
Research Article
A Method for Estimating View Transformations from Image
Correspondences Based on the Harmony Search Algorithm

Erik Cuevas1 and Margarita Díaz2

1Departamento de Ciencias Computacionales, Universidad de Guadalajara, CUCEI , Avenida Revolución 1500,
44430 Guadalajara, JAL, Mexico
2División de Ciencia y Tecnologı́a, Universidad de Guadalajara, CU-Norte, Carretera Federal No. 23, Km. 191,
46200 Colotlán, JAL, Mexico

Correspondence should be addressed to Erik Cuevas; erik.cuevas@cucei.udg.mx

Received 30 September 2014; Accepted 12 December 2014

Academic Editor: Rahib H. Abiyev

Copyright © 2015 E. Cuevas and M. Dı́az. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In this paper, a newmethod for robustly estimating multiple view relations from point correspondences is presented.The approach
combines the popular random sampling consensus (RANSAC) algorithm and the evolutionarymethod harmony search (HS).With
this combination, the proposed method adopts a different sampling strategy than RANSAC to generate putative solutions. Under
the new mechanism, at each iteration, new candidate solutions are built taking into account the quality of the models generated
by previous candidate solutions, rather than purely random as it is the case of RANSAC. The rules for the generation of candidate
solutions (samples) are motivated by the improvisation process that occurs when a musician searches for a better state of harmony.
As a result, the proposed approach can substantially reduce the number of iterations still preserving the robust capabilities of
RANSAC. The method is generic and its use is illustrated by the estimation of homographies, considering synthetic and real
images. Additionally, in order to demonstrate the performance of the proposed approach within a real engineering application,
it is employed to solve the problem of position estimation in a humanoid robot. Experimental results validate the efficiency of the
proposed method in terms of accuracy, speed, and robustness.

1. Introduction

The goal of estimating geometric relations in images is to find
an appropriate global transformation to overlay images of the
same scene taken at different viewpoints. It can be applied in
image processing when an object moves in front of a static
camera and when a static scene is captured by a moving
camera or multiple cameras from different viewpoints. This
methodology has been widely adopted in many applications,
for instance, when series of images can be stitched together
to generate a panorama image [1–3]. Also, multiple image
superresolution approaches can be applied in the overlapped
region calculated according to the estimated geometry [4–
6]. The motion of a moving object can also be estimated
using its geometric relations [7] and a distributed camera
network can be calibrated, where each camera’s position,
orientation, and focal length can be calculated based on

their correspondences [8–10]. Another example is the robot
position that can be controlled or estimated through the
estimation of the fundamental matrix/homography [11–13].

In a modelling problem, those data that can be explained
by the hypothetical model are known as inliers of this model.
Other points, for example, those generated by matching
errors, are called outliers. The outliers are caused by external
effects not related to the investigated model. Based on dif-
ferent criteria, several robust techniques have been proposed
to identify points as inliers or outliers, being the random
sampling consensus (RANSAC) algorithm [14] the most well
known [15–17].

RANSAC adopts a simple hypothesize-and-evaluation
process. Under such approach, a minimal subset of elements
(correspondences) is sampled randomly, and a candidate
model is hypothesized using this subset. Then, the candidate
model is evaluated on the entire dataset separating all
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elements from the dataset into inliers and outliers, according
to their degree of matching (error scale) to the candidate
model.These steps are iterated until there is a high probability
that an accurate model could be found during iterations. The
model with the largest number of inliers is considered as the
estimation result.

Although RANSAC algorithm is simple and powerful, it
presents two main problems [18, 19]: the high consumption
of iterations and the inflexible definition of its objective
function. In the RANSAC algorithm, candidate models are
generated by selecting data samples. Since such a strategy is
completely random, a large number of iterations are required
to explore a representative subset of noisy data and to find
a reliable model that could contain the maximum number
of inliers. In general terms, the number of iterations is
strongly affected by the contamination level of the dataset.
The other crucial issue is the objective function to evaluate
the correctness of a candidatemodel from contaminated data.
In the RANSAC methodology, the best estimation result is
the model that maximizes the number of inliers. Therefore,
the objective function involves the count, one by one, of the
number of inliers associated with a candidate model. Such
an objective function is fixed and prone to obtain suboptimal
models under different circumstances [19].

Several variants have been proposed in order to enhance
the performance of the RANSAC method. One example
constitutes the approach MLESAC [20] which searches
the best hypothesis by maximizing the likelihood via the
RANSAC process by assuming that the inlier data would
distribute as a Gaussian function and outliers are distributed
randomly. Alternatively, instead of giving the error scale (i.e.,
the threshold to separate inliers from outliers) a priori, the
SIMFIT method [21] proposes its prediction based on an
iterative procedure. Other representative works, such as the
projection-pursuit method [22] and TSSE (two-step scale
estimator) [23], employ themean shift technique tomodel the
inlier distribution and obtain an inlier scale. Such approaches
enables RANSAC to be data-driven; however, the whole
process becomes quite time consuming.

Although all the proposed variants allow solving one
of the two main RANSAC problems, the other challenge
still remains. Such situation comes from the fact that the
estimation process is approached as an optimization problem
where the search strategy is a random walking algorithm
while the objective function is fixed to the number of inliers
associated with the candidate model. In order to overcome
the typical RANSAC problems, we propose to visualize the
RANSAC operation as a generic optimization procedure.
Under this point of view, a new efficient search strategy can
be added for reducing the number of consumed iterations.
Likewise, it can be defined as a new objective function which
incorporates other elements that allow an accurate evaluation
of the quality of a candidate model.

Two important difficulties in selecting a search strategy
for RANSAC are the high multimodality and the complex
characteristics of the estimation process produced by the
elevated contamination of the dataset. Under such cir-
cumstances, classical methods present a bad performance
[24, 25], making way for recent new approaches that have

been proposed to solve complex and ill-posed engineering
problems. These methods include the application of modern
optimization techniques such as evolutionary algorithms and
metaheuristic techniques [26, 27] which have delivered better
solutions over those obtained by classical methods.

The harmony search algorithm (HS) introduced by Geem
et al. [28] is one example of these approaches. HS is an
optimization algorithm based on the metaphor of the impro-
visation process that occurs when a musician searches for a
better state of harmony. The HS produces a new candidate
solution from all existing solutions. InHS, the solution vector
is analogous to the harmony in music, and its generation
schemes are analogous to musician’s improvisations. With
regard to other metaheuristics in the literature, HS imposes
fewer mathematical prerequisites; therefore, it can be easily
modified for solving several sorts of engineering optimization
challenges [29, 30]. Numerical comparisons have established
that the convergence of HS is faster than GA [29, 31, 32].
Such a fact has attracted the attention of the evolutionary
computation community. It has been effectively applied to
solve a wide range of practical optimization problems such
as structural optimization [33], parameter estimation of the
nonlinear Muskingum model [34], design optimization of
water distribution networks [35], vehicle routing [36], image
segmentation [37], and circle detection in images [38].

Although HS allows identifying promising regions at
the solution space within a reasonable time interval, it
underperforms in local searching, in particular for parameter
identification applications [39–42]. In order to enhance the
fine-tuning (accuracy) properties of HS, the local search
parameter (BW) is dynamically adjusted to improve the
balance between exploration and exploitation during the
search process (see [29]). However, considering that the
adjustment follows an exponential function, longer exploita-
tion periods are allowed, affecting the exploring capacity
of HS particularly when it is applied to complex objective
functions. A better adjustment alternative, which employs the
use of a linear model, has been recently proposed in [43].
It presents better searching capacities than the approaches
based on exponential functions. For this reason, such an
approach is used in our method.

In this paper, a new method is presented for the
robust estimation of multiple view relations from point
correspondences. The approach combines the RANSAC
method with the HS. Upon such combination, the proposed
method adopts a different sampling strategy in comparison
to RANSAC to generate putative solutions. Under the new
mechanism, new candidate solutions are built iteratively by
considering the quality of models generated by previous
candidate solutions, rather than relying over a pure random
selection as it is the case of RANSAC. Likewise, a more
accurate objective function is incorporated to accurately
evaluate the quality of a candidate model. As a result, the
proposed approach can substantially reduce the number of
iterations still preserving the robust capabilities of RANSAC.
The method is generic and its use is illustrated by the estima-
tion of homographies, considering synthetic and real images.
Additionally, in order to demonstrate the performance of the
proposed approach in a real engineering application, it is
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employed to solve the problem of position estimation of a
humanoid robot. Experimental results validate the efficiency
of the proposed method in terms of accuracy, speed, and
robustness.

The paper is organized as follows. Section 2 explains
the problem of image matching considering multiple views.
Section 3 introduces the fundamentals of the RANSAC
method. Section 4 explains the harmony search algorithm
while Section 5 presents the proposed approach. Section 6
exhibits the experimental set and its performance results.
Section 7 exposes a robotic application of the proposed
approach. Finally, Section 8 establishes final conclusions.

2. View Relations from Point Correspondences

The problem of image matching consists in finding a geo-
metric transformation that maps one image of a scene to
another image taken from a different point of view. To
determine the correspondence among points, it is necessary
to find corresponding points on both images. Such point
pairs can be obtained as a result of applying an automatic
algorithm of detection and matching [44, 45]. The detected
points are described by vectors of parameters (descriptors),
and frequently these parameters do not allow discriminating
one point from another with complete certainty. As a result,
an erroneous matching about the correspondence of points
located on different parts of different images may emerge.

In this section the geometric relations of points between
two views are discussed, considering the case of homography.

Assume that there is a collection of pairs of the corre-
sponding points that are found on two images
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𝑇 are the positions
of points in the first and second images, respectively.

Two perspective images can geometrically be linked
through a plane 𝑄 of the scene by a homography H ∈
R3×3 (see Figure 1). This projective transformation H relates
corresponding points of the plane projected into two images
by x
𝑖
= Hx

𝑖
or x
𝑖
= H−1x

𝑖
. The homography across two

views can be computed by solving a linear system from a
set of four point matches [46]. The quality of the estimated
homography H is evaluated by considering the distance
between the position of the point calculated with the help of
the matrix H and the actually observed position. Therefore,
the mismatch error 𝐸𝐻2
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Figure 2 shows the error evaluation process of H for
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Figure 1: Homography from a plane between two views.

error evaluated as the distances (𝜂, 𝜂) between the points
(x
3
, x
3
) and their positions calculated with the use of the

matrixH (Hx
3
,H−1x

3
).

3. Random Sampling Consensus (RANSAC)
Algorithm

The goal of RANSAC is to estimate the geometric transfor-
mation (the homography H) from image correspondences
over two views. Potentially there are a significant number of
mismatches amongst the correspondences. Correct matches
will obey the homography transformation.Therefore, the aim
is to obtain a set of inliers consistent with the homography
transformation by using a robust technique. In this case
outliers are points inconsistent with the homography trans-
formation. In order to solve such a problem, the RANSAC
algorithm has proven to be the most successful [15–17].

RANSAC solves the problem of model parameters esti-
mation by finding the best hypothesis ℎ𝐵 among the set of
all possible hypotheses𝐻 generated by the source data. Such
source data are typically contaminated by noise. In order
to build the hypothesis ℎ

𝑖
about the unknown parameters,

a sample S
𝑖
of the minimum size (𝑠) required for model

estimation is obtained (e.g., a sample of only two points is
sufficient to calculate a straight line, 𝑠 = 2, and of four to
obtain a homography, 𝑠 = 4). Under this consideration, the
probability of finding an outlier is reduced. Considering that
the number of elements contained in a sample is small, the
amount of possible samples that can be generated from the
complete source data U is enormous. Under such circum-
stances, the exhausting testing of all samples for a reasonable
time is impossible. RANSAC faces such problem because it
only considers 𝐺 samples which are randomly selected and
evaluated. Algorithms of the RANSAC family consist of 𝐺
iterations of the following cycle.

(1) Construct a sample S
𝑖
⊂ U consisting of 𝑠 different

elements.
(2) Build the hypothesis ℎ

𝑖
based on the sample S

𝑖
.

(3) Evaluate the degree of agreement𝐴
𝑖
of the hypothesis

ℎ
𝑖
with the set of all source data U.
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Figure 2: Example of evaluation process for a particular homography H.

After the construction and evaluation of all𝐺 hypotheses,
the hypothesis ℎ𝐵 with the best degree of agreement is chosen
among them. It is considered as a robust estimate of themodel
parameters. Such operation can be described as follows:

ℎ

𝐵
= arg max
𝑖=1,...,𝐺

𝐴
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(U, ℎ
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) . (3)

The maximization of the degree of agreement (number of
inliers) is equivalent to the minimization of the penalty
function whose value depends on the number of outliers.
Therefore, the degree of agreement 𝐴
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follows:
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where Th is a permissible error,𝑀 is the number of elements
contained in the source data U, and 𝑒

2

𝑗
(ℎ
𝑖
) is the quadratic

error produced by the 𝑗th data considering the hypothesis ℎ
𝑖
.

In the context of this paper, 𝑒2
𝑗
(ℎ
𝑖
) corresponds to 𝐸𝐻2

𝑖
which

represents the error produced by the 𝑖th correspondence.
The hypothesis with a minimum penalty (i.e., with the

maximum degree of agreement) is chosen as the best match-
ing criterion. In the original scheme of RANSAC, the quality
of a hypothesis is defined as the number of inliers. For a given
value of the permissible errorTh, the point 𝑗 that produces the
error 𝑒2

𝑗
(ℎ
𝑖
) is regarded to be an inlier of ℎ

𝑖
if its value does not

exceed the thresholdTh; otherwise the point is regarded as an
outlier.

In the RANSAC algorithm, the optimal hypothesis ℎ𝐵 is
found and the penalty isminimized by using a search strategy
of randomwalking; therefore many attempts are necessary to
investigate in sufficient detail the space of possible samples
and to find the sample for which the hypothesis has the
greatest degree of agreement on the source data. The number
of iterations and thus the time spent for the search can
be reduced by choosing points according to some directed
rules, rather than randomly. Optimization algorithms can be

considered as a robust scheme in contrast to the random
search [47]. In an optimization algorithm, new candidate
solutions are generated in accordance to the information
obtained from past candidate solutions.

In this paper, we propose a different approach based on
the HS as optimization algorithm. The goal is to demonstrate
that the new method, by combining the idea of testing
minimum-sized samples with the directed search inspired
by the improvisation process that occurs when a musician
searches for a better state of harmony, allows performing
an efficient search among the correspondences to generate
models of higher quality. It is also shown that the number
of inliers found by the new method with the use of a fixed
number of samples is significantly greater than the number
of inliers determined by the family of algorithms based on
RANSAC.

4. Harmony Search Algorithm

In the basic HS, each solution is called a “harmony” and
is represented by an 𝑛-dimension real vector. An initial
population of harmony vectors are randomly generated and
stored within a harmony memory (HM). A new candidate
harmony is thus generated from the elements in the HM by
using a memory consideration operation either by a random
reinitialization or a pitch adjustment operation. Finally, the
HM is updated by comparing the new candidate harmony
and the worst harmony vector in theHM.Theworst harmony
vector is replaced by the new candidate vector in case it is
better than the worst harmony vector in the HM. The above
process is repeated until a certain termination criterion is
met. The basic HS algorithm consists of three basic phases:
HM initialization, improvisation of new harmony vectors,
and updating of the HM. The following discussion addresses
details about each stage.

4.1. Initializing the Problem and Algorithm Parameters. In
general, the global optimization problem can be summarized
as follows: min𝑓(p) : 𝑝(𝑗) ∈ [𝑙(𝑗), 𝑢(𝑗)], 𝑗 = 1, 2, . . ., 𝑛, where
𝑓(p) is the objective function,p = (𝑝(1), 𝑝(2), . . . , 𝑝(𝑛)) is the
set of design variables, 𝑛 is the number of design variables,
and 𝑙(𝑗) and 𝑢(𝑗) are the lower and upper bounds for the
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design variable 𝑝(𝑗), respectively. The parameters for HS are
the harmony memory size, that is, the number of solution
vectors lying on the harmony memory (HM), the harmony-
memory consideration rate (HMCR), the pitch adjusting rate
(PAR), the distance bandwidth (BW), and the number of
improvisations (NI) which represents the total number of
iterations. It is obvious that an adequate selection for HS
parameters would enhance the algorithm’s ability to search
for the global optimum under a high convergence rate.

4.2. HarmonyMemory Initialization. In this stage, initial vec-
tor components at HM, that is, HMS vectors, are configured.
Let p
𝑖
= {𝑝
𝑖
(1), 𝑝
𝑖
(2), . . . , 𝑝

𝑖
(𝑛)} represent the 𝑖th randomly

generated harmony vector: 𝑝
𝑖
(𝑗) = 𝑙(𝑗) + (𝑢(𝑗) − 𝑙(𝑗)) ⋅

rand(0, 1) for 𝑗 = 1, 2, . . . , 𝑛 and 𝑖 = 1, 2, . . . ,HMS, where
rand(0,1) is a uniform randomnumber between 0 and 1.Then,
the HM matrix is filled with the HMS harmony vectors as
follows:

HM =

[

[

[

[

[

p
1

p
2

.

.

.

pHMS

]

]

]

]

]

. (5)

4.3. Improvisation of New Harmony Vectors. In this phase, a
new harmony vector pnew is built by applying the following
three operators: memory consideration, random reinitial-
ization, and pitch adjustment. Generating a new harmony
is known as “improvisation.” In the memory consideration
step, the value of the first decision variable 𝑝new(1) for the
new vector is chosen randomly from any of the values
already existing in the current HM, that is, from the set
{𝑝
1
(1), 𝑝
2
(1), . . . , 𝑝HMS(1)}. For this operation, a uniform

random number 𝑟
1

is generated within the range [0, 1].
If 𝑟
1

is less than HMCR, the decision variable 𝑝new(1)
is generated through memory considerations; otherwise,
𝑝new(1) is obtained from a random reinitialization between
the search bounds [𝑙(1), 𝑢(1)]. Values of the other deci-
sion variables 𝑝new(2), 𝑝new(3), . . . , 𝑝new(𝑛) are also chosen
accordingly. Therefore, both operations, memory considera-
tion and random reinitialization, can be modelled as follows:

𝑝new (𝑗) =

{
{
{
{

{
{
{
{

{

𝑝
𝑖
(𝑗) ∈ {𝑝

1
(𝑗) , 𝑝

2
(𝑗) , . . . , 𝑝HMS (𝑗)}

with probability HMCR
𝑙 (𝑗) + (𝑢 (𝑗) − 𝑙 (𝑗)) ⋅ rand (0, 1)

with probability 1 −HMCR.

(6)

Every component obtained by memory consideration is
further examined to determine whether it should be pitch-
adjusted. For this operation, the pitch adjusting rate (PAR)
is defined as to assign the frequency of the adjustment and
the bandwidth factor (BW) to control the local search around
the selected elements of the HM. Hence, the pitch adjusting
decision is calculated as follows:

𝑝new (𝑗) =
{
{

{
{

{

𝑝new (𝑗) = 𝑝new (𝑗) ± rand (0, 1) ⋅ BW
with probability PAR

𝑝new (𝑗) with probability (1 − PAR) .
(7)

Pitch adjusting is responsible for generating new potential
harmonies by slightly modifying original variable positions.
Such operation can be considered similar to the mutation
process in evolutionary algorithms. Therefore, the decision
variable is either perturbed by a random number between
−BW and BW or left unaltered. In order to protect the pitch
adjusting operation, it is important to assure that points lying
outside the feasible range [𝑙, 𝑢] must be reassigned, that is,
truncated to themaximumorminimum value of the interval.

4.4. Updating the Harmony Memory. After a new harmony
vector pnew is generated, the harmony memory is updated by
the survival of the fit competition between pnew and the worst
harmony vector p

𝑤
, according to its fitness value, in the HM.

Therefore pnew will replace p
𝑤

and become a new member
of the HM in case the fitness value of pnew is better than the
fitness value of p

𝑤
.

4.5. Computational Procedure. The computational procedure
of the basic HS can be summarized as shown in Procedure 1
[18].

4.6. Dynamical Linear Adjustment of BW. Every metaheuris-
tic algorithm needs to address the issue of exploration-
exploitation of the search space. Exploration is the process
of visiting entirely new points of a search space whilst
exploitation is the process of refining those points within
the neighborhood of previously visited locations in order to
improve their solution quality.

InHS, the BWparameter controls the local search around
HM elements. A large BW value eases the algorithm’s search-
ing at a larger scope, while a small BW value is appropriate
for fine-tuning of best solution vectors.

In the standard HS, the BW value is considered as a
constant number. However, in this work, the BW value
is dynamically adjusted as to favor exploration at early
stages while exploitation is reinforced during final stages of
the searching process. The adjustment uses a linear model
defined as follows:

BW (𝑘)

=

{
{
{

{
{
{

{

BWmax − (

BWmax − BWmin
2 ⋅NI

) ⋅ 3𝑘 if 𝑘 < (

2

3

)NI

BWmin if 𝑘 ≥ (

2

3

)NI,
(8)

where 𝑘 is the iteration index,while BWmax andBWmin are the
maximum andminimumBWvalues, respectively. In contrast
to exponential adjustment [26], linearmodels, as the one used
in this paper, allow a better balance between exploration and
exploitation (fine-tuning) of the search process [40].

Since all candidate solutions are generated by using
the HS operators, there is a low probability to be trapped
into local minima [48]. HS can effectively handle challeng-
ing multimodal optimization problems [49, 50]. Such fact
contrasts to well-known genetic algorithms (GA) [51] and
particle swarm optimization (PSO) [52] which usually tends
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Step 1. Set the parameters HMS, HMCR, PAR, BW and NI.
Step 2. Initialize the HM and calculate the objective function value of each harmony vector.
Step 3. Improvise a new harmony pnew as follows:

for (𝑗 = 1 to 𝑛) do
if (𝑟
1
<HMCR) then

Select randomly a number 𝑎 where 𝑎 ∈ (1, 2, . . . ,HMS)
𝑝new(𝑗) = 𝑝

𝑎
(𝑗)

if (𝑟
2
< PAR) then

𝑝new(𝑗) = 𝑝new(𝑗) ± 𝑟
3
⋅ BW where 𝑟

1
, 𝑟
2
, 𝑟
3
∈ rand(0, 1)

end if
if 𝑝new(𝑗) < 𝑙(𝑗)

𝑝new(𝑗) = 𝑙(𝑗)

end if
if 𝑝new(𝑗) > 𝑢(𝑗)

𝑝new(𝑗) = 𝑢(𝑗)

end if
else
𝑝new(𝑗) = 𝑙(𝑗) + 𝑟 ⋅ (𝑢(𝑗) − 𝑙(𝑗)), where 𝑟 ∈ rand(0, 1)

end if
end for

Step 4. Update the HM as p
𝑤
= pnew if 𝑓(pnew) > 𝑓(p

𝑤
)

Step 5. If NI is completed, the best harmony vector p
𝑏
according to its fitness value in the HM is

returned; otherwise go back to Step 3.

Procedure 1

to conduct the whole population towards the best candidate
solution [53] producing premature convergence.

5. Method for Geometric Estimation Using HS

The estimation of model parameters in algorithms of the
RANSAC family is implied to find an optimal sample of
length 𝑠 from a set consisting of𝑀 elements. In the standard
scheme, RANSAC uses a random walking algorithm as a
search strategy. The idea of the proposed method considers
the use of HS to generate samples based on information
about their quality, rather than randomness. The quality of
a sample, that is, the fitness of a harmony 𝑓(p

𝑖
), is defined as

the matching degree of the hypothesis ℎ
𝑖
that is constructed

based on the correspondence numbers coded within p
𝑖
.

Considering that the problem consists in estimating the
parameters ofH through a setU = {(x

1
, x
1
), (x
2
, x
2
), . . . , (x

𝑀
,

x
𝑀
)} of𝑀 different correspondences, the proposed approach

can be described as shown in Algorithm 1.
The proposed approach combines the RANSAC method

with the HS adopting a different sampling strategy in com-
parison to RANSAC to generate putative solutions. Under the
new mechanism, at each iteration, new candidate solutions
are built taking into account the quality of the models that
have been generated by previous candidate solutions, rather
than purely random as it is the case in RANSAC.

Since the approach visualizes the RANSAC operation as a
generic optimization procedure, different objective functions
can be incorporated to accurately evaluate the quality of a
candidatemodel. Although several objective functions can be
tested, this work employs the expression in Equation (A).

In contrast to the traditional RANSAC algorithm, the
objective function considers two different aims: the number
of inliers and the approximation error. The idea is to find the
candidate homography that maximizes the number of inliers
and simultaneously minimizes the approximation error.
Under such circumstances, the obtained estimation repre-
sents the solution that presents the best trade-off between
both objectives. As a result, the proposed approach can
substantially reduce the number of iterations, still preserving
the robust capabilities of RANSAC method.

6. Experimental Results

In this section, a comprehensive set of experiments have been
conducted to test the performance of the proposed approach.
The results are divided into two different categories: (1) effect
of the main HS parameters in the estimation results and (2)
comparison results over synthetic and real homographies.

In the experiments, three performance indexes are con-
sidered: the number of inliers (NofI), the error (𝐸

𝑠
, 𝐸
𝑟
), and

the number of function evaluations (NFE). The first two
indexes assess the accuracy of the solution whereas the last
one measures the computational cost.

The number of inliers (NofI) expresses the amount of
elements contained in the set I of detected inliers. The error
(𝐸
𝑠
, 𝐸
𝑟
) provides a quality measure of the estimated relation.

In case of synthetic data, the error is calculated as

𝐸
𝑠
= (∑

𝑖𝑗

𝑑

2
(x𝑗
𝑖
, x̂𝑗
𝑖
)

NofI
)

1/2

, 𝑖 ∈ I, 𝑗 ∈ {1, 2} ,
(9)
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(1) Configuration
(a) Set the parameters HMS, HMCR, PAR, BWmin, BWmax and NI.

(2) Initial population.
(a) Build the harmony memory (HM) HM = {p

1
, p
2
, . . . , pHMS} where each individual

p
𝑖
consists 4 random non-repeating indices from 1 to𝑀.

(b) Compute homography H
𝑖
(hypothesis ℎ

𝑖
) by using the indices from p

𝑖
.

(c) Calculate the fitness value 𝑓(p
𝑖
) as the matching quality of the constructed homography

H
𝑖
considering the whole available data U. Such fitness value is calculated by using a

new objective function defined as:

𝐹 (a
𝑖
(𝑘)) =

𝑀

∑

𝑗=1

𝜃 (𝑒

2

𝑗
(ℎ
𝑖
)) − 𝜆 ⋅ 𝑒

2

𝑗
(ℎ
𝑖
) 𝜃 (𝑒

2

𝑗
(ℎ
𝑖
)) =

{

{

{

0 𝑒

2

𝑗
(ℎ
𝑖
) > Th

1 𝑒

2

𝑗
(ℎ
𝑖
) ≤ Th

, (A)

where 𝑒2
𝑗
(ℎ
𝑖
) represents the quadratic error produced by the 𝑗th correspondence

considering the hypothesis ℎ
𝑖
whereas 𝜆 is the penalty associated with the mismatch

magnitude. Such error corresponds to the mismatch 𝐸𝐻

2

𝑗
generated by the evaluation of H

𝑖
.

(3) Iterations 𝑘 = 1, . . . ,NI.
(a) Generate a new harmony pnew (candidate solution) as follows:

BW(𝑘) =

{
{

{
{

{

BWmax − (

BWmax − BWmin
2 ⋅NI

) ⋅ 3𝑘 if 𝑘 < (

2

3

)NI

BWmin if 𝑘 ≥ (

2

3

)NI

for (𝑗 = 1 to 𝑛) do
if (𝑟
1
<HMCR) then

Select randomly a number 𝑎 where 𝑎 ∈ (1, 2, . . . ,HMS)
𝑝new(𝑗) = 𝑝

𝑎
(𝑗)

if (𝑟
2
< PAR) then

𝑝new(𝑗) = 𝑝new(𝑗) ± 𝑟
3
⋅ BW(𝑘) where 𝑟

1
, 𝑟
2
, 𝑟
3
∈ rand(0, 1)

end if
if 𝑝new(𝑗) < 𝑙(𝑗)

𝑝new(𝑗) = 𝑙(𝑗)

end if
if 𝑝new(𝑗) > 𝑢(𝑗)

𝑝new(𝑗) = 𝑢(𝑗)

end if
else
𝑝new(𝑗) = 𝑙(𝑗) + 𝑟 ⋅ (𝑢(𝑗) − 𝑙(𝑗)), where 𝑟 ∈ rand(0, 1)

end if
end for

(b) Compute homography H
𝑖
by using the indices from pnew.

(d) Calculate the fitness value 𝑓(pnew) as the matching quality of the constructed
homography Hnew considering the whole available data U. Such fitness value is
calculated by using the objective function described in (A).

(e) Update the HM as p
𝑤
= pnew if 𝑓(pnew) > 𝑓(p

𝑤
)

(4) Estimation result
(a) The best estimation HB consists of the parameters computed by using the indices from

the best element pB of HMin terms of its affinity, so that p𝐵 = argmax
𝑖=1,...,HMS𝑓(p𝑖).

Algorithm 1

where x𝑗
𝑖

is the inlier point calculated by the estimated
relation in the 𝑗-view, x̂𝑗

𝑖
is the inlier ground true point,

and 𝑑(⋅) is the Euclidian distance between the points. There-
fore, 𝐸

𝑠
evaluates the fit of the estimated relation, com-

puted from the noisy data, against the known ground truth
points.

In the case of real data the error is assessed from the
standard deviation of the inliers. Thus, 𝐸

𝑟
is computed as

follows:

𝐸
𝑟
= (∑

𝑖

𝑒

2

𝑖

NofI
)

1/2

, 𝑖 ∈ I, (10)
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Table 1: Effect of the HS parameters in the estimation process.

(NofI, 𝐸
𝑠
)

HMCR = 0.5 HMCR = 0.6 HMCR = 0.7 HMCR = 0.8
PAR = 0.1 (21, 4.2147) (26, 3.8124) (29, 3.4721) (27, 4.0112)
PAR = 0.2 (22, 4.1457) (35, 2.0974) (36, 2.1474) (31, 3.3784)
PAR = 0.3 (21, 4.5714) (38, 1.1124) (40, 0.8514) (35, 2.0053)
PAR = 0.3 (23, 4.0781) (34, 2.0078) (37, 2.0012) (31, 3.4079)
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Figure 3: A test example where the HS-RANSAC has been applied to estimate a random transformation H considering only the 75% of
additional outliers. (a) The first view and (b) the second view, with black squares representing the detected inliers.

where 𝑒

2

𝑖
is the quadratic error produced by the 𝑖th inlier.

In the context of this paper, 𝑒2
𝑖
corresponds to 𝐸𝐻

2

𝑖
which

represents the error produced by the 𝑖th inlier.
The number of function evaluations (NFE) specifies the

total number of transformations that have been evaluated by
the algorithm until the best estimation has been reached.

6.1. Effect of the HS Parameters. Several parameters define
the performance of HS. However, from all of them, the
harmony-memory consideration rate (HMCR) and pitch
adjusting rate (PAR) are the most important [55]. To study
the impact of these parameters, over the performance of
HS in the estimation procedure, different values have been
tested on the computation of a synthetic homography. Such
a homography was generated, in its first view, by using a
rectangular pattern of 8 × 6 elements within a 2-dimensional
space of [−300, 300]. Then, such points were transformed
by a random homography H and contaminated by normally
distributed noise for constructing their correspondences in
the second view. A set of outliers was added by selecting
randomly data points within the space limits. In the test,
the fraction of outliers is of 75%. In order to illustrate the
experimental setup, Figures 3(a) and 3(b) exhibit the first and
second views, respectively. Considering the correspondence
points, the HS-RANSAC algorithm generates the estimation
ofH. In Figure 3(a), the black squares indicate the position in
the first view of a point from the second view as a result of the
H transformation. Likewise, the black squares in Figure 3(b)
exhibit the position in the second view of a point from the
first view as a result of the H transformation.

Table 2: HS-RANSAC estimator parameters.

HMS HMCR PAR BWmax BWmin NI 𝜆 Th
50 0.7 0.3 10 1 950 0.001 5

In the experiment, the maximum number of iterations is
set to 950. HMS, BWmax, BWmin, 𝜆, and Th are fixed to 50,
10, 1, 0.001, and 5, respectively. The results report the number
of inliers (NofI) and the produced estimation error (𝐸

𝑠
) of

HS-RANSAC, averaged over 30 runs, for the different values
of HMCR and PAR. In the experiment, the parameter values
are modified considering specific interval. HMCR varies
from 0.5 to 0.8 whereas PAR changes from 0.1 to 0.4. The
results, shown in Table 1, suggest that a proper combination
of different parameter values can improve the performance
of HS-RANSAC and the quality of the estimations. The best
parameter configuration in the experiment is highlighted in
Table 1.

After considering the analysis of Table 1, the parameter
values for the proposed estimator are defined in Table 2.
Once defined, such values have been kept in all experiments
reported in this paper.

6.2. Comparison Results over Synthetic and Real Homogra-
phies. We have applied the proposed method to estimate
homographies on real and synthetic data in order to compare
its performance against other estimation algorithms such as
the standard RANSAC [14], the MLESAC [20], the SIMFIT
method [21], the projection-pursuit algorithm [22], the TSSE
[23], and the PSO algorithm (PSO-RANSAC) [54]. The first
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Figure 4: Experimental results corresponding to the estimation of H considering synthetic data.

five approaches are RANSAC-based estimators whose results
are broadly known. In all cases, the algorithms are tuned
according to the value set which is originally proposed by
their own references. However, the PSO method has been
included as a reference, only to validate the performance of
the HS as an optimization approach.

In order to conduct a fair comparison between the HS
version used in this work and PSO, an enhanced version
of PSO has been also chosen with similar characteristics.
Therefore, it is used in the comparisons, the PSO version
reported in [54]. Such an approach is proposed to mitigate
the premature convergence problem of the original PSO
method. It incorporates two new elements: (1) a weight factor
𝑤 and (2) a constriction factor 𝑉max. Similar to BW in
the HS method, the weight factor 𝑤 is linearly decreased
during the algorithm execution to regulate the attraction
force towards the best particle seen so far. On the other hand,
the constriction factor 𝑉max permits limiting the particle
velocities in order to control their trajectories. Under such
circumstances, the enhancedPSOversion is used in combina-
tion with RANSAC considering the following configuration:
𝑃 = 10, 𝑐

1
= 2, 𝑐

2
= 2, and Th = 5 whereas the weight

factor 𝑤 decreases linearly from 0.9 to 0.2. Additionally,
the constriction factor 𝑉max is fixed to 2. Such a configu-
ration presents the best possible performance according to
[54].

6.2.1. Homography Estimation with Synthetic Data. This
section reports the experimental results corresponding to
the estimation of homography matrix considering synthetic
data. In the experiments, the same synthetic homography
produced in Section 4.1 has been used (see Figure 3). The
only difference is that the fraction of the incorporated outliers
varies from 0 to 100%.

In the experiment, each algorithm’s execution requires
1000 iterations. Since the proposed HS-RANSAC involves
50 initial evaluations (size of the harmony memory), it
requires the execution of only 950 iterations to reach the 1000
evaluations. On the other hand, PSO-RANSAC possesses 10
particles; for this reason 100 generations need to be evolved
in order to fulfill the 1000 iterations.

Figure 4 presents the performance for each algorithm.
The results present the averaged outcomes obtained through-
out 50 different executions. In order to appropriately analyze
these results, it is necessary to define the concept of a
breakdown point [18]. The breakdown point is identified as
the highest outlier ratio from which the algorithm degrades
its capacity to find inliers. It can be seen from Figure 4(a)
that standard RANSAC has a breakdown point at 40%, the
MLESAC at 55%, the SIMFITmethod at 70%, the projection-
pursuit algorithm at 50%, the TSSE at 45%, and the PSO-
RANSAC at 80%. In contrast to such methods, the proposed
approach, HS-RANSAC, does not seem to have a prominent
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Table 3: Inlier detection comparison in terms of the detection rate (DR), the error (𝐸
𝑟
), and the number of function evaluations (NFE) for

standard RANSAC [14], theMLESAC [20], the SIMFITmethod [21], the projection-pursuit algorithm [22], the TSSE [23], the PSO algorithm
(PSO-RANSAC) [54], and the proposed HS-RANSAC approach, considering the four test images shown in Figures 5, 6, 7, and 8.

Image Method Detected inliers (NofI) Missing False alarms DR (%) 𝐸
𝑟

NFE

(A) Total number of
inliers (86)

Standard RANSAC 41 45 21 47.7 4.75 876
MLESAC 55 31 14 63.9 3.11 852
SIMFIT 62 24 11 72.0 2.98 842

Projection-pursuit 58 28 12 67.4 3.53 798
TSSE 48 38 14 55.8 3.42 815

PSO-RANSAC 75 11 8 87.2 1.68 491
HS-RANSAC 82 4 5 95.3 0.88 396

(B) Total number of
inliers (72)

Standard RANSAC 32 40 18 44.4 3.98 765
MLESAC 40 32 14 55.5 3.43 825
SIMFIT 58 14 8 80.5 2.87 891

Projection-pursuit 47 25 12 65.2 3.12 759
TSSE 43 29 16 59.7 3.47 786

PSO-RANSAC 63 9 5 87.5 1.51 374
HS-RANSAC 70 2 3 97.2 0.79 328

(C) Total number of
inliers (56)

Standard RANSAC 24 32 15 42.8 2.96 689
MLESAC 27 29 11 48.2 2.41 628
SIMFIT 42 14 9 75.0 1.98 724

Projection-pursuit 37 19 13 66.0 2.85 754
TSSE 32 24 14 57.1 2.74 776

PSO-RANSAC 48 8 9 85.7 0.94 349
HS-RANSAC 53 3 5 94.6 0.25 272

(D) Total number of
inliers (122)

Standard RANSAC 62 60 22 50.8 4.02 832
MLESAC 77 45 18 63.1 3.41 924
SIMFIT 90 32 13 73.7 2.86 845

Projection-pursuit 75 47 19 61.4 3.52 914
TSSE 76 46 21 62.2 3.73 887

PSO-RANSAC 110 12 10 90.1 1.41 427
HS-RANSAC 115 7 5 94.2 0.51 338

breakdown point, since its capacity to detect inliers smoothly
degrades. It is also observed that the HS-RANSAC algorithm
presents the best performance in terms of the number of
inliers (NofI), as it is able to detect most of them. For the
estimated H, the error 𝐸

𝑠
(Figure 4(b)) is fairly comparable

for all methods until they reach their breakdown points.
Nonetheless, the proposed algorithm performed better, being
the only algorithm that consistently found the minimum
error at all outlier ratios.

In terms of number of function evaluations (NFE),
Figure 4(c) shows that the standard RANSAC, the MLE-
SAC, the projection-pursuit algorithm, and the TSSE invest
approximately the same number of iterations for reaching
their best estimation ofH. Since such methods use a random
walking algorithm as a search strategy, the NFE significantly
grows as the number of outliers increases. On the other
hand, the PSO-RANSAC and the HS-RANSAC (that use an
optimization algorithm as search strategy) maintain a con-
siderably low NFE value with independence of the number
of outliers.

From the experiment, it is evident that the use of an
optimization approach can considerably reduce the NFE
value. However, there is no optimization algorithm suitable
to find a good enough estimation considering the high

multimodality and complex characteristics of the estimation
process which is produced by the elevated contamination
of the dataset. Therefore, although the PSO-RANSAC finds
its best estimated fundamental matrix H investing approxi-
mately the same number of evaluations as the HS-RANSAC,
such estimated matrix represents only a suboptimal solution.
This fact can be observed in Figure 4(b) where it is clear
that the PSO-RANSAC algorithm presents higher 𝐸

𝑠
values

in comparison to the HS-RANSAC approach. The reason
for this problem points to those operators used by PSO for
modifying the individual positions. In PSO, during their
evolution, the position of each agent in the next iteration is
updated yielding an attraction towards the position of the
best particle seen so far. Such behavior shows that the entire
population, as the algorithm evolves, concentrates around the
best particle, favoring the premature convergence (reaching
suboptimal solutions) [53].

6.2.2. Homography Estimation with Real Images. In this
section, the experimental results of the estimation of homo-
graphies H considering real images are reported. To evaluate
the estimation performance of the proposed method, Table 3
tabulates the comparative inlier detection performance of
the standard RANSAC [14], the MLESAC [20], the SIMFIT
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A (a) (b)

(c)

Figure 5: Test image “A”: (a) first view, (b) second view, and (c) correspondence points and inliers produced by HS-RANSAC.

B
(a) (b)

(c)

Figure 6: Test image “B”: (a) first view, (b) second view, and (c) correspondence points and inliers produced by HS-RANSAC.

method [21], the projection-pursuit algorithm [22], the TSSE
[23], the PSO algorithm (PSO-RANSAC) [54], and the pro-
posed HS-RANSAC approach, in terms of the detection rate
(DR), the error (𝐸

𝑟
), and the number of function evaluations

(NFE). The experimental dataset includes 4 images (images

A, B, C, and D) which are shown in Figures 5, 6, 7, and 8.
Such images contain a determined number of inliers which
have been detected and counted by a human expert (A = 86,
B = 72, C = 56, andD = 122). Such values act as ground truth
for all the experiments. For the comparison, the detection rate
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C (a) (b)

(c)

Figure 7: Test image “C”: (a) first view, (b) second view, and (c) correspondence points and inliers produced by HS-RANSAC.

D (a) (b)

(c)

Figure 8: Test image “D”: (a) first view, (b) second view, and (c) correspondence points and inliers produced by HS-RANSAC.

(DR) is defined as the ratio between the number of inliers
correctly detected by the algorithm (NofI value) and the
total number of inliers determined by the expert. The results
consider 50 different executions for each algorithm over the
four images. Experimental results show that the proposed

HS method accomplishes at least a 94.2% of inlier detection
accuracy. A close inspection of Table 3 also reveals that the
proposed approach is able to achieve the smallest error (𝐸

𝑟
),

yet requiring a few number of function evaluations (NFE) for
most cases.
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Figures 5, 6, 7, and 8 also exhibit the results after applying
the HS-RANSAC estimator. Such results present the median
case obtained throughout 50 runs.

7. Engineering Application: Position
Estimation in a Humanoid Robot

Additionally, in order to demonstrate the performance of
the proposed approach in a real engineering application, the
paper also reports the application of the HS-RANSAC to
solve the problemof position estimation of a humanoid robot.

In the last decades, much work has already been accom-
plished in the area of humanoid robotics [56, 57]. Position
determination for humanoid robots is a critical problem,
since it is used to control their balance and locomotion.
Recently, a notable research [58] has been devoted to achiev-
ing better performance in system position for humanoid
robots by using sensor fusionmethods. In general, integrating
information from different sensors increases not only the
versatility of the system, but also its cost and complexity.
Vision is one of the most studied sensory modalities for
position and navigation purposes since it provides rich
information of the environment.

The framework of the approach presented in this section,
as an application, is a vision system consisting of a fixed
camera mounted on a Bioloid© humanoid robot. In the
approach, the position (𝑥, 𝑦) of the robot is computed
considering the homography estimated by the HS-RANSAC.
Therefore, the idea is to calculate the planar motion of
the humanoid robot through the estimated homographies.
Figure 9 illustrates the process of planar motion calculation.

The homography can be related to camera motion and
plane location as follows:

H = R +

1

𝑑

t𝑇n, (11)

where 𝑑 is the distance from the camera to the plane
(the height of the humanoid approximately). R describes a
rotation 𝛾 about the 𝑍 axis and can be expressed as

R =
[

[

cos 𝛾 sin 𝛾 0

− sin 𝛾 cos 𝛾 0

0 0 1

]

]

. (12)

And t is a translation vector with the form

t = (𝑡
𝑥
, 𝑡
𝑦
, 0) . (13)

As the unit normal n is (0, 0, 1), considering the point p,
the rotation matrix R, and the vector t (where R and t are
calculated from the homographyH), the new planar position
pnew can be computed as

pnew = Rp + t. (14)

More details about planar motion based on homography can
be found in [59]. The HS-RANSAC algorithm and (11)–(14)
were implemented in a Raspberry Pi. Since the computation
must be verified in real time, the number of iterations is

X
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p

Figure 9: Process of planar motion calculation based on homogra-
phies.
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Figure 10: Position calculated from the homography.

fixed to only 150. Figure 10 shows the calculated positions
from the homographies estimated during the humanoid
locomotion. Such a figure demonstrates that the information
of the estimated position adequately reflects the humanoid
movement in spite of the reduced number of iterations.

8. Conclusions

In this paper, a newmethod for robustly estimating homogra-
phies from point correspondences based on the evolutionary
algorithm has been presented. The approach combines the
RANSAC method and the harmony search (HS) algorithm.
With the combination, the proposed method adopts an
alternative sampling strategy in comparison with RANSAC
to build putative solutions. Under the new mechanism, new
candidate solutions are generated iteratively by taking into
consideration the quality of models produced by previous
candidate solutions, instead of relying over a pure random
selection as it is the case of RANSAC. On the other hand,
a more accurate objective function was incorporated to
adequately asses the quality of a candidate model. As a
result, the proposed approach can substantially reduce the
number of iterations still preserving the robust capabilities of
RANSAC.

The proposed approach has been compared to other
similar techniques proposed in the literature such as standard
RANSAC [14], the MLESAC [17], the SIMFIT method [18],
the projection-pursuit algorithm [19], the TSSE [20], and
the PSO algorithm (PSO-RANSAC) [52]. The efficiency of
the algorithm has been evaluated in terms of the detection
rate (DR, NofI), accuracy (𝐸

𝑠
, 𝐸
𝑟
), and computational cost
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(NFE). Experimental results that consider real and synthetic
data provide evidence on the remarkable performance of
the proposed algorithm in comparison to such methods.
Additionally, in order to demonstrate the performance of the
proposed approach in a real engineering application, it has
been employed to solve the problem of position estimation in
a humanoid robot.

Although the experimental results indicate that the
proposed method can yield better results on estimating
homographies, it should be noticed that the aim of our paper
is not intended to beat all the RANSAC methods which have
been proposed earlier but to show that the use of evolutionary
approaches can effectively serve as an attractive alternative to
solve complex optimization problems, yet demanding fewer
function evaluations.
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