed close to the geometric
center randomly. The helium (300 K, 0.13 Pa) was used as a buffer gas. The AC signal was
applied to electrodes in the y direction, and the RF signal, which confined ions and altered
their vibrational frequency, was applied between the electrodes in the x and y directions.
The frequency of AC was one-third of that of RF, and the scan rate was 2250 Th/s. As the
amplitude of the RF signal increased, consequently, ions were excited and ejected from the
slits in sequence because of matched frequencies of vibration and the AC signal. AXSIM
analyzed this process and recorded the time and positions of ejected ions. These data were
read by IC5Filter, and mass spectrums, which were used to estimate MS capability, were
output immediately. In this way, the optimal resolution corresponding to r/rx was found by
continuously changing rx. Then the “stretch” simulations of ry at this r/rx were performed
likewise, and finally, the relationships between mass resolution and the parameters above
were obtained.

3. Results and Discussion
3.1. The Impact of r/rx

The “stretch” distance ∆ry kept 0.75 mm (ry = rx + 0.75) and rx was extracted at intervals
of 0.1 mm within 1.0~2.0 mm. The mass resolution trends are shown in Figure 2a according
to AXSIM calculating the motion of ions at a scan rate of 2250 Th/s. A comparison of
the mass spectrum at r/rx = 2/1, 2/1.4, and 2/2 (Figure 3) showed the low resolution and
intensity when the rx was extracted at the interval endpoints. Even a significant distortion
could be observed in the 4-slit model. For both cases, the comparable maximum resolution
with high intensity, 438 and 459, respectively, were measured at r/rx = 2/1.4.

Figure 4 shows the proportions of high-order fields. The A4/A2 and A6/A2 of both
models changed remarkably with increasing rx. Different from the V-shape trend, the
higher-order fields provided smooth curves at lower levels. Obviously, there existed more
high-order fields in the 4-slit model since the extra slits led to more severe distortions.
Within 1.0~1.4 mm, the resolution increased due to the rapid decrease in A4/A2 and A6/A2,
but neither model showed the best resolution when A4/A2 and A6/A2 tended to 0. It
probably owed to the non-negligible higher-order fields (such as A8/A2 and A10/A2),
which became the dominant factor affecting the MS capability at this rx.
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3.2. The Impact of “Stretch” Distance

The “stretch” simulations of the y electrodes were performed with rx being fixed
at 1.4 mm according to the previous results. To avoid serious distortions in the mass
spectrum, the “stretch” distance ∆ry is extracted at intervals of 0.1 mm within 0.3~1.7 mm
(the correspondences between ∆ry and ry are shown in Table 1). AXSIM calculated the
motion of ions at 2250 Th/s, and resolution trends were graphed, as shown in Figure 2b.
Both models showed an overall trend of increasing, stabilizing, and decreasing with the
increase in ∆ry. For the 2-slit model, the resolution exceeded 400 when ∆ry was between
0.7 mm and 1.4 mm, with the highest value of 517 observed at ∆ry = 1.1 mm. Differently,
the peak resolution of the 4-slit model was obtained at ∆ry = 1.3 mm, which corresponded
to the value of 478, but a mass resolution higher than 400 could be measured in a larger
range (0.6~1.6 mm) of ∆ry.

Table 1. The partial correspondences between ∆ry and radius.

Radius (mm)
∆ry (mm)

0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7

rx 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
ry 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1

It should be noted that the 2-slit model at ∆ry = 1.7 mm did not perform better than
at ∆ry = 1.6 mm, as shown in Figure 2, because the mass spectrum manifested a severe
distortion at ∆ry = 1.7 mm, a phenomenon that did not occur at ∆ry = 1.6 mm (Figure 5).
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The proportions of high-order fields are shown in Figure 6. In the 2-slit model, the
A4/A2 and A6/A2 dominating MS capability kept at a high level and changed apparently
during the electrodes “stretching” process. The A8/A2 and higher-order fields were rel-
atively low and varied slowly, so their impact on resolution, in contrast, was negligible.
When ∆ry ranged within 0.9~1.3 mm, where A4/A2 decreased rapidly with A6/A2 in-
creasing slightly, the 2-slit model offered almost the same high resolution. It is probably
because the A4/A2 and A6/A2 provided commendable compensation for high-order fields
in this case, with 1.2% A4/A2 and 0.74% A6/A2 corresponding to the peak resolution of
517. As for the 4-slit model, the fields higher than A6/A2 remained steady as well. The
high resolution could be observed with ∆ry ranging from 0.7 mm to 1.5 mm, a longer closed
interval than in the 2-slit model. The appropriate A4/A2 and A6/A2 could likewise explain
these similar trends in Figure 2b.
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more harmful fields were introduced in the model with four slits on electrodes. For exam-
ple, its peak of A4/A2 was 0.9% higher than that in the 2-slit model and reached 2.24%; 
A10/A2, A12/A2, and A14/A2 increased significantly, even doubling or tripling. More unex-
pected high-order fields led to a slightly lower peak resolution of 478 for the 4-slit model 
than 517 for the 2-slit model in “stretch” simulations. 

Figure 6. Variation of the high-order fields with ∆ry at rx = 1.4 mm. (a) 2-slit model; (b) 4-slit model.
More slits on electrodes introduced higher-order fields and increased the overall contents.

Comparing the proportion curves of high-order fields in detail, it could be found
that more harmful fields were introduced in the model with four slits on electrodes. For
example, its peak of A4/A2 was 0.9% higher than that in the 2-slit model and reached
2.24%; A10/A2, A12/A2, and A14/A2 increased significantly, even doubling or tripling.
More unexpected high-order fields led to a slightly lower peak resolution of 478 for the
4-slit model than 517 for the 2-slit model in “stretch” simulations.

3.3. Further Investigation of MS Capability

The scan rate [23] plays an important role in MS capability, and its impact should
be paid attention to. In practice, researchers would change the scan rate to obtain high
resolution or intensity according to requirements. A high scan rate provides higher intensity
sacrificing mass resolution, while a lower scan rate is the opposite. However, analyzing
with an extremely low scan rate would lead to unacceptable intensity and serious distortion
in the mass spectrum instead of a remarkable resolution. All the previous simulations
were performed at the scan rate of 2250 Th/s. Based on the 2-slit model with the best
performance in the simulations above (rx = 1.4 mm, ry = 2.5 mm), we investigated the MS
capability at a lower scan rate while other parameters were kept unchanged. As shown in
Figure 7, at 1250 Th/s and 800 Th/s, the full width at half maximum (FWHM) decreased to
0.17 and 0.12, respectively, and the corresponding mass resolutions were 670 and 1017.

In a similar size, the previously proposed miniature four-channel RIT [17] (rx = 1.4 mm,
ry = 1.61 mm of a single channel) in our laboratory optimized the proportions of high-order
fields and improved the analysis performance compared with the single-channel one, but
at the cost of almost quadrupled volume and higher amplitude or frequency of the RF
signal. The mass resolution of miniature HreLIT in this work with a tiny size between the
single-channel and four-channel RIT was the most outstanding in these three ion traps. The
merits of cambered electrodes were proved again compared with planar-shaped electrodes
in the miniaturization of ion traps.
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and 1017.

4. Conclusions

In order to verify the feasibility of developing miniature HreLIT, two models with two
slits and four slits on electrodes, respectively, were proposed and investigated by theoretical
simulations. The results indicated that at 2250 Th/s, both models performed comparably
and excellently when r/rx = 2/1.4. Furthermore, the “stretch” simulations on this basis
manifested that the 2-slit model possessed about 8% higher peak resolution, but the 4-slit
model performed well in 0.6~1.6 mm of ∆ry, a wider range compared with 0.7~1.4 mm. The
highest resolution of 517 was obtained by the 2-slit model with ∆ry = 1.1 mm (ry = 2.5 mm).
This value could be significantly improved with a reduction in scan rate at the acceptable
cost of intensity. Consequently, the resolution of 1017, 44% higher than that of the previous
miniature four-channel RIT, was observed at a scan rate of 800 Th/s. In future research,
MEMS technology will be applied to fabricate the miniature HreLIT, and its MS capability
will be characterized experimentally.
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