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Abstract

Tissue patterning during development relies on cell communication by secreted proteins and
receptors that engage in complex signaling crosstalk to induce distinct cell behaviors in a context-
dependent fashion. Here I summarize recent insights into basic mechanisms that control the
distribution and activities of transforming growth factor beta, Wnt, Hedgehog, and Notch proteins, by
regulating trafficking decisions during secretion and endocytosis.

Introduction and context
How signaling molecules enable cells of multicellular
organisms to communicate and assemble tissues and
organs is a central question in biology. Embryo
manipulation and molecular genetics established that a
surprisingly small number of secreted proteins of only a
handful of conserved gene families govern a multitude
of cell-fate decisions. Much of the diversity in signaling
outputs at the level of target gene regulation is attributed
to tissue-specific signal integration in elaborate net-
works. But while the number of known interactions
between signaling pathways increases daily, our conven-
tional charts of this crosstalk give little account of how
the molecules involved reach their correct localization.
In part, this oversimplification is due to the fact that
the role of trafficking and its regulation are not well
understood. However, advances in cell biology and
improved imaging technologies now allow us to follow
protein trafficking at high resolution and in real time.
Imaging, combined with sensitive genetic screens and
sophisticated manipulation of protein and membrane
trafficking, established that localization is one of the key
determinants regulating signal outputs.

The present article will review the most recent important
findings on how trafficking controls signaling at the level
of polarized secretion, protein processing, and endocy-
tosis. As each of these fields are limitless, they are only

represented here by illustrative examples to emphasize
that they are intertwined, and that they need to be
integrated to appreciate how intimately signal regulation
is coupled to trafficking.

Major recent advances
Regulated apical-basal sorting directs signal deployment
The most basic decision in trafficking is whether a
protein is sorted apically or basolaterally in polarized
epithelial cells – for example, to position ion channels
and proton gradients. The diffusion barrier of tight
junctions, which insulate apical from basolateral mem-
branes, can also limit access of ligands to receptors, as
shown for transforming growth factor beta (TGF-ß) [1].
Protein sorting into distinct exocytic carriers occurs in the
trans-Golgi network (TGN) or in endosomes [2].
Determinants of apical sorting include glycosylpho-
sphatidylinositol (GPI) anchors, which mediate mem-
brane attachment and oligomerization in lipid rafts [3,4]
(reviewed in [5]), as well as crosslinking of carbohydrate
side chains by apical sorting receptors such as the
mannose-binding lectin VIP36 (vesicular integral
membrane protein of 36 kDa), or the raft-independent
transporter, galectin-3 [6-8]. By contrast, basolateral
sorting involves cytosolic tails of transmembrane pro-
teins that bind endosomal AP-1B (adaptor protein
complex 1B) [9] or other cytoplasmic adapter proteins
interacting with clathrin. Depletion of clathrin in MDCK
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(Madin Darby canine kidney) cells thus disrupts
basolateral sorting without diminishing polarized secre-
tion of apical proteins [10].

But how do proteins reach lateral membranes if they lack
a cytosolic domain? Studies on the morphogens Hedge-
hog (Hh) andWingless (Wg) inDrosophilawing imaginal
discs suggest that specific carrier proteins mediate
transcytosis from the apical to the lateral plasma
membrane. In this system, production of Hh in the
posterior compartment gives rise to a signaling gradient
in anterior cells, whereas Wg secreted at the dorso-ventral
boundary moves dorsally and ventrally. Secretion of Wg
and Hh is regulated by palmitoylation and, in the case of
Hh, a cholesterol adduct [11,12]. Both Wg and Hh are
released basolaterally in association with lipoprotein
particles [13-15], but how lipoproteins extract their cargo
from the plasma membrane is poorly understood.
Recent work in mammalian cells confirmed that binding
of the Wg-related protein Wnt3a to lipoprotein and
basolateral secretion depend on Wnt3a palmitoylation
[16]. Wnt proteins are palmitoylated in the endoplas-
matic reticulum by Porcupine and exit the TGN upon
association with Wntless (Wls), a transporter that
is recycled from endosomes to the Golgi by the retromer
complex [17-20]. If endocytosis in Drosophila imaginal
discs is blocked by dominant negative dynamin [21], or

and Arrow [22-24], extracellular Wg is trapped on the
apical plasma membrane, suggesting that Wls targets
Wnt proteins apically. So how is Wg forwarded from
apical to lateral membranes?

A first hint was that Wg fails to move across mutant
clones of cells lacking the glypicans Dally (Dly) and
Dally-like protein (Dlp) [22]. Glypicans are GPI-
anchored heparan sulfate proteoglycans that are inter-
nalized by the lipid raft scaffold protein flotillin/reggie
via a clathrin- and caveolin-independent route [25].
Immunostaining and antibody uptake by a green
fluorescent protein-Dlp fusion protein showed that Dlp
initially localizes to the apical membrane, but that it
is efficiently recycled basolaterally within less than
90 minutes after endocytosis [21]. Moreover, in mutant
cells lacking dynamin function or Dlp, apical-basal
transcytosis of Dlp or the basolateral targeting of Wg,
respectively, were blocked, indicating that Wg is targeted
laterally by Dlp via a dynamin-dependent endocytic
route [21].

Dly and Dlp also enhance the activity and spreading of
Hh [26], bind lipoprotein particles, and colocalize with
Hh and its receptor Ptc (Patched) in vesicles of signal
receiving cells [27,28]. Colocalization and stimulation of

Hh signaling were lost if the GPI anchor of Dlp was
substituted by a transmembrane domain [21]. Does this
mean that both Wg and Hh rely on glypicans for apical-
to-basal transcytosis as a gate to board the basolateral
‘lipoprotein shuttle’ that controls gradient formation? In
support of this model, secretion of Wg and Hh in the
wing imaginal disc also depends on reggie-1/flotillin-2
[29]. Furthermore, mutant forms of Hh that cannot be
lipid-modified fail to sort basolaterally and instead
diffuse apically, giving rise to an abnormally shallow
signaling gradient [30]. Taken together, these studies
suggest that Wg and Hh are transcytosed from the apical
to the lateral plasma membrane and transferred to
lipoprotein particles by glypicans (Figure 1a).

Separate entry pathways mediate distinct signal outputs
Another critical aspect of protein trafficking concerns the
mechanisms of signal regulation in endocytic compart-
ments. It is well established that endocytosis is important
for ligand-induced receptor degradation during signal
attenuation and reduction of the extracellular concentra-
tion of morphogens in the extracellular space. However,
endocytosis is equally important for signaling molecules
to access specific endosomal signaling platforms and
sorting stations (for a survey of existing endocytic
pathways, see [31,32]). The best known uptake routes
initiate from clathrin-coated pits or caveolae, which are
severed from the plasma membrane by dynamin. TGF-ß
receptors enter both compartments, but only coated pits
enable access to the Smad anchor for receptor activation
(SARA) on early endosomes, and hence activation and
nuclear translocation of cytoplasmic Smad transcription
factors. By contrast, uptake via caveolae leads to
recruitment of the ubiquitin ligase Smurf2 and receptor
degradation [33]. Degradation of the related bone
morphogenetic protein (BMP) receptors via a caveolar
route increases upon dephosphorylation by Dullard,
which attenuates the anti-neuralizing function of BMP
signaling during Xenopus gastrulation [34]. Surprisingly,
a caveolar uptake has now been found to also mediate
ligand-degradation of the epidermal growth factor
receptor (EGFR), whereas clathrin-mediated uptake
allows recycling and sustained EGFR signaling [35].
This is unexpected in light of the conclusion from earlier
studies that EGFR is internalized mainly through
clathrin-coated pits (reviewed in [36]).

Caveolar uptake can also promote signaling, for exam-
ple, of Wnt proteins. To signal via the canonical pathway,
Wnt ligands bind complexes of Frizzled (Fz) receptors
with the co-receptor lipoprotein-related protein (LRP)5
or LRP6. In response to Wnt3a, LRP6 binds caveolin and
together with Dvl (Dishevelled) forms intracellular
aggregates that inhibit the kinase GSK3ß (glycogen
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synthase kinase 3 beta) in order to stabilize ß-catenin
and induce target genes [37,38]. Depletion of caveolin in
cultured cells inhibits both Wnt3a-induced endocytosis
and signaling of LRP6, indicating that canonical Wnt
signaling depends on caveolar uptake [37]. By contrast,
in cells depleted of clathrin, canonical Wnt signaling was
not impaired. However, clathrin and the adapter
molecule ß-arrestin internalize complexes of Fz with
Wnt5a and Wnt11, which activate distinct, non-canoni-
cal signal transduction pathways to specify planar cell
polarity and induce convergence extension movements
during gastrulation [39-41]. Interestingly, binding to the
secreted Wnt antagonist Dkk1 (dickkopf-1) redistributes
LRP6 from caveolae to a clathrin-dependent uptake route
[42]. Together, these studies show that receptor endo-
cytosis is essential for Wnt signaling, and that uptake
by distinct entry pathways is tightly regulated and
mediates the activation of different intracellular signal-
ing cascades.

Coupling of endocytosis and protein processing
to regulate signal activation
During endocytosis, signaling molecules are often
processed by proteases to remove an inhibitory propep-
tide, or to shed a trans-membrane domain or release a
cytoplasmic tail. Sequential cleavage of Notch by furin,
ADAM10 (a disintegrin and metallopeptidase domain 10),
and g-secretase leads to the release of the Notch
intracellular domain (NICD), which enters the nucleus
to regulate target genes [43]. It is well established that
Notch is hyperactivated in lethal (2) giant discs (lgd)
mutant flies, where transport from early to late endo-
somes is inhibited [44-46]. However, whether g-secretase
cleavage occurs in endosomes has been controversial
[43]. A recent study in Drosophila wing and eye imaginal
discs now has shown that null mutations in dynamin,
Rab5 or the endocytic syntaxin Avl (Avalanche) all
diminish the amount of NICD, suggesting that cleavage
occurs after endocytosis [47]. Consistent with this view,
immunostaining of Notch and NICD in dividing
Drosophila sensory organ precursor cells revealed the
presence of cleaved Notch on SARA-positive early
endosomes of only one of the asymmetric daughter
cells [48]. In addition, nuclear translocation, but not the
production of NICD, requires acidification of endo-
somes by the aquaporin Big Brain [49]. Together, these
observations suggest that the production and nuclear
translocation of NICD are coupled to endosome
maturation, but limited by rapid sequestration of
Notch in lysosomes (Figure 1b).

Proteolytic processing also regulates the function of
secreted proteins derived from soluble precursors.
Propeptides contain sorting signals, mediate interactions

Figure 1. Signal regulation by glypicans, endosomal proteolysis
and lysosomal sorting hinges on intracellular trafficking decisions

(a) The glypicans Dally (Dly) and Dally-like protein associate with lipid rafts
and mediate basal transport of the morphogens Wingless (Wg) and
Hedgehog (Hh) in Drosophila wing imaginal disc epithelial cells to access
lipoprotein particles in the hemolymph. Cleavage of the glycosylpho-
sphatidylinositol (GPI) anchor facilitates endocytosis of glypican and
associated cargo in signal-receiving cells. Some shedding of Dly also occurs
apically [27], but whether any Hh protein moves through the apical lumen is
controversial (stippled green arrow) [26,30,86]. (b) Two models for the
localized activation of the signaling receptor Notch. Left panel: after S1
cleavage by intracellular Furin, the Notch extracellular domain (orange) is
engaged by membrane-bound ligands, which are ubiquitinated in their
cytosolic tails by neuralized (Neur) and Mind bomb (Mib). Endocytosis of
Notch ligand by Epsin in signal-sending cells (purple arrow) enables
activation of the S2 site by ADAM-10 or -17, followed by g-secretase
cleavage of the intramembraneous S3 site and nuclear translocation of the
Notch intracellular domain (NICD) [43]. Right panel: new data suggest that
S3 cleavage mainly occurs after endocytosis [47,48]. Nuclear translocation
of NICD in addition requires acidification of the endosome by the aquaporin
Big Brain (Bib) [49]. Loss of Bib suppresses Notch hyperactivation in lgd
mutants, suggesting that NICD matures on endosomes, rather than at the
plasma membrane. (c) Lysosomal targeting of transmembrane proteins.
Ubiquitination of transmembrane proteins (green) by E3 ligases during
endocytosis is guided by arrestins (arr) and mediates binding to endosomal
Hrs (hepatocyte growth factor receptor-regulated tyrosine kinase sub-
strate), a subunit of endosomal sorting complex required for transport
(ESCRT)-0. Sequential assembly of ESCRT-I, -II and -III complexes
culminates in the recycling of ubiquitin (Ub) by a deubiquitylating enzyme
(DUB), followed by invagination of the limiting membrane and associated
cargo into the endosome lumen. The endosome membrane is a mosaic of
different subdomains, which sort cargo for delivery to lysosomes or other
destinations (see text for details). (d) A protein lattice consisting of the
ESCRT-III components vacuolar protein-sorting (Vps)20, Vps24 and sucrose
non-fermenting 7 (Snf7) is sufficient to induce intralumenal budding of the
limiting membrane of giant unilamellar vesicles. Recruitment of the ATPase
Vps4 by Vps2 disassembles ESCRT-III components for recycling (after [64]).
STAM, signal transducing adapter molecule; TJ, tight junction.
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with transporter proteins or sterically hinder precocious
binding to receptors. It is important, therefore, that
propeptides are removed in the appropriate subcellular
compartments. Proprotein processing also balances the
activities of precursor and mature forms of their
substrates, as shown for Nodal [50] or the neurotrophic
growth factor precursor, respectively [51]. Nodal is
essential in the implanted blastocyst to inhibit precocious
neural differentiation of pluripotent progenitor cells and
to pattern the surrounding primitive endoderm, whereas
later it induces mesoderm and definitive endoderm
formation [52]. Endoderm and mesoderm are specified
during gastrulation by distinct signaling thresholds of
Smad2 and Smad3 transcription factors, which are
phosphorylated by endosomal signaling complexes of
activin receptors, processed Nodal and a GPI-anchored
co-receptor of the EGF-like Cripto/FRL-1/Cryptic (CFC)
family [53]. But how is this complex activated?

Cripto already binds Nodal in the endoplasmatic
reticulum, in part via the prosegment of the uncleaved
precursor. Cripto also recruits the subtilisin-like propro-
tein convertases Furin or PACE4 (paired amino acid
cleaving enzyme 4), which cleave Nodal [54]. However,
Furin and PACE4 are not coexpressed with Cripto in vivo,
but secreted by cells in the microenvrionment [55,56]. In
addition, Cripto and Nodal access the plasmamembrane
by an unconventional route bypassing proprotein con-
vertases in the TGN [54]. Nodal thus is not processed
until arrival at the cell surface. Upon maturation, Nodal
is rapidly endocytosed, whereas in the absence of
cleavage it is only slowly internalized and secreted via
the TGN. The advantage of maturing in a complex with
Cripto is that the GPI-anchor of Cripto localizes Nodal
processing to membrane microdomains that access
endosomal signaling platforms, whereas Cripto-inde-
pendent Nodal processing favors uptake in degradative
compartments.

Endosomes as a sorting station to regulate signal duration
Endosomes also emerge as critical sorting platforms for
degradation and recycling. Cell surface receptors are
marked for degradation by ubiquitination, a covalent
modification that targets the internalized protein to
multivesicular bodies (MVBs) for delivery to lysosomes.
Ubiquitin-independent MVB targeting has also been
described [57]. Studies in yeast suggest that substrate
specificity of the E3 ubiquitin ligases is conferred by
adaptors of the arrestin family [58] (Figure 1c). Upon
arrival in early endosomes, the ubiquitin moieties bind
hepatocyte growth factor receptor-regulated tyrosine
kinase substrate (Hrs), which associates with STAM
(signal transducing adapter molecule) to form the
endosomal sorting complex required for transport

(ESCRT)-0 and thereby initiate the sequential assembly
of the multiprotein complexes ESCRT-I, -II and -III
[59,60]. The interactions among ESCRTs culminate in
the recruitment of deubiquitylating enzymes and of the
AAA+ ATPase vacuolar protein-sorting 4 (Vps4). Deubi-
quitylation by ubiquitin-specific protease Y (UBPY,
Doa4 in yeast) and Ubp2 allows recycling of ubiquitin
and advances cargo to intralumenal vesicles of endo-
somes that mature into MVBs [61-63] (Figure 1c).

How intralumenal vesicles are induced to bud from the
limiting membrane into the endosome lumen has long
remained elusive. A landmark study using a novel in vitro
reconstitution assay has now shown that addition of
only three yeast ESCRT-III subunits [Vps20, Vps24, and
sucrose non-fermenting 7 (Snf7)] to synthetic giant
unilamellar vesicles is sufficient to induce budding and
scission of intralumenal vesicles from the limiting
membrane (Figure 1d). The Vps2 subunit subsequently
recruits Vps4 to disassemble and recycle the components
of this complex for further rounds of budding [64].
Saksena et al. [65] independently demonstrated that the
Vps4 ATPase is required to disassemble the protein
lattice of Snf7 oligomers in vitro, although in their model
Vps4-induced disassembly is linked to membrane
scission. Accordingly, the primary role of ESCRT-0, -I
and -II probably is to localize ESCRT-III to endosomal
membrane microdomains loaded with cargo.

During development, TGF-ßs, receptor tyrosine kinases,
and Notch proteins specify distinct cell fates at different
signaling thresholds, which ultimately reflect the con-
centration and longevity of signaling complexes in
endosomes. Since most if not all of these signaling
molecules are degraded via the MVB pathway (reviewed
in [36,66,67]), the new mechanistic insights provide a
solid foundation to elucidate how the residence time of
different receptors or combinations of receptors at the
endosome-limiting membrane are regulated. The impor-
tance of ESCRT-mediated signal attenuation during
development is further highlighted by the early embryo-
nic lethality of mutant mice lacking Hrs or the ESCRT-III
component CHMP5 (charged MVB protein 5) [68,69],
and by the hyperactivation of Notch and excess
proliferation of epithelial cells in Drosophila lacking the
ESCRT-II subunits Vps25, Vps22 or Vps36 [70-73]. A
future challenge will be to determine how the sorting of
signaling molecules to intra-endosomal vesicles controls
morphogenesis in specific contexts, and how this process
is regulated in vivo.

Future directions
While aberrations in trafficking linked to cell polariza-
tion defects occur in a variety of disease syndromes and
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lgd, lethal (2) giant discs

contribute to tumorigenesis (reviewed in [2]), relatively
little is known about the mechanisms regulating the
polarized secretion of soluble ligands. The new role of
glypicans discussed here during the secretion of Wnt and
Hh proteins raises the question of whether these or
similar transporters mediate basolateral delivery of other
soluble proteins.

It is well established that Wnt, TGF-ß, Hh and Notch
pathways, and other developmental signals are also
regulated during endocytosis. That different entry path-
ways mediate degradation or recycling, or even activate
distinct signaling branches, now adds an additional layer
of complexity. However, irrespective of whether uptake
involves clathrin or caveolin, EGFR is sorted to lyso-
somes via early endosomes [35]. So what is the
advantage of a triage at the plasma membrane? Why
tidy the house if the kids will make a mess again anyway?
A possible answer is that endosomes are ‘orderly kids’
who do not randomly mix cargo, but instead discrimi-
nate between cargo from distinct endocytic origins based
on differences in ubiquitination, clustering, or the
composition of oligomeric receptor complexes at the
plasma membrane. Consistent with this view, clathrin-
dependent or -independent uptake of Wnts involves
different co-receptors [74], and cluster size determines
post-endocytic sorting of GPI-anchored proteins [75].
Moreover, the limiting membrane of early endosomes is
a mosaic of discrete subcompartments [76] (Figure 1c).
Likewise, Nodal molecules tethered to Cripto are not
evenly distributed, indicating that early endosomes are
unlikely to haphazardly mix cargo [77]. It is plausible,
although not proven, that proteins accumulate in distinct
subdomains of the endosomemembrane for signaling or
for deployment to other destinations. Based on their
lipid content, endosomes also generate at least two
different types of intralumenal vesicles for lysosomal
targeting or recycling [78]. It will be exciting to learn how
endosomes keep order among their cargo to correctly
localize and integrate different signaling inputs.

Another question is how exocytic and endocytic sorting
machineries respond to signaling. In the developing
respiratory system of Drosophila, Wg modulates cell
adhesion and intercalation by regulating the recycling
of E-cadherin. This is achieved through upregulation of
the transcription factor Spalt (Sal), which induces
dRip11 (Drosophila Rab11 interacting protein) to stimu-
late the small GTPase Rab11 on recycling endosomes
[79]. In vertebrates, fibroblast growth factor signaling
induces the transcription factor Foxj1, a regulator of
intraflagellar transport proteins, which drive the elonga-
tion of cilia [80-82]. Known functions of cilia in cell
polarity and signaling, and their assembly by membrane

trafficking, have been comprehensively reviewed else-
where [83]. How these sensory organelles control, for
example, the balance between canonical and non-
canonical Wnt signaling [84], or the shape of Hh
signaling gradients [85] is still not clear. A better
understanding of the relationship between signaling
and trafficking will surely help to resolve these questions.
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