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Abstract
Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) is an oncogenic human
herpesvirus. KSHV is associated with three cancers in the human population:
KS, primary effusion lymphoma (PEL), and multicentric Castleman’s disease
(MCD). KS is the leading cause of cancer in HIV-infected individuals. In this
review, we discuss the most recent discoveries behind the mechanisms of
KSHV latency maintenance and lytic replication. We also review current
therapies for KSHV-associated cancers.
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Introduction
Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV), also 
known as human herpesvirus 8 (HHV-8), is a linear double-stranded 
DNA virus and a member of the gammaherpesvirus subfamily. 
The virus was first isolated by Chang et al. in KS biopsy samples 
from AIDS patients1. Subsequent studies further identified KSHV 
as the etiologic agent of primary effusion lymphoma (PEL)2 and 
the B-cell hyperplasia known as multicentric Castleman’s disease 
(MCD)3. KSHV is also linked to two under-studied inflammatory 
syndromes. One KSHV inflammatory disease recognized, immune 
reconstitution inflammatory syndrome-KS (IRIS-KS), is the para-
doxical rapid development of KS after the start of highly active 
antiretroviral therapy (HAART) for HIV and during the rebound 
of CD4+ T-cells4,5. Uldrick et al. discovered another inflammatory 
disease, termed KSHV inflammatory cytokine syndrome (KICS), in 
patients infected with both HIV and KSHV with high levels of viral 
interleukin-6 (vIL-6), human IL-6 (hIL-6), and KSHV viral loads6. 
Subsequent to this initial report, KICS has also been found to affect 
non-HIV-infected KSHV-positive individuals7.

KSHV, like other herpesviruses, has a latent and lytic phase to 
its lifecycle8,9. Following primary infection, both latent and lytic 
genes are expressed, but after several rounds of replication, lytic 
gene expression decreases and latency is established. Latency is 
the default program of the virus10. During latency establishment, 
the linear KSHV genome circularizes to become an episome. 
This latent form of KSHV expresses only a few proteins, includ-
ing latency-associated nuclear antigen (LANA), viral FADD-like 
interleukin-1-β-converting enzyme (FLICE/caspase 8)-inhibitory 
protein (vFLIP), vCyclin, and multiple microRNAs8,11. Additional 
genes that are expressed at low levels during latency include K1, 
vIL-612, and K1513. The expression of LANA is sufficient and 
necessary to establish latency, as it plays a pivotal role in episome 
maintenance and latent replication. Two LANA proteins form a 
dimer and the N-termini bind to the host chromosomes while the 
C-termini interact with LANA-binding sites (LBSs) in the KSHV 
episome14. Recently, three labs have crystalized the C-terminus of 
LANA and found that the LANA dimers oligomerize, forming a 
higher order of organization that facilitates the binding of DNA15–18. 
It was also discovered that LANA contains positively charged 
patches opposite to the DNA-binding face. Mutations of these resi-
dues did not alter LANA’s DNA binding capabilities but diminished 
the interaction with cellular chromatin bromodomain (BRD) pro-
teins, which play a role in latent replication and maintenance16,17,19.

Lytic replication is divided into three phases of gene expression: 
immediate early (IE), delayed early (DE), and late8,20. As the tran-
scription of IE genes does not require prior viral protein synthesis, 
IE genes are experimentally defined by their transcription in the 
presence of inhibitors of protein synthesis such as cycloheximide. 
DE gene expression can be inhibited by cycloheximide because 
they require proteins encoded by IE genes to transactivate their 
promoters but are also not dependent on DNA replication. Late 
genes are expressed subsequent to the start of viral DNA replication 
and encode for structural proteins required for assembling new 
virions as well as envelope glycoproteins. Viral replication inhibi-
tors (e.g. the viral polymerase inhibitor ganciclovir) can prevent the 
production of infectious progeny virions.

Latent KSHV can be induced into lytic replication with the 
addition of chemicals such as 12-O-tetradecanoylphorbol-13- 
acetate (TPA), valproic acid (VPA), and sodium butyrate. These 
chemicals activate the expression of the IE gene replication and 
transcription activator (RTA), encoded by ORF50, which is the 
key regulator of KSHV lytic replication as its ectopic expression 
is sufficient to start the lytic cascade8. However, it has recently 
been proposed that KSHV can be reactivated and enter lytic repli-
cation in a RTA-independent manner21,22. In this pathway, KSHV 
reactivation is induced by cellular apoptosis and is dependent on 
the activation of caspase 3. It is interesting to note that the viri-
ons produced though this RTA-independent lytic pathway appear 
to be less infectious than virions produced through RTA-dependent 
lytic replication21. This observation needs to be furthered expanded 
upon in the future.

KSHV is a pathogenic virus whose mechanism of disease is not 
fully understood. It is clear that both the latent and lytic phases 
of the KSHV lifecycle play a role in virus-related disease and a 
better understanding of these phases can help guide the develop-
ment of treatments. This review covers recent advances in under-
standing the latent/lytic switch and discusses current and potential 
future therapeutic treatments for KSHV-related malignancies.

Maintenance of KSHV latency
How latent KSHV reactivates and efficiently makes new progeny 
virus is a complex process that requires not only viral but also 
cellular proteins. To maintain latency, it is important that latent 
genes are expressed while lytic gene transcription is repressed23. 
The KSHV episome is packaged in chromatin and several labs have 
shown that in actively transcribed latency regions, the chromatin is 
in an open configuration, lacks nucleosomes, and exhibits active 
histone marks while lytic genes are packaged in closed chromatin 
(Figure 1)24–30. Recently, LANA has been found to bind to both viral 
and cellular transcriptional start sites that contain histones with the 
active H3K4me3 mark, allowing the packaged DNA to be more 
accessible and actively transcribed31. Interestingly, LANA was also 
found to interact with the H3K4 methyltransferase hSET1, indicat-
ing LANA’s potential to play an active role in altering epigenetic 
changes31. Indeed, histone modifiers play an important role in the 
maintenance of latency31. Class I and class II histone deacetylases 
(HDACs) have been shown to repress TPA-induced reactivation 
through epigenetic changes32. Li et al. examined the effect of class 
III HDACs, known as sirtuins (SIRTs), and found that they also 
repress reactivation through epigenetic changes33. SIRT1 is able 
to inhibit lytic replication through its ability to bind to RTA and 
inhibit its transactivation activity33. In fact, inhibition of SIRT1 was 
sufficient to induce lytic replication33. Dillon et al. reported that 
the knockdown of another family of histone-modifying enzymes, 
the tousled-like kinases (TLKs), resulted in loss of latency and 
reactivation of the virus34. This was due to a decrease in inhibitory  
phospho-histone H3 associated with the RTA promoter.

Besides epigenetic changes, cellular proteins play a role in the main-
tenance of latency through direct interactions with viral proteins. 
Krüppel-associated box domain-associated protein 1 (KAP1) is a 
chromatin remodeler, and several groups have shown that it also 
interacts with LANA35–37. Cai et al. reported that this interaction is 
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Figure 1. Schematic of Kaposi’s sarcoma-associated herpesvirus (KSHV) latent/lytic switch. During latency, only a few viral proteins 
and microRNAs are expressed. The KSHV latent protein latency-associated nuclear antigen (LANA) establishes latency and tethers the 
KSHV episome to host chromosomes. During this phase of the KSHV lifecycle, lytic genes are suppressed. This suppression occurs 
due to chromatin modifications that put the replication and transcription activator (RTA) gene and other lytic genes in a closed chromatin 
conformation with histones that contain inhibitory marks (histones shown in red). These inhibitory modifications are likely regulated by histone 
deacetylases (HDACs) and tousled-like kinases (TLKs). LANA (lime green semi-circle) also suppresses RTA expression through a complex 
with poly-SUMO-2-ylated KAP1 (pink tear-drop with yellow circle) and nuclear factor E2-related factor 2 (Nrf2) (tan L) that binds to the RTA 
gene promoter, further inhibiting transcription (indicated by the red arrow). Upon addition of inducers of the latent/lytic switch, e.g. cellular 
stress or 12-O-tetradecanoylphorbol-13-acetate (TPA), the chromatin around lytic genes is opened. The histones associated with lytic genes 
lack inhibitory marks and contain activation marks (histones shown in green). This results in gene transcription from the RTA promoter being 
activated (green arrow), allowing for RTA expression and transactivation of downstream lytic genes.

strengthened by poly-SUMO-2-ylation of KAP1 so it can bind to a 
LANA SUMO-2 interacting motif37. LANA and KAP1 form a com-
plex with another cellular protein named nuclear factor E2-related 
factor 2 (Nrf2)38, which targets the RTA promoter and allows for 
LANA-KAP1 to inhibit RTA expression, thereby repressing lytic 
replication (Figure 1)35,36.

Heat shock protein 90 (HSP90) is a cellular chaperone protein that 
interacts with the N-terminus of LANA39. Using the HSP90 inhib-
itors 17-dimethylaminoethylamino-17-demethoxygeldana-mycin 
(17-DMAG) and AUY922, Chen et al. disrupted this interaction 
and found it led to degradation of LANA39. It was also observed 
that these inhibitors along with a third HSP90 inhibitor (PU-H71) 
caused apoptosis of PEL cell lines. Another group also reported 
an increase in apoptosis of PEL cell lines treated with PU-H7140. 
K1 is another viral protein involved in preventing apoptosis that 
was found to interact with HSP9041. When cells expressing K1 were 
treated with HSP90 inhibitors, it was discovered that K1 expression 

was decreased and K1’s anti-apoptotic effect was diminished. These 
studies show the important role of HSP90 in maintaining latency 
through stability of LANA39 and inhibition of apoptosis39–41.

Efficient lytic replication of KSHV
Once KSHV is reactivated, it is important for efficient completion 
of the lytic cycle to make infectious viral progeny. Though RTA is 
the driver of reactivation, completion of the lytic cycle requires cel-
lular proteins. The KSHV IE/DE protein ORF45 has been shown to 
activate cellular kinases in the ERK-RSK pathway, and inhibition of 
this leads to reduced lytic replication42. Recently, it has been found 
that sustained activation of ERK-RSK leads to the phosphoryla-
tion and accumulation of c-Fos, which binds to KSHV promoters43. 
This accumulation of active c-Fos allows for efficient late lytic 
gene expression, as shown by a knockdown of c-Fos resulting in 
a decrease of ORF64 lytic gene expression and the fact that a non-
functional form of c-Fos resulted in decreased virion production. 
Fu et al. also examined ORF45 activation of ERK-RSK signaling 
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and discovered that amino acids 56–70 of ORF45 are critical for 
its interaction with RSK44. In fact, a single amino acid mutation of 
ORF45 at F66 can disrupt its ability to activate RSK, which leads 
to decreased late lytic gene expression and reduction of new virus. 
It was also shown that reactive oxygen species (ROS) can induce 
KSHV reactivation from latency45 and that induction of the KSHV 
lytic cycle further upregulates ROS, which can be targeted with  
N-acetyl-L-cysteine (NAC) to inhibit the development of KS46.

Another pathway shown to be important for late lytic replication 
is the DNA damage response (DDR) pathway. Hollingworth et al. 
have demonstrated that upon reactivation, early lytic gene expres-
sion activates DDR kinases47, as does primary infection48. When 
inhibitors of ATM and ATR were added to cell culture, it was found 
that the virus could reactivate and enter lytic replication, but late 
gene expression was diminished, resulting in fewer infectious viral 
progeny being made47.

Current therapies
Most KSHV-infected cells harbor the latent form of the virus. In 
the case of KS and PEL, most tumor cells are latent with only a few 
cells exhibiting lytic gene expression. In MCD, a larger proportion 
of the tumor mass displays lytic gene expression. Lytic replication 
is thought to be required to promote the growth of KSHV-associated 
cancers and help spread the virus. In most cases, the high proportion 
of cells undergoing abortive lytic replication express lytic proteins 
involved in the activation of angiogenesis and signal transduction, 
and complete viral replication does not occur9. Some researchers 
have hypothesized that the induction of lytic replication would be 
a good therapy for KSHV cancers if used in combination with a 
lytic inhibitor such as ganciclovir. By initiating reactivation but not 
allowing full lytic replication, more immunodominant targets could 
be produced that would be recognized by the immune system and 
provide more druggable targets to kill infected cells49,50.

In 2011, a pilot study was published in support of induction therapy 
in the treatment of KSHV-related MCD51. In this study, patients 
were treated with high-dose zidovudine along with valganciclo-
vir. The KSHV kinases ORF36 and ORF21 phosphorylated these 
compounds, making them toxic to the cell. Overall, 86% of treated 
patients obtained a major clinical response and 50% obtained a 
major biochemical response as determined by improvements in 
clinical parameters such as hemoglobin, albumin, and C-reactive 
protein levels. The 5-year survival rate reported in this study was 
86%51. Another report showed that in vitro treatment of KSHV-
infected cells with the HIV protease drug nelfinavir resulted in less 
infectious KSHV virus being produced52.

In a search for effective inducers of lytic replication, Kang et al. 
screened 650 US Food and Drug Administration (FDA)-approved 
drugs in an in vitro assay53. This screen identified three topoi-
somerase II inhibitors (doxorubicin, daunorubicin, and epirubicin) 
as strong inducers of viral reactivation and that daunorubicin was 
even more powerful than the classic inducer, sodium butyrate. 
These three drugs were able to cause apoptosis through DNA 
intercalation, but the virus produced was capable of infecting 
new cells. Hence, if these inducers were to be used in patients, 
it would require their use in combination with a viral replication 
inhibitor.

Several groups have shown that latency is linked to a dysregulated 
metabolic state of the cell with increased fatty acid synthesis54–56. 
SIRT1 function is also linked to promoting increased fatty acid 
synthesis, and, as previously stated, inhibition of SIRT1 leads to 
increased lytic replication33. Bhatt et al. showed that inhibition of 
fatty acid synthase (FASN) with a drug, C75, led to cellular apop-
tosis by activation of caspase 3 (another inducer of lytic replica-
tion, as discussed above)54. Moreover, KSHV-latent endothelial 
cells go through caspase 3/7-induced apoptosis when glutaminoly-
sis is inhibited57. Dai et al. have also demonstrated that by inhibit-
ing sphingosine kinase 2 and sphingolipid metabolism, PEL cells 
build up ceramides in the cell that result in lytic replication and 
apoptosis58. Furthermore, Leung et al. also demonstrated that 
clinically achievable amounts of the glucose metabolic analog 
2-Deoxy-D-glucose (2-DG) induce endoplasmic reticulum stress 
and inhibit KSHV replication and reactivation from latency59. These 
data suggest that new therapeutics targeting metabolic pathways 
in KSHV cancer cells should also be explored.

Other modes of therapies for KSHV-associated cancers have also 
been reported. Valiya Veettil et al. recently reported that latent 
KSHV cells have increased glutamate secretion and metabotropic 
glutamate receptor 1 expression60. Inhibitors of glutamate secre-
tion and receptor expression in KS and PEL cells were found to 
decrease cellular proliferation. Another study has demonstrated the 
ability of the drug celecoxib to suppress RTA expression and viral 
production by blocking the activation of the p38 MAPK pathway61. 
Another key pathway that has been targeted is the PI3K/Akt/mTOR 
pathway. Sin et al. demonstrated that the use of the mTOR inhibitor 
rapamycin was capable of inhibiting PEL tumor growth by reduc-
ing cytokine secretion and autocrine signaling62. Since then, more 
reports have come out showing other inhibitors of this pathway 
have similar effects63–65. It is interesting to note that not only does 
rapamycin inhibit tumor growth but it is also capable of inhibiting 
viral reactivation by repressing RTA expression through transcrip-
tional and post-transcriptional mechanisms66.

Another pathway, the Notch signaling pathway, which is activated 
by KSHV, has recently been reported to cause endothelial-to-
mesenchymal transition (EndMT)67,68 through the upregulation of 
membrane-type 1 matrix metalloproteinase (MT1-MMP)67 and the 
transcription factors Snail, Slug, Twist, ZEB1, and ZEB268. This 
EndMT event allows for the KSHV-infected cell to invade other 
tissue, an important aspect for the development of KS, and this 
knowledge of Notch signaling and KSHV provides new molecular 
targets for therapy.

Concluding thoughts
KSHV is a double-stranded DNA oncogenic herpesvirus. After 
infection, the virus goes latent and expresses only a few proteins 
and microRNAs. This latent virus can be reactivated and enter the 
lytic cycle through either cellular stress or chemical induction that 
alters the epigenetics of the cell. During the complete lytic cycle, 
the virus expresses its genes in a temporal fashion and produces 
new, infectious virus particles that ultimately kill the cell.

Even though the lytic cycle is important for pathogenesis, the vast 
majority of cells in KSHV malignancies harbor latent virus. Viral 
induction therapy is a promising method to treat KSHV-related 
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diseases. It is important, however, to create a balance between 
efficient reactivation of latent cells and controlling the spread of 
infection through the use of combination therapies involving lytic 
replication inhibitors. This method of treatment has the potential 
to induce immunodominant viral proteins, cause apoptosis of the 
cell, and inhibit the production of structural proteins so new virions 
cannot be made. Future experiments should explore new combi-
nations of KSHV-reactivating drugs and late lytic cycle inhibitors. 
Some potential inducers to be used in these experiments include 
the anthracyclines and HSP90 inhibitors described above as well 
as the growing number of SIRT1 inhibitors69. To inhibit late lytic 
replication, classical drugs such as valganciclovir can be used. 
Other possibilities include inducing RTA-independent lytic replica-
tion, possibly by targeting metabolic processes, where a significant 
decrease in viral progeny is observed. Continued advances in this 
field will provide additional insights into the biology and pathogen-
esis of KSHV infection as well as better treatments and cures for 
KSHV-related cancers.
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