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Abstract
Purpose: A self -defined convolutional neural network is developed to auto-
matically classify whole-body scintigraphic images of concern (i.e., the normal,
metastasis, arthritis, and thyroid carcinoma), automatically detecting diseases
with whole-body bone scintigraphy.
Methods: A set of parameter transformation operations are first used to aug-
ment the original dataset of whole-body bone scintigraphic images. A hybrid
attention mechanism including the spatial and channel attention module is then
introduced to develop a deep classification network, Dscint, which consists of
eight weight layers,one hybrid attention module, two normalization modules, two
fully connected layers, and one softmax layer.
Results: Experimental evaluations conducted on a set of whole-body scinti-
graphic images show that the proposed deep classification network, Dscint,
performs well for automated detection of diseases by classifying the images
of concerns, achieving the accuracy, precision, recall, specificity, and F-1 score
of 0.9801, 0.9795, 0.9791, 0.9933, and 0.9792, respectively, on the test data in
the augmented dataset. A comparative analysis of Dscint and several classi-
cal deep classification networks (i.e., AlexNet, ResNet, VGGNet, DenseNet, and
Inception-v4) reveals that our self -defined network, Dscint, performs best on
classifying whole-body scintigraphic images on the same dataset.
Conclusions: The self -defined deep classification network, Dscint, can be uti-
lized to automatically determine whether a whole-body scintigraphic image is
either normal or contains diseases of concern. Specifically, better performance
of Dscint is obtained on images with lesions that are present in relatively fixed
locations like thyroid carcinoma than those with lesions occurring in nonfixed
locations of bone tissue.

KEYWORDS
attention mechanism,bone scintigraphy, convolutional neural network,medical image analysis,mul-
ticlass classification

1 INTRODUCTION

Advances in medical imaging have led to the preva-
lence of medical image analysis for disease diagnosis,
treatment, and prognosis. The main medical imaging
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modalities include structural imaging (e.g., computed
tomography [CT], magnetic resonance imaging [MRI],
ultrasound, and optical imaging) that captures anatomic
information about an organ or body part and func-
tional imaging (e.g., functional MRI [fMRI] and nuclear
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medicine [NM]) that reveals both the structural and
functional variation in organs and tissues of the human
body. As a typical functional imaging technique, bone
scintigraphy has been widely used for the diagnosis
of bone metastasis caused by a variety of solid tumors
mainly including prostate, breast, and lung cancers.1

When a primary tumor invades into bone tissue, there
will be an area of increased radionuclide uptake.

Single photon emission computed tomography
(SPECT) is the most widely used screening proce-
dure for bone scintigraphy in neurology, oncology, and
cardiology.2 By using radiotracers such as 99mTc-MDP
(methylene diphosphonate), SPECT scintigraphy is
capable of providing an assessment of disease stage
and severity via visualizing the occupying lesions as
areas of increased uptake (i.e., hotspots). Owe to
its high disease sensitivity, SPECT scintigraphy has
attracted attention from the field of computer-aided
diagnosis/detection. Specifically, the automated models
were developed to classify SPECT scintigraphic images
using deep learning algorithms.3–9

2D SPECT scintigraphy is characterized by low speci-
ficity, mainly caused by the inferior planar spatial res-
olution, which brings a significant challenge to a man-
ual analysis by physicians for the diagnosis of bone
metastasis and other diseases. Moreover, a variety of
various nonneoplastic diseases including osteomyeli-
tis, arthropathies, and fractures also present abnor-
malities on scintigraphic images.10 For patients who
have undergone recent surgery such as knee or
hip replacement, scintigraphy may image false-positive
outcomes.11 Therefore, how to accurately classify dis-
eases with SPECT scintigraphic images becomes an
urgent problem to be solved in the field of medical image
analysis.

Convolutional neural network (CNN) as the main-
stream of deep learning techniques has been exploited
to develop automated classification models by lever-
aging their superior capability of automatically extract-
ing features from images at different levels in an opti-
mal way. Existing work mainly focuses on the devel-
opment of CNN-based automated classification mod-
els for identifying bone lesions metastasized from mul-
tiple primary solid tumors,3,4 prostate cancer,5,7–-9, and
breast cancer.6 In our previous work, we developed
CNN-based models to identify bone metastasis with tho-
racic SPECT scintigraphic images12 and to segment the
metastasized lesions from thoracic SPECT scintigraphic
images.13

However, the CNN-based classification of scinti-
graphic images is still in its infancy. Existing research
efforts mentioned above have been made to solve the
two-class classification problem. Precisely, they deter-
mine whether an image contains bone metastasis or
not. In clinical NM, whole-body SPECT scintigraphy is
often conducted to cover all the bone structures of
the human body. As an example, whole-body SPECT

scintigraphy with radiotracers of 131 I-WBS (whole-body
scan) is often used to diagnose clinically thyroid car-
cinoma. Thus, there may bemultiple kinds of diseases
in a given dataset of whole-body SPECT scintigraphic
images.Until now,however,automated multiclass classi-
fication of whole-body SPECT scintigraphic images has
not been investigated in the CNN field.

In order to automatically classify diseases with whole-
body SPECT scintigraphy, in this work, we propose a
CNN-based classification network that can automat-
ically identify diseases in whole-body SPECT scinti-
graphic images. For doing so, we first augment the
dataset of scintigraphic images to solve the problem of
limited and imbalanced data that medical image anal-
ysis frequently faces. Second, we developed a self -
defined deep CNN by introducing a hybrid attention
mechanism to extract hierarchical features from images
and classify the high-level features of concerns (i.e.,nor-
mal, metastasis, arthritis, and thyroid carcinoma) simul-
taneously. Finally, a set of clinical whole-body SPECT
scintigraphy images is used to evaluate the perfor-
mance of the developed classification network by pro-
viding comparable analysis between the classical deep
networks.

The main contributions of this work can be summa-
rized as follows.

First,we identify the research problem of multidisease
classification with the whole-body SPECT scintigraphy.
To the best of our knowledge, this is the first work in the
scintigraphic image analysis field.

Second, we convert the problem into an automated
multiclass classification of low-resolution, large-size
images by using a CNN-based classification network
combined with a hybrid attention mechanism.

Finally, we use the clinical SPECT scintigraphic
images to evaluate the self -defined network, with
achieving average scores of 0.9801, 0.9795, 0.9791,
0.9933, 0.9792, and 0.9985 for accuracy, precision,
recall, specificity, F-1 score, and AUC, respectively.

The rest of this paper is organized as follows. In
Section 2, we present the whole-body SPECT scinti-
graphic images used in the automated multiclass clas-
sification network developed in this work. Experimental
evaluations on clinical data of scintigraphic images are
reported in Section 3.In Section 4,we conclude this work
and point out the future research directions.

2 MATERIALS AND METHODS

2.1 Dataset

The scintigraphic images used in this work were col-
lected from the Department of NM, Gansu Provin-
cial Hospital from Jan 2017 to Dec 2018, by using
a single-head imaging equipment (GE SPECT Mil-
lennium MPR). For patients with suspicious bone
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TABLE 1 Number of diseases in patients involved in the
collected SPECT scintigraphic images

Normal
Bone
metastasis Arthritis

Thyroid
carcinoma

Patient 179 117 143 161

Proportion 30% 20% 24% 26%

TABLE 2 An overview of our SPECT scintigraphic images

Normal
Bone
metastasis Arthritis

Thyroid
carcinoma

Number of images 334 174 252 318

Proportion 31% 17% 23% 29%

metastasis, imaging was performed between 2 and 5 h
after intravenous injection of 99mTc-MDP (20–25 mCi)
with a parallel-beam low-energy high-resolution (LEHR)
collimator (energy peak = 140 keV, intrinsic energy res-
olution ≤ 9.5%, energy window = 20%, intrinsic spa-
tial resolution ≤6.9 mm). In postoperative patients with
thyroid carcinoma, imaging was performed between 24
and 48 h after oral 131I-WBS (2–5 mCi) with a high
energy parallel collimator (energy peak= 364 keV, intrin-
sic energy resolution ≤ 9.5%, energy window = 10%,
intrinsic spatial resolution ≤ 6.9 mm). Two scintigraphic
images corresponding to the anterior and posterior
views were acquired for each examination. Each scinti-
graphic image was stored in a DICOM file. The imag-
ing size (apart from the file header and other informa-
tion) is 256 × 1024 with the pixel size of 2.26 mm, in
which each element is represented by a 16-bit unsigned
integer and corrected by using Gaussian filtering (ker-
nel size = 3 and sigma = 1/3 pixel). The acquisition
time is 10–15 min for each whole-body scintigraphic
image.

SPECT scintigraphic images were collected from
a total of 600 patients aged from 28 to 87 years.
Table 1 lists the number of diseases in patients, where
one normal class and three diseased classes are
included.

It is well known that the classification performance
of CNN-based models depends on the size of the
dataset, particularly a high classification accuracy
always resulting from a large dataset. For this rea-
son, we generate more samples of images by aug-
menting the original dataset listed in Table 2 with the
parameter variation techniques. A concomitant effect
of data augmentation is to improve the robustness
of the CNN-based model for alleviating the following
problems:

First, a change in a patient’s position or orientation
during the long-time imaging process that may take up
to 5 h is inevitable since, for example, the patient is often
startled when the bed shifts to the next scanning posi-
tion. Automated classification models should be robust

enough to deal with displacement and tilt in SPECT
scintigraphic images.

Second, the phenomenon of images being not suc-
cessfully recorded is common in the used dataset. A
medical examination has only anterior images, and vice
versa, reveals that there are 1078 images from 600
patients. Technical approaches need to be applied to
handle the missed SPECT scintigraphic images.

Last, imbalanced samples from different classes may
also cause the classifiers to neglect minority class
instances and emphasize on majority class, resulting in
a skewed classification accuracy.14

2.2 Data augmentation

A variety of various methods can be used to augment
the dataset including the parametric variation and the
adversarial learning technique.15 Using parametric vari-
ation, we can obtain samples that have the same dis-
tribution as the original ones with the lower time com-
plexity. In particular, several parametric variation opera-
tions such as image mirroring, translation, and rotation
are used to augment the dataset described in Table 2.
The operations are detailed below.

We first formally represent a DICOM file of a 2D
whole-body SPECT scintigraphic image as a matrix
MSBS:

MSBS =

⎡⎢⎢⎢⎢⎢⎣

rd11 rd12 … rd1m

rd21 rd22 ⋯ rd2m

⋮ ⋮ ⋱ ⋮

rdn1 rdn2 ⋯ rdnm

⎤⎥⎥⎥⎥⎥⎦

, (1)

where rdij (1 ≤ i ≤ m, 1 ≤ j ≤ n) is the radiotracer uptake
represented by a 16-bit unsigned integer, and m = 256,
n = 1024 for 2D whole-body images acquired by using a
GE SPECT Millennium MPR device, with the pixel size
of 2.26 mm.

2.2.1 Image mirroring

Horizontal mirroring is applied to obtain a posterior
counterpart if a SPECT examination has an only ante-
rior view, and vice versa, by reversing this image right-
to-left along its vertical centerline. Figure 1b depicts the
mirrored image of a posterior whole-body scintigraphic
image shown in Figure 1a.

2.2.2 Image translation

For a constant t ∈ [0, tT ], an image will be randomly
translated by +t or -t pixels in either the horizontal or
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F IGURE 1 Illustration of mirroring, translating, and rotating whole-body SPECT scintigraphic image. (a) Original posterior image; (b)
mirrored image; (c) translated image; and (d) rotated image by 3o to the right direction

TABLE 3 An overview of the augmented dataset of SPECT
scintigraphic images

Normal
Bone
metastasis Arthritis

Thyroid
carcinoma

Number of images 1660 1582 1500 1788

Proportion 26% 24% 23% 27%

vertical direction. The parameter tT is experimentally
chosen according to the distribution of the radiotracer
uptake of all images in the dataset. Figure 1c shows a
resulting example by translating the given image in Fig-
ure 1a +5 pixels horizontally.

2.2.3 Image rotation

For a constant r ∈ [0, rT ], an image will be randomly
rotated by ro in either the left or right direction around its
geometric center,where rT is experimentally determined
according to the distribution of the radiotracer uptake of
all images in the dataset. Figure 1d shows the obtained
image by rotating the image in Figure 1a to the right
direction by 3o.

These "new" images generated by parametric varia-
tion combined with the original ones are grouped into
the augmented dataset (see Table 3). The data aug-
mentation alleviates the imbalance of images in dif-
ferent classes as compared to the original ones in
Table 2.

The subsequent section details the process of label-
ing images to obtain ground truth in the experiments.

2.3 Data annotation

In the supervised learning field, labeling image plays a
crucial role in training effective and reliable classifiers.

However, it is time-consuming, laborious, and subjective
to manually label a 2D whole-body scintigraphic image
due to its poor spatial resolution. The system sensitivity
is one of the limitations to label scintigraphic images as
a result of its poor spatial resolution and high statistical
noise. In this work, we developed an online annotation
system based on the open-source tool LabelMe (http:
//labelme.csail.mit.edu/Release3.0/) for labeling whole-
body scintigraphic images.

As illustrated in Figure 2, the DICOM file of a whole-
body SPECT scintigraphic image and the correspond-
ing diagnostic report on scintigraphic findings and com-
ments were imported into the LabelMe-based annota-
tion system in advance. Three NM physicians from our
group manually labeled areas on the image of a DICOM
file (RGB format) by using shape tools (e.g., polygons)
in the toolbar. The labeled area will be annotated with a
code combined with the name of the disease or body
part. The results of manual annotation for all images
serve as ground truth in the experiments and form an
annotation file together, which will be fed into the classi-
fication network.

The three NM physicians performed the annotations
independently according to the diagnosis reports that
were originally issued by the same three NM physi-
cians with the data annotation group and then confirmed
by one oncologist. If the majority of physicians (i.e., at
least two of them) think that an image is abnormal (i.e.,
there are one or more lesions of disease in the image),
it is labeled as positive (diseased), and negative (nor-
mal) otherwise. It is worth noting that each image used
in our experiments may contain multiple lesions of the
same, rather than different diseases. If there are multi-
ple diseases in a single image,the problem becomes the
multiclass (disease),multiobject (lesion) classification of
images. It is undeniable that imperfect manual annota-
tion can bring negative impacts on automated classifi-
cation.

http://labelme.csail.mit.edu/Release3.0/
http://labelme.csail.mit.edu/Release3.0/
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F IGURE 2 Illustration of labelling a 2D whole-body SPECT scintigraphic image using the LabelMe-based annotation system

2.4 Deep classification network

CNNs are among the successful architectural innova-
tions in deep learning, in which the convolution opera-
tor is capable of extracting image features at different
abstraction levels.Due to weight sharing,CNNs are now
becoming increasingly prevalent in medical image anal-
ysis by exploiting the fact that similar structures (e.g.,
organ, tissue, and lesion) occur in various locations in
an image.

In order to extract rich features from low-resolution,
large-size scintigraphic images,we define an eight-layer
(i.e., eight weight layers) deep classification network
as Dscint that detects diseases by classifying images.
Table 4 outlines the structure and parameters of the
Dscint network.

2.4.1 Weight layer

There are five convolutional layers and three pooling lay-
ers in the self -defined network. The convolution opera-
tion denoted as < kernel_size = n × n, channel_number,
stride_size, padding_size > produces feature maps. An
original input of a 256 × 1024 whole-body image is con-
volved with each 11 × 11 filter in the first convolutional
layer to calculate a feature map made of neurons. The
subsequent convolutional layers take the feature maps
of immediately previous layers as inputs to convolve with
each filter.Pooling operation is used to down-sample the
feature maps from the convolutional layer before it. The
max-pooling used in Dscint partitions a feature map into
a set of sub-regions with the size of 3 × 3, and outputs
the maximum value for each of such sub-regions.
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TABLE 4 Structure and parameters of the self -defined deep
classification network Dscint

Layer Configuration

Convolution 11 × 11, 16, S = 4, P = 2

Pooling MaxPool(3), S = 2

Attention module

Convolution 5 × 5, 16, S = 1, P = 2

BatchNorm

Pooling MaxPool(3), S = 2

Convolution 3 × 3, 24, S = 1, P = 1

Convolution 3 × 3, 24, S = 1, P = 1

Convolution 3 × 3, 24, S = 1, P = 1

BatchNorm

Pooling MaxPool(3), S = 1

Fully connected 1024

Fully connected 1024

Softmax 4

Abbreviations: MaxPool, max pooling; P, padding; S, stride.

F IGURE 3 Hybrid attention module with the channel and spatial
attention in the self -defined Dscint network

2.4.2 Hybrid attention module

After the first pooling layer, we introduced the hybrid
attention module to improve Dscint in a way that focuses
on more important regions (i.e., lesions) on the 2D fea-
ture maps by considering the important information.
The cascaded hybrid attention module (see Figure 3)
using the channel and spatial attention mechanisms
can compute complementary attention by focusing on
“what”(channel attention) and “where”(spatial attention),
respectively.16

Let F denote the input of a 2D feature map to the
channel attention sub-module. We can achieve a 1D
output ₣, which will be further processed by the spatial
attention sub-module to output a refined 2D feature map
M according to Equation (2).

M = fS (fC(F) ⊗ F) ⊗ F, (2)

where ⊗ is the element-wise multiplication, and fC and
fS denote the channel and spatial function, respectively,

which will be defined in Equations (3) and (4).

fC(F) = 𝜎 (MLP (AvgPool(F)) + MLP (MaxPool(F))) ,

(3)

fS(F) = 𝜎
(
f k×k ([AvgPool(F); MaxPool(F)])

)
, (4)

where σ is the sigmoid function, MLP is the multilayer
perceptron, AvgPool (MaxPool) is the average (max)
pooling, and f k×k is a convolutional operation with the
kernel size of k × k.

2.4.3 BatchNorm layer

Batch normalization17 is utilized in the layers after
the second and fifth convolutional layers in Dscint.
It aims to accelerate network training by making
normalization a part of the model architecture and
performing the normalization for each training mini-
batch. With batch normalization, we can therefore use
much higher learning rates and be less careful about
initialization.

2.4.4 Fully connected layer

We use two fully connected layers to make a non-linear
combination of the selected features at the end of the
network. Within each fully connected layer, neurons are
fully connected to all activations in the previous layer, to
produce an output in the form of a simple vector. The
activations are often calculated with matrix multiplica-
tion, followed by a bias offset.

2.4.5 Softmax layer

We use the Softmax function in the network output layer
with a real number, four unordered categories (i.e., nor-
mal, metastasis, arthritis, and thyroid carcinoma). Let xj
be the input to jth output node. The Softmax function
f(xj) calculates a score of this output node according to
Equation (5).

f (xj) =
exj

∑n
i=1 exi

, (5)

where n is the number of output nodes. We have
0 ≤ f(xj) ≤ 1 and ∑ f(xj) = 1.

3 RESULTS

This section reports the experimental results of the
self -defined classification network of Dscint on clinical
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whole-body SPECT scintigraphic images as provided in
Tables 2 and 3.

3.1 Experimental setup

The evaluation metrics used in this work include accu-
racy, precision, recall, specificity, F-1 score, and AUC
(area under ROC curve). They are, respectively, defined
in Equations (6–10).

Accuracy =
TP + TN

TP + TN + FP + FN
, (6)

Precision =
TP

TP + FP
, (7)

Recall =
TP

TP + FN
, (8)

Specificity =
TN

TN + FP
, (9)

F−1 score = 2 ×
Precision × Recall
Precision + Recall

, (10)

where the notations are TP = true positive, TN = true
negative, FP = false positive, and FN = false negative.

A classifier should show both a high true positive
rate (TPR = Recall) and a low false-positive rate (FPR)
simultaneously. The ROC curve shows the true positive
rate (y-axis) against the false positive rate (x-axis), and
the AUC value is the area under the ROC curve.As a sta-
tistical explanation, the AUC value is equal to the prob-
ability that a randomly chosen positive image is ranked
higher than a randomly chosen negative one. Thus, the
closer to 1 the AUC value is, the higher performance the
classifier achieves.

Each dataset (i.e., the original one in Table 2 and
its augmented one in Table 3) was randomly divided
into two parts, i.e., training subset and the test sub-
set. Images including the augmented ones from the
same patient were not divided into the different subsets
because they would show similarities. The ratio of the
training subset and the test subset is about 7: 3. Images
samples in the training subsets are for training the clas-
sification network while the samples in the test subsets
are used to test the performance of the network. The
trained classifier was run 10 times on the test subset in
order to reduce the effects of randomness. For each of
the defined metrics above, the final output of the classi-
fier is the average of the 10 running results. The experi-
mental results reported in the next section are the aver-
age ones unless otherwise specified.

The parameter settings of Dscint are provided in
Table 5. The experiments were run in Tensorflow 2.0
on an Intel Core i7-9700 CPU with 32GB RAM running
Windows 10.

TABLE 5 Parameter settings of the self -defined classification
network of Dscint

Parameter Value

Learning rate 10–3

Weight decay 10–4

Batch size 4

Epoch 300

Iteration 1200

F IGURE 4 Illustration of training Dscint on the original (blue)
and augmented (orange) datasets. (a) Accuracy curves and (b) loss
curves

3.2 Experimental results

Figure 4 depicts the accuracy and loss curves obtained
by training Dscint on the original (blue) and augmented
(orange) datasets, respectively. The training time is 2.87
(14.62) h for the original (augmented) dataset. We can
see that the data augmentation contributes largely to
improving both accuracy and stability in a way that
significantly higher performance than on the original
dataset during the first 50 epochs are obtained.

To examine the classification performance of Dscint
on the test datasets, Table 6 reports the scores of the
evaluation metrics as defined in Equations (6–10). The
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TABLE 6 Scores of evaluation metrics obtained by Dscint on the test samples in both original and augmented dataset

Accuracy Precision Recall Specificity F-1 score

Original data 0.8519 0.8599 0.8257 0.9489 0.8362

Augmented data 0.9801 0.9795 0.9791 0.9933 0.9792

0.00

0.20

0.40

0.60

0.80

1.00

Precision Recall Specificity F-1 score

Normal Metastasis Arthritis Thyroid  carcinoma

F IGURE 5 Quantitative performance obtained by Dscint on test
samples in the augmented dataset with average scores of evaluation
metrics for different classes of concerns

performance is consistent with the ones in the train-
ing stage, with higher values of metrics being obtained
on the augmented dataset than the original one. This
reveals that Dscint performed well in classifying whole-
body SPECT scintigraphic images.

With the test samples in the augmented dataset in
Table 3, we further analyze the classification perfor-
mance of Dscint on distinguishing various diseases by
reporting scores of evaluation metrics for classes of
concerns in Figure 5.

From the classification performance as shown in Fig-
ure 5, we can see that Dscint performs the best for thy-
roid carcinoma but the worst for arthritis (F-1 = 0.7059).
It is suitable to distinguish between classes especially
the diseased classes (specificity ≥ 0.94 for metastasis,
arthritis, and thyroid carcinoma). However, misclassifica-
tion occurs not only between the diseased classes but
also between the normal and diseased classes.The rea-
sons for this are as follows.

First, the fixed location of thyroid carcinoma improves
the deep classification network of Dscint. Focusing
on the region of interest (i.e., thyroid) in scintigraphic
images, Dscint extracts rich hierarchical features from
these regions, producing high classification perfor-
mance. On the contrary, arthritis can occur at any site of
the skeleton. As such, it makes Dscint difficult to extract
rich features of arthritic lesions from the small-scale
dataset (the augmented dataset is still a small-scale
dataset).

Second, whole-body SPECT scintigraphy is charac-
terized by the inferior planar spatial resolution and large
variation of radiotracer uptake from patient to patient.
The low quality of images makes it very challenging to
distinguish the disease-caused increase in tracer uptake
and the normal variation of uptake.Moreover, the normal
variation in uptake relates to the bony metabolic activity
negatively correlated with age.18

We illustrate examples of classified whole-body
SPECT scintigraphic images with the correctly classi-
fied ones in Figure 6a and the wrongly classified ones
in Figure 6b.The possible reasons for such a misclassifi-
cation were provided by one experienced NM physician
from our group who completed data annotation,which is
detailed below.The possible solutions are also provided.

3.2.1 Patient-related factors

The common patient-related artifacts mainly include the
extravasation of radiopharmaceuticals at the site of
injection,urinary contamination,and soft tissue uptake.10

These factors may occasionally cause confusion with an
abnormality in bone tissue. They bring a large challenge
to the automated classification of scintigraphic images
with CNNs-based models. This is the reason why the
normal image was misclassified as metastasis in Fig-
ure 6b, denoting as “N misclassified as M.” Image crop-
ping to extract areas of interest would be needed before
performing a classification task.

3.2.2 Low contrast

For patients with mild arthritis, for example, the lower
tracer uptake in the lesions may easily be misclassi-
fied as normality, which is denoted as “A misclassified
as N” in Figure 6b. The methods such as normalization
should be applied to deal with the low contrast problem
of whole-body SPECT scintigraphic images.

3.2.3 Postprocessing

The large variation of radiotracer uptake between
patients requests that personalized features should be
extracted from a large-size dataset of scintigraphic
images. As mentioned previously, the normal varia-
tion of uptake relates to the bony metabolic activity
that is correlated negatively with age.18 The metasta-
sized images acquired from two patients aged 83 and
76 years, respectively, were misclassified as normal in
Figure 6b,denoting as “M misclassified as N”.A postpro-
cessing stage is needed to be integrated into the auto-
mated classification network to examine the asymmet-
ric uptake. This is because the irregular, asymmetric or
eccentric radiotracer uptake in scintigraphic images may
be towards malignant involvement.11
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F IGURE 6 Examples of misclassified whole-body SPECT scintigraphic images with N = Normal; M = Metastasis; A = Arthritis; and
T = Thyroid carcinoma. (a) Correctly classified images and (b) wrongly classified images

TABLE 7 An overview of the classical CNNs-based models used for comparative analysis

Weight layer Filter Activation Optimizer

AlexNet 8 11 × 11, 5 × 5, 3 × 3 ReLU Adam

ResNet 18 3 × 3 ReLU Adam

VGG-16 16 3 × 3 ReLU Adam

Inception-v4 14 Inception 3 × 3, 1 × 1, 1 × 7, 7 × 1, 1 × 3, 3 × 1 ReLU Adam

DenseNet 121 1 × 1, 3 × 3 ReLU Adam

3.3 Classification performance
comparison

The comparative analysis of classification performance
was performed between Dscint and several classi-
cal CNNs including AlexNet,19 ResNet,20 VGG-16,21

Inception-v4,22 and DenseNet.23 An overview of com-
paring these classical networks is given in Table 7, in
terms of the number of their weight layers, filter shape,
activation function, and optimizer. The parameter set-
tings of these models are the same as Dscint (see
Table 5).
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TABLE 8 Evaluation metrics obtained by six models on test samples

AlexNet ResNet VGG-16 Inception-v4 DenseNet Dscint

Accuracy 0.9652 0.9314 0.9550 0.8384 0.9371 0.9801

Precision 0.9641 0.9316 0.9538 0.8367 0.9391 0.9795

Recall 0.9643 0.9293 0.9556 0.8348 0.9332 0.9791

Specificity 0.9884 0.9767 0.9850 0.9420 0.9781 0.9933

F-1 score 0.9715 0.9303 0.9541 0.8345 0.9309 0.9792

AlexNet

ResNet

VGG-16

Inception-v4

DenseNet

Dscint

Normal Metastasis

Arthritis Thyroid carcinoma

AlexNet

ResNet

VGG-16

Inception-v4

DenseNet

Dscint

Normal Metastasis

Arthritis Thyroid carcinoma

(b)(a)

F IGURE 7 A comparison of evaluation metrics obtained by CNNs-based classification models on test samples in the augmented dataset.
(a) Specificity and (b) F-1 score

The scores of evaluation metrics obtained by all net-
works are reported in Table 8. From which we can see
that Dscint outperforms all the classical CNNs. Specifi-
cally, the deepest network Inception-v4 obtains the worst
classification performance. We can conclude that the
network depth is related inversely to the classification
performance, which is mainly due to the limited data of
scintigraphic images.

The radar maps in Figure 7 demonstrate that CNN-
based models achieve the best classification perfor-
mance (Specificity and F-1 score) for thyroid carcinoma
with the largest hexagon in yellow. The outermost points
on hexagons denoting Dscint reveal that Dscint is the
best-performing model for automated classification of
scintigraphic images on the augmented dataset.We can
also see that the arthritic images challenge all classifica-
tion networks and the normal images are easy to be mis-
classified into other classes. However, the decrease in
overall performance was caused by the arthritic image.

The ROC curves and the corresponding AUC val-
ues obtained by six models are shown in Figure 8 and
Table 9, respectively.

Similarly, we present in Figure 9 the confusion matri-
ces obtained by these models on classifying images of
concerns with test samples in the augmented dataset.

It can be found that classical classification models
share the same source of misclassification as Dscint,
i.e., the difficulty of distinguishing between the normal/

metastasized and arthritis classes. Eleven arthritic
images were incorrectly classified as normal while ten
metastasized images were misclassified as arthritis
images by Dscint.

In a word, our self -defined classification network
of Dscint can detect various diseases in whole-body
scintigraphic images by automatically classifying these
images of concern. Specifically, the Dscint network per-
forms well on the task of automated classification with

F IGURE 8 ROC curves obtained by six models on test samples
of the augmented dataset in Table 3
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TABLE 9 AUC values obtained by six models on test samples of the augmented dataset in Table 3

AlexNet ResNet VGG-16 Inception-v4 DenseNet Dscint

AUC 0.9973 0.9877 0.9921 0.9532 0.9838 0.9985

F IGURE 9 Confusion matrices obtained by six models on test samples in the augmented dataset

images that contain lesions occurring in relatively fixed
areas of images. By contrast, all deep networks achieve
lower performance in terms of the defined evaluation
metrics for classifying those diseases that can occur in
any location (e.g.,arthritis and multiple bone metastasis)
with the small-scale dataset.

4 CONCLUSIONS

Targeting the automated classification of diseases with
SPECT scintigraphy,we have developed a CNN with the
hybrid attention mechanism in this work.Parametric vari-
ation was first conducted to augment the dataset of orig-
inal images. A deep classification network called Dscint
has been developed to automatically extract features
from images and classify these features into classes.
Clinical whole-body scintigraphic images were utilized
to evaluate the developed network.Experimental results
have demonstrated that our self -defined network per-
forms well in detecting diseases. The analysis has also
been conducted for comparing Dscint with several clas-
sical models. The results reveal that our method can
be used for automated detection of diseases including
arthritis, metastasis, and thyroid carcinoma.

In the future, we plan to extend our work in the follow-
ing directions.

First, we intend to collect more data of SPECT scinti-
graphic images, laboratory findings, and textual data to
improve the proposed classification network.Hopefully,a
robust, effective, and efficient computer-aided diagnosis
system will be developed.

Second, we attempt to develop deep learning-based
methods that can classify whole-body SPECT scinti-
graphic images with multiple lesions from various dis-
eases that may present in a single image.

Last,we plan to design different network structures by
using network architecture search24 and deep supervi-
sion learning25 techniques to accurately diagnose dis-
eases with multisource medical data.
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