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Abstract: To understand the transport function of drugs across the canalicular membrane 

of hepatocytes, it would be important to measure concentrations in hepatocytes and bile. 

However, these concentration gradients are rarely provided. The aim of the study is then to 

measure these concentrations and define parameters to quantify the canalicular transport of 

drugs through the multiple resistance associated-protein 2 (Mrp2) in entire rat livers. 

Besides drug bile excretion rates, we measured additional parameters to better define 

transport function across Mrp2: (1) Concentration gradients between hepatocyte and bile 

concentrations over time; and (2) a unique parameter (canalicular concentration ratio) that 

represents the slope of the non-linear regression curve between hepatocyte and bile 

concentrations. This information was obtained in isolated rat livers perfused with 

gadobenate dimeglumine (BOPTA) and mebrofenin (MEB), two hepatobiliary drugs used 

in clinical liver imaging. Interestingly, despite different transport characteristics including 

excretion rates into bile and hepatocyte clearance into bile, BOPTA and MEB have  

a similar canalicular concentration ratio. In contrast, the ratio was null when BOPTA was 

not excreted in bile in hepatocytes lacking Mrp2. The canalicular concentration ratio is 

more informative than bile excretion rates because it is independent of time, bile flows, and 

concentrations perfused in portal veins. It would be interesting to apply such information in 

human liver imaging where hepatobiliary compounds are increasingly investigated. 
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1. Introduction 

Bile excretion is an important function of the liver. Bile forms at canalicular (or apical) membrane 

of adjacent hepatocytes, which transport endogenous (bile salts and bilirubin) as well as exogenous 

compounds including drugs [1,2]. In hepatocytes, most transported drugs cross the canalicular 

membrane by export pumps. These transporters play a major role in drug liver distribution but this 

topic is difficult to investigate [3]. In humans, duodenal samples can be collected from nasobiliary 

tubes while bile samples can be obtained when bile duct drainage is necessary in the post-operative 

period. Being invasive, these approaches are not used routinely. Sandwich-cultured hepatocytes from 

preclinical species and humans have been used to assess biliary clearance [3,4]. However, this method 

does not conserve the normal architecture of the liver. Finally, isolation and perfusion of rodent livers 

conserve an intact architecture of the tissues while the interference with extra-hepatic organs is avoided. 

To understand the transport function of drugs across the canalicular membrane of hepatocytes, it is 

important to measure both hepatocyte and bile concentrations of drugs. It is well known that efflux 

proteins need ATP to provide energy for uphill transport (from low to high concentrations). However, 

the concentration gradients across canalicular membrane are rarely provided because repeated liver 

biopsies would be necessary for each experiment. Whether these high concentration gradients create 

osmotic gradients that generate transfer fluids into bile canaliculi via water transporters (aquaporins) 

for all drugs is unknown. The primary canalicular bile produced around adjacent hepatocytes is then 

modified along ductules and ducts by absorptive and secretory processes that take place in the 

cholangiocyte epithelium [2]. 

During the past years, we have investigated the hepatobiliary transport of the contrast agent 

gadobenate dimeglumine (BOPTA, MultiHance®; Bracco Imaging, Milan, Italy) in isolated and 

perfused rat livers. The drug is used in liver magnetic resonance imaging (MRI) to detect and 

characterize focal lesions [5,6]. In rats, we showed that BOPTA is transported into bile via the  

multiple drug resistance associated-protein 2 (Mrp2), no contrast agent being measured in bile when 

hepatocytes lack Mrp2 [7]. For these studies, BOPTA was labelled with 153Gd. We were able to 

measure liver concentrations by placing a gamma probe that detects 153Gd-BOPTA over time (each 20 s)  

in a region-of-interrest (ROI) of a liver lobe. We also measured liver BOPTA concentrations in  

rat lacking Mrp2. For comparison, we investigated another hepatobiliary radiotracer used in liver 

Single Photon Emission Computer Tomography (SPECT) imaging, mebrofenin (MEB, Bridatec®; GE 

Healthcare, Chalfont St. Giles, UK) [8]. MEB cross hepatocytes by the same membrane transporters. 

Most experimental studies use bile excretion rates to report drug excretion function in rodent livers. 

Besides the bile excretion rates of BOPTA and MEB, we investigated several parameters to better 

define transport function across Mrp2 in isolated and perfused rat liver: (1) Concentration gradients 

between hepatocyte and bile concentrations over time; and (2) a unique parameter that we named 
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canalicular concentration ratio that represents the slope of the non-linear regression curve between 

hepatocyte and bile concentrations. 

2. Results 

2.1. Bile Flows during Drug Perfusion 

Solutions and drugs perfused in the livers over time are illustrated in Figure 1A. Before 45 min, bile 

flow rates remained steady in the three groups. However, bile flow rates were significantly decreased 

in the group of livers lacking Mrp2 (Figure 1B). During drug perfusion, bile flow rates significantly 

increased in BOPTA group (p < 0.0001) but remained unchanged in the two other groups. During the 

rinse period (Krebs-henseleit bicarbonate (KHB) perfusion), bile flow rates returned to baseline values 

in the BOPTA group while bile flow rates slightly decreased at the end of the protocol in the MEB group. 

2.2. Canalicular Transport of BOPTA and MEB 

To assess the canalicular transport of BOPTA and MEB across Mrp2, we calculated the 

concentration gradients across the membrane. Hepatocyte concentrations increased steadily during the 

drug perfusion period for the two drugs (Figure 2A). BOPTA concentrations were significantly higher 

in the absence than in the presence of Mrp2. MEB concentrations were much higher than those of 

BOPTA. During the rinse period, all concentrations decreased except those measured in the BOPTA-TR 

(no Mrp2) group. Thus, in the absence of Mrp2, BOPTA remained trapped in hepatocytes. 

Tiny BOPTA bile concentrations were measured in this group (Figure 2B). BOPTA and MEB bile 

concentrations greatly increased during the drug perfusion period until 150,269 ± 2764 µM (BOPTA) 

and 94,703 ± 10,703 µM (MEB). During the rinse period, drug bile concentrations progressively 

decreased in normal livers. 

Hepatocyte clearances of drugs into bile (mL/min) significantly differed in the three experimental 

groups (Figure 2C). The maximal hepatocyte clearances into bile occurred 5 min after the stop of drug 

perfusion when livers were perfused with KHB solution. At this time-point, BOPTA had higher clearances 

(1.4 ± 0.6 mL/min or g of hepatocytes/min) than MEB (0.8 ± 0.2 mL/min or g of hepatocytes/min). 

The gradients between drug bile and hepatocyte concentrations estimate Mrp2 function over  

time (Figure 2D). These gradients are not steady over time: they increased at the beginning of the 

perfusion period and reached a plateau. During this period, gradients were similar for BOPTA and 

MEB (close to 50). The gradients increased at the beginning of the rinse period with both drugs before 

a slight decrease for BOPTA and a more pronounced decrease for MEB. Gradient of BOPTA in the 

absence of Mrp2 rapidly dropped to 0. 

Another way to illustrate MEB and BOPTA canalicular transport through Mrp2 is to plot drug 

hepatocyte concentrations (x-axis) and drug bile concentrations (y-axis) when available (Figure 3A). 

To analyse non-linear regression curves, we fitted experimental values with the equation A + BX + CX2, 

where A is intercept, B is slope, and C is plateau at maximal concentrations. All curves were 

significantly different (p < 0.0001). However, when only B (slope of the regressions) was compared  

in BOPTA (80) and MEB (74) groups, values were similar (p = 0.90). The shape of the non-linear 

regressions also confirm that the transport of drugs through Mrp2 is saturated for high concentrations. 
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Figure 1. (A) Diethylenetriaminepentaacetic acid (DTPA), gadobenate dimeglumine 

(BOPTA), and mebrofenin (MEB) solutions perfused over time. DTPA is an extracellular 

contrast agent used in liver imaging that distributes into sinusoids and intersititum while 

BOPTA and MEB also enter into hepatocytes following extracellular distribution. DTPA 

was labelled either with 153GdCl3 or 99mTc while BOPTA was labelled with 153GdCl3  

and MEB with 99mTc. 153Gd-DTPA and 153Gd-BOPTA were diluted in Krebs-henseleit 

bicarbonate (KHB) solution to obtain a 200-µM concentration. 99mTc-DTPA and 99mTc-MEB 

were diluted in KHB solution to obtain a 64-µM concentration. Three groups of rat livers 

were perfused: (1) Livers isolated from normal rats and perfused with 200 µM DTPA and 

200 µM BOPTA (BOPTA group, black circles, n = 5); (2) livers isolated from rats lacking 

Mrp2 and perfused with 200 µM DTPA and 200 µM BOPTA (BOPTA-TR group, green 

circles, n = 3); and (3) livers isolated from normal rats and perfused with 64 µM DTPA and 

64 µM MEB (blue circles, n = 5); and (B) Bile flow rates (µL/min/g of liver) in the three 

experimental groups over time (min). 
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Figure 2. Drug hepatocyte concentrations (A); bile concentrations (B); hepatocyte clearance 

into bile (C); and concentration gradients between bile and hepatocytes (D) over time 

(min). The three experimental groups are described in Figure 1. During drug perfusion, 

constant concentrations are perfused. During KHB perfusion, no drug is perfused (rinse 

period). BOPTA (black circles, n = 5); BOPTA in Mrp2-deficient livers (green circles,  

n = 3); MEB (blue circles, n = 5). Hepatocyte concentrations were available every 20 s,  

but presented in the graph every 5 min. 

We also plotted drug hepatocyte concentrations (x-axis) and drug bile excretion rates (y-axis)  

(Figure 3B). Curves in BOPTA and MEB groups were significantly different (p < 0.0001) when the 

three parameters A, B, and C were compared together. When only B was compared between BOPTA 

(0.7) and MEB (1.4) groups, le parameter was similar (p = 0.20). 

Finally (Figure 4), to understand how canalicular fluid transport, bile concentrations, or both 

interfere with drug excretion rates into bile, we plotted drug bile excretion rates (x-axis) with bile  

flow rates (y-axis). The relation clearly shows that bile excretion rates of MEB are driven by bile 

concentrations while in the BOPTA group, drug bile excretion rates increased according to bile 

concentrations and choleresis. 
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Figure 3. Plots between drug hepatocyte concentrations (x-axis) and drug bile 

concentrations (y-axis) (A) or drug bile excretion rates (y-axis) (B). The three experimental 

groups are described in Figure 1. BOPTA (black squares, n = 5); BOPTA in Mrp2-deficient 

livers (green squares, n = 3); MEB (blue squares, n = 5). 

 

Figure 4. Plots between drug bile excretion rates (x-axis) and bile flow rates (y-axis). The 

three experimental groups are described in Figure 1. BOPTA (black circles, n = 5); 

BOPTA in Mrp2-deficient livers (green circles, n = 3); MEB (blue circles, n = 5). 
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3. Discussion 

3.1. Assessment of Mrp2 Function in the Entire Rat Liver 

Most experimental studies use bile excretion rates to report drug excretion function in rodent livers. 

Besides the bile excretion rates of BOPTA and MEB, we measured in our experimental model several 

parameters to better define transport function across Mrp2: (1) Concentration gradients between 

hepatocyte and bile concentrations over time; and (2) a unique parameter that we named canalicular 

concentration ratio that represents the slope of the non-linear regression curve between hepatocyte and 

bile concentrations. Interestingly, despite different transport characteristics including bile excretion 

rates, BOPTA and MEB have a similar canalicular concentration ratio. In contrast, the ratio was null in 

hepatocytes lacking Mrp2. 

The canalicular concentration ratio we described is more informative than bile excretion rate for 

several reasons. One obvious reason is that modifications of transfer fluid across membrane related to 

drug structure change the bile excretion rates. BOPTA is a choleretic compound while the transport of 

MEB does not change bile flow rates. Thus, the bile excretion rates of BOPTA depend on drug 

concentrations and fluid transfer while the bile excretion rates of MEB depend only on drug 

concentrations. Tavoloni et al. [9] previously reported the relationship between bile excretion rates and 

bile flow as shown in Figure 4 to differentiate the effects of fluid transfer and bile drug concentrations. 

Another reason is that bile excretion rates are conditioned by hepatocyte uptake of drugs. Then,  

bile excretion rates reflect both the uptake and bile excretion of drugs. The only way to assess Mrp2 

function independently from cell uptake is to measure the concentration gradients between hepatocytes 

and bile. In our experimental protocol, the gradients highly differ over time. However, the 

concentrations gradients measured for MEB and BOPTA were similar over time except at the end  

of the protocol. 

The gradients greatly change over time and cannot quantify the Mrp2 function by a single 

parameter. To assess Mrp2 function, we then use the unique parameter given by the slope of the  

non-linear regressions between hepatocyte and bile concentrations. The parameter was similar for 

BOPTA and MEB in normal livers. This parameter is important because it is independent of the  

time of bile sampling, drug concentrations perfused in portal vein, and drug-induced choleresis or 

cholestasis. Finally, the canalicular concentration ratio was null in rat livers deficient in Mrp2. In 

future studies, we need to measure the ratio in the presence of Mrp2 inhibitors. In such case, we might 

be able to quantify the inhibition of Mrp2 function independently from a putative simultaneous 

inhibition on hepatocyte uptake function. Moreover, the canalicular concentration ratio and the equation  

Y = A + BX + CX2 are not widely used in pharmacological research and need additional validations in 

various experimental conditions. Thus, the intercept (A), slope (B), and C (plateau) of the relation 

would be better defined. 

3.2. Drug Hepatic Pharmacokinetics in Isolated Perfused Rodent Livers 

Isolated and perfused rodent livers are important experimental model to investigate the hepatic 

pharmacokinetics of drugs [10]. Various types of data can be measured in this model. The main 

advantages are the well-controlled and simplified conditions of experiments. Isolation of the liver 
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eliminate the pharmacokinetic interferences that originate from extra-hepatic organs. Solutions do not 

contain proteins, all molecules being free to enter into hepatocytes. Livers are perfused only through 

the portal vein and it is possible to perfuse constant concentrations of drugs. Thus, we can compare for 

BOPTA the inflow concentration (200 µM), the maximal hepatocyte concentrations (338 ± 67 µM), 

and the maximal bile concentrations (15,012 ± 2399 µM). MEB generates higher gradients between the 

various compartments: 64 µM in portal vein, 1977 ± 117 µM in hepatocytes, and 94,703 ± 10,709 µM  

in bile. 

3.3. Calculation of Hepatocyte Concentrations 

In studies that focus on drug hepatic pharmacokinetics, the concentration gradients across the 

canalicular are rarely reported. When these gradients are reported, only a few time-points were 

assessed, successive liver biopsies being difficult to obtain over time [11,12]. The originality of our 

model is that drugs are labeled with 153Gd or 99mTc, and liver concentrations are measured over time in 

a ROI by a gamma probe placed over rat livers. Because BOPTA is a MRI contrast agent, we also 

isolated and perfused rat liver in the MRI room to assess the hepatic pharmacokinetics of the drug by 

measuring hepatic signal intensities [13,14]. To our knowledge, the radiotracer MEB has never been 

perfused in isolated rat livers with a µ-SPECT device. In liver ROI, various compartments are present 

such as sinusoids, interstitium, hepatocytes, other cells such as macrophages, and bile canaliculi.  

Drug concentrations in each compartment of the ROI delineated by the probe, must be taken into 

consideration. This is the reason why we substracted the Diethylenetriaminepentaacetic acid (DTPA) 

concentrations of sinusoids and interstitium from the liver concentrations of BOPTA and MEB. 

Besides hepatocytes, the other compartment that can contain hepatobiliary drugs are bile canaliculi and 

we also withdrew bile canaliculi concentrations. Blouin et al. [15] previously measured this volume at 

0.43%. We are not aware of another method to measure concentrations in such compartment. Although 

the volume is tiny, the maximal BOPTA concentrations were 62 ± 11 µM for BOPTA and 383 ± 76 µM 

for MEB. Moreover, we must assume that drug concentrations in bile canaliculi and bile duct are 

similar. However, the composition of primary bile formed inside canaliculi is modified by solutes and 

water transported across cholangiocytes along bile ductules and ducts. According to a recent review [2],  

the modification of primary bile along ductules should be less than 10% in rats. Because the count 

rates of radioactivity measured by the probe originate from 78% of ROI (hepatocyte volume), we 

should increase the calculated values by 22% to obtain the true concentrations in hepatocytes. In the 

figures, this correction is not done. 

3.4. Transport Function of Rat Mrp2 

Mrp2 is an organic anion transporter expressed in the apical membrane of polarized cells such as 

hepatocytes, renal cells, and enterocytes [3]. In hepatocytes, Mrp2 excretes glucuronide and sulfate 

conjugates of bile acids. Mrp2 is also responsible for glutathione biliary transport. Glutathione is a major 

osmolyte partly responsible for bile-salt-independent bile flow. Mrp2 generates a steep concentration 

gradient of glutathione from 100 µM in blood to 10 mM in bile. As shown in our study, in Mrp2-deficient 

rats, bile flow rate is lower (−50%) than in normal rodents [3]. Similarly to glutathione, we measure a 

high BOPTA concentration gradient from 15,000 µM in bile to 200 µM in portal vein. 
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Besides BOPTA, MEB is avidly taken up by human [16,17] and rat livers [18], as well as isolated 

hepatocytes [19]. We find a high accumulation of MEB in rat hepatocytes. The maximal bile  

excretion rate was much higher than that of BOPTA. MEB has no choleretic or cholestatic effect.  

Previous publications showed that MEB in human hepatocytes is taken up by OATP1B1 (Organic  

Anion-Transporting Peptide B1) and OATP1B3, but not by Na+-Taurocholate Cotransporting 

Polypeptide (NTCP) and OATP2B1 [20,21]. In rats, MEB hepatic uptake is predominantly  

Oatp-mediated and the tracer is preferentially excreted unchanged into bile by Mrp2 [22–24]. 

4. Experimental Section 

4.1. Experimental Groups 

We extracted and re-analysed data from two experimental groups that were previously published [7].  

In this article, the liver concentrations of BOPTA were measured but hepatocyte and bile canalicular 

concentrations were not extracted. The two groups of rat livers were perfused with the same protocol: 

(1) Livers isolated from normal rats and perfused with 200 µM gadobenate dimeglumine (BOPTA, 

MultiHance®, Bracco Diagnostics, Milan, Italy) (BOPTA group, n = 5); and (2) livers isolated from 

rats deficient in Mrp2 and perfused with 200 µM BOPTA (BOPTA-TR group, n = 3). A third group of 

rat livers was added. In this group, 64 µM mebrofenin (MEB, Bridatec®, GE Healthcare, Chalfont St. 

Giles, UK) was perfused (MEB group, n = 5). Male Sprague-Dawley rats (Charles River, Les Arbreles, 

France) were anesthetized with pentobarbital (50 mg/kg, intraperitoneal injection). All animals 

received humane care according to the criteria outlined by the veterinary office in Geneva 

(Switzerland), which approved the protocol. 

4.2. Isolation and Perfusion of Rat Livers 

Livers were isolated leaving the organ in the carcass. The abdominal cavity was opened and  

the portal vein was cannulated and secured. A G16 catheter was introduced into the portal vein up to  

2–3 mm from the liver. After portal vein cannulation, the abdominal vena cava was transected and  

a Krebs-Henseleit-bicarbonate (KHB) solution (118 mM NaCl, 1.2 mM MgSO4, 1.2 mM KH2PO4,  

4.7 mM KCl, 26 mM NaHCO3, 2.5 mM CaCl2) was pumped without delay into the portal vein, the 

solution being discarded by the transection. The flow rate was slowly increased over one minute up to 

the desired value (30 mL/min) to avoid sinusoid injury potentially induced by the rapid increase of 

sinusoidal pressures. In a second step, the chest was opened and a second cannula inserted through the 

right atrium. This catheter collect solutions leaving the liver through hepatic veins. Finally, abdominal 

inferior vena cava was ligatured allowing solutions perfused by the portal vein to be eliminated by 

hepatic veins. The entire perfusion system consisted of reservoir, pump, heating circulator, bubble trap, 

filter, and oxygenator. The solution of perfusion was equilibrated with a mixture of 95% O2:5% CO2. 

The livers were perfused with a KHB buffer ± drugs using a non-recirculating system, livers being 

always perfused by fresh solutions. In each experiment, the common bile duct was cannulated with  

a PE10 catheter and bile samples collected every 5 min. Samples of hepatic veins were also collected 

each 5 min. Livers were perfused with a constant liver flow rate: 30 mL/min. 
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4.3. Drugs and Experimental Protocol (Figure 1A) 

Several drugs were perfused: gadopentetate dimeglumine (DTPA, Magnevist®, Bayer Pharma, 

Berlin, Germany), BOPTA, and mebrofenin MEB. DTPA distributes into sinusoids and intersititum of 

rat liver and is labelled with either 153GdCl3 (0.5 M DTPA solution, 1 MBq/mL) or 99mTc (25 mg,  

7 MBq). BOPTA enters into hepatocytes and is excreted into bile and is labelled by adding 153GdCl3 to 

a 0.5 M BOPTA solution (1 MBq/mL). MEB was labelled by adding 99mTc to MEB (40 mg, 11 MBq). 
153Gd-DTPA and 153Gd-BOPTA were diluted in KHB solution to obtain a 200-µM concentration and 
99mTc-DTPA and 99mTc-MEB were diluted in KHB solution to obtain a 64-µM concentration. 

Livers were successively perfused with 200 µM 153Gd-DTPA (10 min), KHB solution (35 min),  

200 µM 153Gd-BOPTA (perfusion period of 30 min), and KHB solution (rinse period, 30 min) or 64 µM 
99mTc-DTPA (10 min), KHB solution (35 min), 64 µM 99mTc-MEB (perfusion period of 30 min), and 

KHB solution (rinse period, 30 min). 

4.4. Drug Concentrations in Hepatocytes 

To quantify drug liver concentrations, we placed a gamma scintillation probe that measures 

radioactivity inside the liver. Count rates are provided every 20 s. The probe measures the radioactivity 

in a ROI inside a liver lobe. This ROI is constant over the entire protocol and between experiments. To 

transform radioactivity counts into contrast agent concentrations, the radioactivity in the liver at the end of 

each experiment was measured (Activimeter Isomed 2000; Nuklear-Medizintechnik Dresden GmbH, 

Dresden, Germany) and related to the last count measured by the probe. 

To calculate hepatocyte concentrations, we withdraw the liver concentrations measured during the 

perfusion of DTPA as well as concentrations in bile canaliculi from total liver concentrations of 

BOPTA or MEB. Indeed, the ROI includes several compartments with various volumes: sinusoids 

(10%), interstitium (5%), hepatocytes (78%) and bile canaliculi (0.43%) [15]. Drug concentrations in 

bile canaliculi were calculated by multiplying bile concentrations measured in the main bile duct by 

the volume of bile canaliculi present in ROI (0.43%). Although the volume is tiny, BOPTA and MEB 

concentrations in canaliculi are not negligible. DTPA, BOPTA, and MEB concentrations in bile were 

measured every 5 min with a Packard Cobra auto-gamma counter (Camberra Packard, Switzerland). 

Concentrations were expressed in µM (corresponding to nmol/mL) in bile duct, as well as in livers, 1 g 

of liver being close to 1 mL. Bile excretion rates (in nmol/min) were calculated by the following 

formula: CBILE x bile flow rate. Concentrations in bile (CBILE) is measured in µM and bile flow in µL/min. 

Bile flow was expressed in µL/min/g. Hepatocyte clearance into bile was also calculated. Hepatocyte 

clearance into bile (mL/min or g of hepatocytes/min) = bile excretion rates (nmol/min)/hepatocyte 

concentrations (nmol/mL or g of hepatocytes). 

4.5. Statistics 

Parameters are means ± S.D. Kruskal-Wallis tests were performed to compare the mean values 

between experimental groups. To compare the evolution of concentrations over time we use a two-way 

ANOVA with multisple comparisons between groups within each time-points (Prism 6, GraphPad; 

GraphPad-Prism Software Inc., San Diego, CA, USA). 
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To evidence the transport function of Mrp2, we plotted various values (for example hepatocyte vs. 

bile concentrations). We then analysed the relationship with non-linear regressions, which fit the 

experimental values with the equation A + BX + CX2, A, B, and C representing the intercept on  

y-axis, slope, and C (plateau) respectively (Prism 6, GraphPad). The goodness of fit of each data  

set was measured by the extra sum-of-squares F test. Then, comparisons between data sets were 

performed to determine whether curves were statistically indistinguishable (F test). This test compares 

concomitantly the A, B, and C parameters of the three data sets. Moreover, with this sofware, it is 

possible to compare a single parameter (such as B or slope of regression) between different groups. 

5. Clinical Relevance of the Study 

The quantification of Mrp2 function was investigated in isolated and perfused rat livers using 

BOPTA and MEB, two hepatobiliary compounds in clinical liver imaging. Both techniques detect and 

characterize focal liver lesions as well as hepatic function assuming that the higher the accumulation  

of BOPTA or MEB in hepatocytes, the better the function [5,8]. However, as seen with the  

high accumulation of BOPTA in liver lacking Mrp2, the interpretation of liver imaging is not 

straightforward. An apparent high accumulation of drugs in the liver might correspond to lack of 

excretion when drugs were capable of entering hepatocytes. Consequently, understanding the function 

of Mrp2 independently from drug hepatocyte uptake is valuable. Previous experimental studies used 

liver imaging to investigate the hepatobiliary transport of tracers [25,26]. The transfer of our results to 

patients relies on an understanding of species differences for drug transporters [27] and scaling factors 

that relate in vitro transporter data to accurate in vivo predictions [24]. These issues being challenging, 

it should be possible soon to estimate with liver imaging both liver and bile concentrations and to 

calculate the canalicular concentration ratios in patients [28,29]. 
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