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Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central 
nervous system. Growing evidence has proven that T helper 17 (Th17) cells are one 
of the regulators of neuroinflammation mechanisms in MS disease. Researchers have 
demonstrated that some microRNAs (miRNAs) are associated with disease activity and 
duration, even with different MS patterns. miRNAs regulate CD4+ T cells to differentiate 
toward various T cell subtypes including Th17 cells. In this review, we discuss the possible 
mechanisms of miRNAs in MS pathophysiology by regulating CD4+ T cell differentiation 
into Th17 cells, and potential miRNA targets for current disease-modifying treatments.
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iNTRODUCTiON

Multiple sclerosis (MS) is an autoimmune disease characterized by chronic inflammatory demyelina-
tion in the central nervous system (CNS), which can result in cognitive decline and permanent 
disability among young adults. The etiology of MS has been widely studied, including virus infection, 
genetic predisposition, lack of vitamin D, occupational exposure, and toxins. It is accepted that MS is 
an inflammatory and neurodegenerative disease primarily driven by myelin-reactive CD4+ T helper 1 
(Th1) cells, CD4+ T helper 17 (Th17) cells, CD8+ T cells, and B cells that target and damage the myelin 
sheath. CD4+ Th1 cells and CD4+ Th17 cells are the two subtypes of CD4+ T cells which have been 
intensively investigated in MS and its animal model, experimental autoimmune encephalomyelitis 
(EAE). In animal studies, adoptive transfer of myelin-specific Th1 cells into naïve recipient mice was 
sufficient to induce features of EAE (1). Th17 cells are a newly found player in the pathology of MS 
and EAE model. It has been shown that the proportion of Th17 cells in peripheral blood and inter-
leukin (IL)-17 levels in serum were increased among MS patients (2). IL-17+-producing T cells were 
elevated in the active rather than in inactive areas of MS lesions, and significantly higher densities 
presented within acute lesions and active borders of chronic active lesions than in normal-appearing 
white matter (3). This suggested that Th17 cells and IL-17 involve in the MS pathogenesis.

MicroRNAs (miRNAs) are single-stranded, approximately 22 nt non-coding RNAs that are consid-
ered as key regulators in the complex network of gene expression at the posttranscriptional level. There 
are approximately 24,521 miRNA loci in 206 species, which produce 30,424 mature miRNAs including 
more than 2,500 mature miRNAs annotated in the miRBase database (v20, June 2013) (4). miRNAs 
are pluripotent components that participate in several biological processes including cell development 
and differentiation. Drosha and Dicer nucleases are the two major miRNA machinery enzymes that 
convert pri-miRNAs to mature miRNAs and control the production and function of mature miRNAs. 
Mature miRNAs loaded into the RNA-induced silencing complex directly target mRNAs, leading to 
target mRNA cleavage and lower protein expression through direct or indirect interference (5).
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Studies have revealed that miRNAs may contribute to MS 
progression and responses to treatment (6). Th17  cells are 
characterized by expression of retinoic acid-related orphan 
receptor (ROR) γ and signal transducer and activator of 
transcription (STAT) 3. miRNAs play major roles in Th17 cell 
differentiation (7), particularly through the RORγ and STAT3 
signal pathway. In this review, we discuss the relationships 
between miRNAs, Th17 cell differentiation, and MS, pointing 
out the pivotal roles of miRNA in the pathophysiology of MS, 
and miRNAs as potential targets for current disease-modifying  
treatments.

Th17 CeLLS iN MS PATHOGeNeSiS

CCD4+ T cells mediate adaptive immunity to various pathogens 
and are critical for proper immune system homeostasis and host 
defense. CD4+ T  cell-mediated autoimmunity has long been 
known as one of the most important aspects in MS pathogenesis. 
Th17 cells have been suggested as a new lineage of CD4+ T cells, 
which synthesize and secrete IL-17 and IL-22 to enhance cellular 
immune responses to autoimmune inflammation (8). Cytokines 
produced by Th17 cells are most likely to be critical pathological 
factors in autoimmune diseases, particularly MS. An over-
exuberant response against self-antigens by Th17  cells induces 
several common autoimmune diseases (9) including MS. There is 
growing evidence from both animal models and human studies 
that Th17 cells and IL-17 play important roles in orchestrating 
MS progression. The frequency of Th17 cells is elevated in the 
blood and cerebrospinal fluid (CSF) of patients with MS and is 
higher during relapses (10). Th17 cell clones generated from the 
CSF and peripheral blood of MS patients expressed high levels of 
activation markers, adhesion molecules, and co-stimulatory mol-
ecules than Th1 clones (10). Activated Th17 cells migrate through 
the blood–brain barrier (BBB) into MS lesions. This migration is 
mediated by IL-17 and IL-22 that disrupt tight junction proteins 
in CNS endothelial cells (11). Th17 cells that are specific to myelin 
basic protein in active MS were associated with disease activity 
(12). After transmigration through the BBB, Th17 cells infiltrate 
at a high frequency into the acute MS lesions (13).

The Th17 cell lineage is characterized by expression of RORγ 
and STAT3, both of which are the basis for the cytokine profile, 
including IL-6, IL-12, IL-17, IL-22, and tumor necrosis factor 
(TNF), which mediate tissue inflammation. IL-17 is a cytokine 
can be secreted by multiple cells, such as activated T  cells, 
natural killer cells, and neutrophils. IL-17-secreting CD4+ T cells 
(Th17 cells) are critical players in the pathology of EAE and MS. 
Similarly, most of the pathological functions of Th17 cells have 
been attributed to the secretion of cytokines, such as IL-17. IL-17 
has many biological functions, such as recruiting both neutro-
phils and monocytes, regulating innate immunity, enhancing 
B cell functions, and regulating the release of pro-inflammatory 
cytokines including TNF and IL-1β (14). Furthermore, high levels 
of IL-17 exist in both serum and peripheral blood mononuclear 
cells (PBMCs) of MS patients (15). In vitro study, Th17 cells could 
be induced by two different conditions from naïve CD4+ T cells. 
One subset considered as non-pathogenic Th17 cells, was gener-
ated in the presence of TGF-β plus IL-6, which could abrogate 

Th17 cell-mediated pathology (16); the other subset was gener-
ated by IL-1β, IL-6, IL-23, and TGF-β, which was considered as 
pathogenic Th17 cells (17).

DYSReGULATeD miRNAs iN MS

MicroRNAs are an emerging group of promising biomarkers 
in various autoimmune diseases because of their small size and 
stable structure in body fluids. Studying the relationships between 
miRNAs and MS has been a hot topic in recent years. Growing 
evidence shows that miRNA expression profiles might facilitate 
identifying the different patterns of clinical progression of MS (18).

miRNA Profiling of Human Body Fluids
Many kinds of body fluids, such as blood, serum, plasma, CSF, and 
urine, can be a source to measure the expression level of miRNAs. 
The first study of circulating miRNA in plasma was performed by 
Siegel et al., revealing significant involvement of miRNAs in MS 
and suggesting that miRNAs may serve as potential prognostic and 
diagnostic biomarkers for MS (19). This study used microarray 
analysis to identify six plasma miRNAs, miR-614, miR-572, miR-
648, miR-1826, miR-422a, and miR-22, which were significantly 
upregulated, and miR-1979 that was significantly downregulated 
in MS patients (19). miR-92a-1 was differentially expressed in 
relapsing–remitting MS (RRMS) versus secondary progressive 
MS (SPMS) and RRMS versus healthy controls (HCs). It was also 
associated with the expanded disability status scale and disease 
duration. The Let-7 family of miRNAs differentiated SPMS from 
HCs and RRMS from SPMS, miR-454 differentiated RRMS from 
SPMS, and miR-145 differentiated RRMS from HCs and RRMS 
from SPMS (19, 20). Other studies employed real-time RT-PCR 
and found higher expression of miR-155 in serum (21), and 
miR-141 and miR-200a in CD4+ T cells of MS patients in relapse 
than in remission (22). In addition, miR-141 and miR-200a may 
take part in promoting Th17 cell differentiation while inhibiting 
regulatory T (Treg) cells (22). miR-155 promotes T cell-driven 
inflammation by targeting heme oxygenase 1 (23). Using next-
generation sequencing (NGS) and microarray analysis to test 
whole blood from MS patients, Keller et al. found that 16 miR-
NAs were downregulated and 22 miRNAs were upregulated in 
clinical isolation syndrome and RRMS. Five miRNAs were down-
regulated, and three miRNAs were upregulated as confirmed by 
microarray analysis. miR-16-2-3p was significantly upregulated, 
and miR-20a-5p and miR-7-1-3p were downregulated as meas-
ured by both methods (24). Compared with another study using 
microarray analysis, 26 miRNAs were downregulated, and 1 was 
upregulated in whole blood of MS patients. The downregulated 
group of miRNAs was found in all subtypes of MS. miR-17 and 
miR-20a, which were significantly under-expressed in MS, are 
regulators of genes involved in T cell activation (25). Sondergaard 
et al. investigated the expression of miRNAs in PBMCs as well 
as plasma and serum samples from RRMS patients by microar-
ray analysis and identified miR-145, miR-660, and miR-939 as 
significantly and differentially distributed in plasma of RRMS 
patients compared with HCs (20).

To classify the possible function of deregulated miRNAs in 
target cells, many peripheral leukocyte subgroups have been 
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TABLe 1 | MicroRNAs (miRNAs) involved in T helper 17 (Th17) cells development in multiple sclerosis (MS) and the experimental autoimmune encephalomyelitis (EAE) 
model.

miRNA expression change Target Function Reference

miR-155-3p Upregulated in CD4+ T cells in EAE mice  
compared with naïve mice

Dnaja2 and Dnajb1 Promote pathogenic Th17 differentiation (48)

miR-21 Upregulated in non-pathogenic Th17 cells compared  
with Th1, Th2, and regulatory T (Treg) cells, induced in  
polarizing conditions

SMAD-7 Promote non-pathogenic Th17 differentiation (45)

miR-17-92 
cluster

miR-17-5p was upregulated in CD4+ T cells from MS patients  
compared with healthy individuals

PTEN and Ikaros 
family zinc finger 4

Promote pathogenic Th17 differentiation (55, 67)

miR-183C Highly expressed in pathogenic Th17 cells compared with  
other Th subsets

Foxo1 Promote pathogenic Th17 pathogenicity (52)

miR-155 Significantly higher in sera of MS patients during relapse  
than MS patients during remission and healthy individuals

Ets-1 Promoted Th17 and Th1 differentiation  
during the induction phase of EAE

(21, 47)

miR-212 Upregulated depends on aryl hydrocarbon receptor under  
Th17-polarizing conditions in naïve T cells from healthy mice  
compared with aryl hydrocarbon receptor knockout mice

Bcl6 Promote non-pathogenic Th17 differentiation (60)

miR-301a Upregulated in ex vivo Th17 subset compared with Th1,  
Th2, and naïve T-helper cells

PIAS3 Promote pathogenic Th17 differentiation (51)

miR-326 Higher in Th17 cells compared with Th1, Th2, and Treg cells  
in relapsing–remitting MS (RRMS) patients

Ets-1 Promote non-pathogenic Th17 differentiation  
in vitro and general Th17 in vivo

(39)

Let-7e Upregulated in encephalitogenic CD4+ cells from EAE mice  
compared with CD8+ T cells and non-T cells

Interleukin (IL)-10 Enhance IL-17 and interferon (IFN)-γ production  
in the encephalitogenic CD4+ T cells

(40)

miR-141  
and 
miR-200a

Both upregulated in CD4+ T cells of MS patients during relapsing  
phase compared with remitting phase and control groups

SMAD2, GATA3, and 
FOXO3 in relapsing 
phase of MS

Probably through induce the differentiation  
of Th17 and inhibiting differentiation to  
Treg cell in MS patients

(22)

miR-223 Upregulated in CD4+ and CD11b+ cells isolated from spleens  
of EAE models compared with healthy control (HC) mice

Roquin Probably enhancing DC cell activation  
and subsequently promote Th1 and  
Th17 differentiations

(38, 49)

miR-26a Significantly lower in PBLs of patients with RRMS compared with  
HCs, and lower expression in brain tissues from EAE mice

IL-6 Suppress Th17 differentiation and  
upregulate Treg function during EAE

(83)

miR-20b Decreased in CD4+ T cells and significantly downregulated in  
non-pathogenic Th17 cells during EAE compared with  
neutral-treated cells

Related orphan 
receptor (ROR) γt 
and signal transducer 
and activator of 
transcription 3

Suppress non-pathogenic Th17 differentiation (44)

miR-30a Decreased in CD4+ T cells in MS patients compared with HCs,  
and in pathogenic Th17 cells compared with naïve T cells

IL-21R Suppress pathogenic Th17 differentiation (56)

miR-146a Upregulated in CD4+ T cells during EAE compared with mice  
before EAE induction

TRAF6 and IRAK1 Suppress general Th17 differentiation (7)

miR-15b Downregulated in CD4+ T cells but not in the CD8+ T cells or  
non-T cells of MS patients

OGT Suppress pathogenic Th17 differentiation (43)

miR-30a Decreased in general Th17 cells from MS patients and EAE  
animal models compared with naïve CD4+ T cells and Treg cells

IRF4 Suppress Th17 differentiation in vitro and  
during EAE

(17)

miR-132 Downregulated in CD4+ cells from EAE mice compared  
with naïve control

AChE Decrease the secretion of IL-17 and IFN-γ  
and suppressed T cell proliferation

(61)
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isolated and examined. In a microarray analysis, 21 miRNAs had 
decreased expression, and 20 of them were shown to affect the 
expression of their target genes that are involved in the immune 
system (26). Studies using NGS to obtain miRNA expression 
profiles in a pilot cohort study of SPMS found that 97% of miRNA 
candidates were downregulated and 42 miRNAs were dysregu-
lated in CD4+ T  cells. Five miRNAs (miR-21-5p, miR-26b-5p, 
miR-29b-3p, miR-142-3p, and miR-155-5p) were significantly 
downregulated and confirmed by TaqMan assays, which targeted 
suppressor of cytokine signaling 6 that negatively regulates T cell 

activation (27). Another study using microarray analysis revealed 
increases of miR-128 and miR-27b in naïve CD4+ T  cells and 
miR-340 in memory CD4+ T cells from patients with MS (28).

Compared with peripheral blood, CSF is more ideal to monitor 
CNS disease activity because of its close proximity to lesions, par-
ticularly the MS nidus. However, biomarkers in CSF are limited 
because a lumbar puncture is a traumatic procedure. Through 
global miRNA profiling, Haghikia et al. quantitatively confirmed 
that miR-922, miR-181c, and miR-633 in the CSF are differen-
tially regulated in patients with MS (29) (Table 1). Another study 
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demonstrated that miR-150 was elevated in MS and associated 
with markers of inflammation in CSF, such as the presence of 
oligoclonal bands, CSF cell counts, immunoglobulin G index, 
and candidate protein biomarkers C-X-C motif chemokine 13, 
matrix metallopeptidase 9, and osteopontin. This trend would be 
reversed after 12 months of treatment by natalizumab (30).

miRNA Profiling of Lesions in Human  
and Animal Model
Brain-resident cells inside MS lesions may be more representative 
of immunological changes in MS patients. This type of study may 
provide important and new insights into pathological hallmarks 
and reveal potential targets for therapy. Junker et  al. obtained 
miRNA profiles of active and inactive MS lesions using laser 
capture microdissection to isolate single cells for in vitro culture. 
As a result, 20 miRNAs were at least twice as abundant in active 
lesions and 22 miRNAs were at least twice as abundant in inactive 
lesions. miR-34a, miR-155, and miR-326, which were upregulated 
in active MS lesions, targeted the 3′-untranslated region of CD47 
to reduce CD47 expression in brain-resident cells, particularly 
miR-155 (31). CD47, a ubiquitously expressed membrane glyco-
protein, is abundantly expressed on phagocytic cells (32). The 
function of phagocytosis would be enhanced upon reduction of 
CD47 in macrophages. Lescher et al. analyzed miRNAs in human 
MS lesions together with myelin oligodendrocyte glycoprotein 
(MOG)35–55 peptide-induced EAE in C57/BL6 mice and MOG1–125 
peptide-induced EAE in marmoset monkeys. The results demon-
strated that the miRNA profiles of lesions in mice and marmoset 
monkeys were consistent with the miRNA profiles of active 
human MS lesions. miR-155, miR-326, miR-142-3p, miR-146a, 
miR-146b, and miR-142-5p were all significantly upregulated in 
active human MS lesions (33), and the miR-142-5p expression level 
was significantly increased in normal frontal white matter of MS 
patients, which was proven by upregulation of miR-142a-5p in the 
lumbar spinal cord at peak and post-peak phases of EAE, together 
with miR-142a-3p (34). However, miR-181a and miR-181-b levels 
in brain white matter from MS patients are downregulated (35).

Pathological and autopsy samples from patients are a valuable 
source that can reflect real pathological changes induced by a cer-
tain disease. In the case of MS, studies of brain tissue, circulating 
leukocytes, and fluids have shown altered expression of various 
miRNAs related to disease progression. miRNA biomarkers 
screened in specimens derived from MS lesions are more promis-
ing to represent the disease process, inflammatory cell motility, 
and/or therapeutic responses.

miRNAs MeDiATe Th17 CeLL 
DiFFeReNTiATiON iN MS AND  
THe eAe MODeL

As mentioned earlier, various miRNAs are related to the complex 
biological networks of MS. Investigations of miRNAs have found 
upregulation of miR-29b (36), miR-141, miR-200a (22), miR-155  
(37), miR-223 (38), miR-326 (39), let-7e (40), and miR-448 
(41), and significant downregulation of miR-15a/16-1 (42) and 
miR-15b (43) in CD4+ T cells of MS patients and EAE models. 

miR-20b (44) was decreased, while miR-21 (45) and miR-590 
(46) were increased significantly in Th17  cells compared with 
Th1, Th2, and inducible Treg cells. In vivo and/or in vitro studies 
had demonstrated that most of these miRNAs mediated Th17 cell 
differentiation. The mechanisms of miRNAs in Th17 cell differen-
tiation are shown in Figure 1.

Promotion in Th17 Cell Differentiation
Silencing or knockdown of miR-326, miR-155 (21), let-7e, and 
miR-21 attenuate EAE with fewer Th17 cells, while their overex-
pression leads to more inflammation in the CNS and severe EAE. 
By contrast, miR-20b shows opposing trends (44). Further study 
has indicated that miR-326 and miR-155 promote Th17 cell dif-
ferentiation by translationally inhibiting Ets-1, a negative regula-
tor of Th17 cell differentiation (39, 47). miR-155 and miR-223, 
which are confirmed to be upregulated in MS and EAE models, 
simultaneously promote Th17 and Th1  cell differentiation in 
EAE mice (21) with the requirement of optimal dendritic cell 
production of cytokines IL-1β, IL-6 and IL-23 (37, 38). miR-155 
in Th17 cells can also cause autoimmune inflammation through 
the clinically relevant IL-23–IL-23R pathway (47). miR-155-3p 
and miR-155-5p are two key miRNAs produced by the miR-155 
host gene. miR-155-3p promotes Th17  cell differentiation and 
autoimmune demyelination by suppressing two heat shock 
protein 40 genes, Dnaja2 and Dnajb1 (48). miR-223, a myeloid 
cell-specific miRNA, is specifically upregulated in spinal cords 
and lymphoid organs, and deficiency of miRNA-223 reduces 
Th17  cell infiltration into spinal cords by inhibiting dendritic 
cell activation (49). IL-10a, as a negative regulator of EAE by 
suppressing Th17  cells and promoting Th2 cells, is a selec-
tively repressed target of let-7e (50). miR-21 is upregulated 
in non-pathogenic Th17  cells, which intrinsically promotes 
non-pathogenic Th17 cell differentiation and autoimmunity by 
targeting and inhibiting SMAD-7, a negative regulator of TGF-
β signaling. Moreover, under-expression of miR-21 in CD4+ 
T  cells leads to decreased SMAD2/3 activation and IL-2 sup-
pression, resulting in reduced sensitivity to the effects of TGF-β 
in T cells (45). In vivo and in vitro studies of rodent EAE models 
showed that myelin antigen stimulation results in significant 
upregulation of miR-301a, miR-21, and miR-155 in CD4+ T cells 
(51). Using specific miRNA antagonists for in vitro modulation, 
the study revealed that miR-301a contributes to the develop-
ment of the pathogenic Th17 subset by targeting PIAS3 mRNA 
through the IL-6/23–STAT3 pathway (51). miR-183C contains 
three important miRNAs (miR-183, miR-96, and miR-182),  
is a Dicer1-regulated miRNA and is significantly expressed in 
pathogenic Th17  cells. Overexpression of miR-96 specifically 
promotes pathological cytokine production in pathogenic 
Th17  cells, such as IL-17A, IL-17F, IL-22, and granulocyte-
macrophage colony-stimulating factor, promoting pathological 
effects of Th17 cells and leading to a higher disease score in EAE 
models. Upregulation of miR-183C can be induced by IL-6 in 
Th17-polarized naïve T  cells through IL-6-STAT3 signaling 
and suppressed by TGF-β (52). miR-448-upregulated miRNAs 
in CD4+ T cells (especially pathogenic Th17 cells) and CSF of 
MS patients were induced by IL-1β through the NF-κB pathway. 
The upregulation of miR-448 increases the expression levels of 
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signaling pathway is downstream of most miRNAs.

5

Chen et al. miRNA in Th17 of MS

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1256

IL-17A and RORγt, favoring pathogenic Th17 cell differentiation 
through targeting protein tyrosine phosphatase non-receptor 
type 2 (41), as an anti-inflammatory player with the capacity to 
restrain the expression of pro-inflammatory mediators (53).

The miR-17-92 cluster, as a CD28 stimulation-dependent 
factor, is critical for Treg accumulation and functions during an 
autoimmune-mediated stress response (myelin-induced EAE 
models) (54). It also promotes Th17 cell differentiation and impairs 
induction of Treg cell differentiation. Lowing miR-17-92 expres-
sion results in anabatic EAE and failure of clinical remission (54).  
miR-17 and miR-19b are the two core components of the miR-17-92 
cluster. miR-19b promotes non-pathogenic Th17 cell differentiation 
by repressing the expression of phosphatase and tensin homology 

(PTEN), a negative regulator of the PI3K–AKT–mTOR signaling 
pathway. miR-17 promotes pathogenic Th17 cell differentiation by 
inhibiting Ikaros family zinc finger 4 (IKZF4) (55).

Suppression of Th17 Cell Differentiation
miR-30a is downregulated in CD4+ T cells in MS patients and in 
pathogenic Th17 cells in EAE models. Overexpression of miR-30a  
inhibits pathogenic Th17  cell differentiation and reduces the 
severity of EAE by targeting mRNAs of IL-21 receptor and IRF4 
(56). miR-30a also inhibits the proliferation and invasion of 
prostate cancer cells by targeting mRNA of sine oculis homeobox 
homolog 1 (57). miR-146a has been identified as a critical regulator 
that reduces inflammatory gene expression (58) with the opposing 
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function to miR-155. Both of them are highly upregulated in 
human MS lesions. miR-146a controls Th17 cell differentiation by 
targeting TRAF6 and IRAK1, partially through modulation of the 
T cell autocrine IL-6/IL-21 pathway (7). Studies have also shown 
potential involvement of STAT3 and RORγt in miR-20b-induced 
non-pathogenic Th17 cell suppression in vitro, while the STAT3 
gene has been reported as a candidate target of miR-20b (44). The 
orphan nuclear receptor RORγt has also been described as a key 
transcription factor that participates in CD4+ T cell differentiation 
toward the IL-17+ Th17  cell lineage. RORγt is also a potential 
target of NF-κB, especially c-Rel and p65, which are major fac-
tors in Th17  cell differentiation and autoimmune inflammatory 
disease. miR-15b is a downregulated miRNA in CD4+ T  cells 
of MS patients and EAE models. miR-15b inhibits pathogenic 
Th17 cell differentiation by targeting its potential target, O-linked 
N-acetylglucosamine transferase (OGT), and suppresses RORγt 
through the NF-κB (c-Rel and p65) pathway (43). miR-132, which 
is a member of the miR-132/212 cluster, is highly expressed in the 
brain (59). The miR-132/212 cluster is upregulated by aryl hydro-
carbon receptor (AHR) activation under Th17 cell-polarizing con-
ditions and affects non-pathogenic Th17 cell differentiation (60). 
Activation of AHR by 2,3,7,8-tetrachlorodibenzo-pdioxin (TCCD) 
upregulates the expression of miR-132 in CD4+ cells, resulting in 
decreased IL-17 and interferon (IFN)-γ expression and suppressed 
T cell proliferation by targeting acetylcholinesterase (61).

miRNA ReSPONSeS TO DiSeASe-
MODiFYiNG TReATMeNTS

Investigations of miRNA response to clinical disease-modifying 
treatments are valuable. Several studies have focused on expres-
sion changes of miRNAs in MS and verified that miRNA expres-
sion correlates with the treatment response in MS.

interferon-β
Interferon β-1b was the first disease-modifying drug recom-
mended for MS treatment with long-term efficacy and good 
tolerability. IFN-β suppresses IL-23 production and increases 
IL-27 and IL-10 production by dendritic cells, lowers the ability to 
promote IL-17 expression by CD4+ T cells, and downregulates the 
expression of IL-17 and IL-10 by activated STAT3 and STAT1 (62).

Hecker et al. observed significant expression changes of miR-
NAs in PBMCs after 1 month of IFNβ-1b treatment. Three miRNAs 
(miR-29a-3p, miR-29c-3p, and miR-532-5p) were confirmed to 
be downregulated. In addition, the miR-29 family was associated 
with upregulated IFN-β-responsive genes (63). miR-29 induces 
apoptosis in a p53-dependent manner by directly targeting p85α 
and CDC42 that are negative regulators of p53 (64). p53 functions 
as an inflammation suppressor and is a crucial negative regulator 
of Th17  cell differentiation via the STAT3 signaling pathway. 
Another study also affirmed that the total expression change of 
miRNAs in PBMCs is markedly elevated after 3 and 6 months of 
IFN-β therapy compared with pre-treatment levels. miR-26a-5p, 
which is mainly expressed in neural tissues, has been identified 
as the most significantly upregulated miRNA in IFN-β-treated 
RRMS patients. However, the significant expression change was 
only found in IFNβ-responder RRMS patients after 3 months of 

treatment. The DLG4 gene is a potential target of miR-26a-5p, 
which encodes post-synaptic density protein 95 that plays a role 
in the signaling mechanisms of glutamate receptors (65).

Natalizumab
Natalizumab is a recombinant humanized immunoglobulin that 
blocks α4-integrin at the surface of activated T  lymphocytes 
and other mononuclear leukocytes, preventing leukocytes from 
adhering to endothelial cells. It was notable that the frequency 
of Th17  cells increased in peripheral blood and IL-17 levels 
increased in serum of MS patients during natalizumab treatment 
and return to baseline after discontinuing natalizumab (66).

A recent study of miRNAs showed that miR-17 and miR-29 are 
upregulated in CD4+ T cells during relapse and downregulated 
after natalizumab treatment (67–69). miR-17 is a regulator of 
genes involved in T cell activation (25) and promotes Th17 cell 
differentiation by inhibiting IKZF4 (55). After 6 months of natali-
zumab therapy, miR-155 and miR-132 were upregulated in MS 
patients, whereas miR-146a and miR-26a were downregulated. 
Overexpression of miR-132 decreases IL-17 and IFN-γ expression 
and suppresses Th17 cell differentiation (61) by targeting acetyl-
cholinesterase (70). Analyses of miRNAs in whole blood of MS 
patients also revealed significant expression changes. Let-7c and 
miR-125a-5p were decreased, while miR-642 was increased after 6 
and 12 months of natalizumab therapy compared with the baseline. 
In addition, the first natalizumab infusion was sufficient to trigger 
the change in expression of these miRNAs. Furthermore, miR-320,  
miR-320b, and miR-629 were differentially and significantly 
expressed between progressive multifocal leukoencephalopathy 
and non-progressive multifocal leukoencephalopathy groups 
after 12  months of natalizumab therapy (71). In a longitudinal 
study on RRMS patients, miR-18a, miR-20b, miR-29a, and  
miR-103 in the blood were proved to be the most strongly upregu-
lated miRNAs by natalizumab (72). EAE in miR-106a-363 (con-
tain miR-20b)-deficient mice had an earlier onset of symptoms 
and a more severe disease course. Th17-related pro-inflammatory 
genes RORγt and STAT3 which were predicted as targets of  
miR-20b, were upregulated in the spinal cord tissue (72).

Fingolimod
Fingolimod is a sphingosine-1-phosphate analog that inhibits 
the egress of lymphocytes from lymphoid tissues and their 
recirculation, especially CCR7-expressing CD4+ and CD8+ 
T cells. Inhibited IL-17 and IFN expression has been found dur-
ing fingolimod treatment. Moreover, the level of Th17  cells in 
peripheral blood fell dramatically at 1 month of treatment, but 
the percentage was increased among CD4+ T cells at 3 months 
until the end of follow-up (73).

A study of the transcriptome in circulating CD4+ T cells after 
3 months of treatment identified 890 genes that were expressed 
differentially, 12 of which are precursors of mature miRNAs 
including miR-216b, miR-142, and miR-548c (74). miRNAs 
(miR-15b, miR-23a, and miR-223) in serum of MS patients 
showed slight reduction after fingolimod treatment (75), and 
a significant change was found after 6  months treatment (76). 
miR-15b suppresses Th17 differentiation by targeting OGT and 
suppresses RORγt through the NF-κB pathway (43). miR-223, a 
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myeloid cell-specific miRNA, reduces Th17 cell infiltration into 
spinal cords by inhibiting dendritic cell activation (38, 49).

Hematopoietic Stem Cells  
Transplantation (HSCT)
In addition to the treatments demonstrated earlier, studies in 
recent decades found that HSCT could also have beneficial 
effects on MS. A recent study revealed that miR-16, miR-155, and 
miR-142-3p which were upregulated in CD4+ and CD8+ T cells, 
were significantly downregulated after autologous HSCT in MS 
patients. Meanwhile the expressions of these miRNAs returned 
to normal levels at 6 months and remained stable to the end of 
the follow-up (77). miR-16 and miR-142-3p had been reported 
in regulating Treg cells activity, while miR-155 was a positive 
Th17 cell differentiation regulator by inhibiting Ets-1, a negative 
regulator of Th17 cells differentiation (39, 47).

ADvANCeS iN miRNA TeCHNiQUeS

We acknowledge different research groups may report different 
expression patterns of each miRNA even in the same disease 
stage and same tissues, that mainly due to different techniques for 
miRNA analysis. The RNA-seq and qRT-PCR are the two main 
methods for the expression pattern analysis for miRNAs. RNA-seq 
is good for large-scale analysis and occasionally used to identify 
novel ncRNAs including miRNAs. qRT-PCR was mostly used for 
the given miRNA analysis, and nowadays, several PCR-array kits 
were developed for large-scale known miRNA analysis in human, 
rat or mouse. Besides these two common methods, several new-
developed methods were reviewed by Kalogianni et al. (78), such 
as hybridization chain reaction, target recycling, rolling circle 
amplification for signal enhancement, target amplification, and 
several sensing strategies without nucleic acid amplification. 
Taken together, in addition to the analysis methods, the absence 
of reproducibility and clear miRNA pattern identified in studies 
may be owing to differences in MS ethnic populations from dif-
ferent countries, disease status, ages, and genders.

To date, most studies are based on a single cell type, and the 
regulation of miRNAs among different cell types is still unknown. 
Recent studies indicated that extracellular vesicles including 
exosomes, microvesicles, and apoptotic bodies are bioactive 
vesicles working as miRNA carriers released by many living cells, 
of which, exosomes are smaller (30–100 nm) and originated from 
endosomal vesicles through secretion from intracellular luminal 
space, while microvesicles (100–1,000  nm, from activated or 
apoptotic eukaryotic cells) and apoptotic bodies (1–5 µm, from 
late stage of apoptotic cells) are formed by extensive plasma mem-
brane budding. All these extracellular vesicles may serve as novel 
mediators for intracellular communication (79). Besides theses 
natural miRNA carriers, several man-made carriers were devel-
oped to transfer miRNAs into different cells or tissues to studying 
the function of miRNAs or for therapeutical uses. Because of the 
high molecular weight, low stability, negative charge, and high 
structural stiffness, it is difficult to transport miRNAs into the 
cytoplasm. Several methods were developed including liposomes, 
solid lipid nanoparticles, nanostructured lipid carriers, polymer-
based nanoparticles, etc. (80). To address the limitations of 

polymeric and lipid-based nanoparticles, lipid–polymer hybrid 
nanoparticles have been developed (80). In addition, high-
density lipoprotein was also used as miRNA carriers as it was used 
as endogenous vehicle for the transportation and metabolism 
of many different bioactive molecules including miRNAs (80). 
Furthermore, aptamer, peptide, antibody, and folate were used 
to combine with abovementioned methods for targeting miRNA 
delivery (80). Another important miRNAs delivering system is 
viral vectors. Now, there are several virus systems were devel-
oped for genes or ncRNAs (including miRNAs) delivery, such 
as lentivirus, retrovirus, adenovirus, adeno-associated virus, etc. 
Also, the abovementioned delivery system can be used to target 
or silence miRNAs expression, which is also very important for 
targeting endogenous miRNAs and identifying the role of miRNA 
or for the therapeutic uses. For miRNA silencing, one way is using 
oligonucleotides delivered by the abovementioned methods to 
inhibit miRNAs. Several chemical modification, such as antago-
mirs, 2′-MOEs, LNAs, and 2′-F/MOEs, were used to keep the 
stability of single-strand miRNA inhibitors (81). In addition, sev-
eral small molecules were identified to inhibit miRNA function, 
such as polylysine and trypaflavine, which usually functioned as 
a inhibitor in miRNA-processing pathway (82). Another way to 
inhibit miRNA function is using viral vector to express multiple 
miRNA target mimics, which could bind endogenous miRNAs 
and left few miRNAs to bind their real targets.

PeRSPeCTiveS AND CONCLUSiON

In all, miRNAs have been shown to be key regulators in mediating 
CD4+ T cell differentiation toward Th17 cells, mostly through the 
STAT3 signaling pathway. Some miRNAs may be biomarkers and 
therapeutic targets in the diagnosis/prognosis and treatment of 
disease activity and progression. Modulating the expression of 
miRNAs by specific drugs might result in fewer Th17 cells or even 
inhibition of the functions of pathological Th17 cells, which would 
be a promising anti-inflammatory treatment for MS. Several 
methods have been developed to regulate the level of miRNAs in 
tissues or cells, which hold the opportunity for disease treatment 
by targeting the dysregulated miRNAs. Further study may focus 
on miRNAs involved in cell-to-cell communication, and a future 
challenge will be to characterize such communication between 
different cell types and the possible regulatory mechanisms of 
miRNAs in the whole immune system.
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