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Abstract

Combining cyclin-dependent kinase (CDK) inhibitors with endocrine therapy improves outcomes 

for metastatic estrogen receptor positive (ER+) breast cancer patients but its value in earlier stage 

patients is unclear. We examined evolutionary trajectories of early-stage breast cancer tumors, 

using single cell RNA sequencing (scRNAseq) of serial biopsies from the FELINE clinical trial 

(#NCT02712723) of endocrine therapy (letrozole) alone or combined with the CDK inhibitor 

ribociclib. Despite differences in subclonal diversity evolution across patients and treatments, 

common resistance phenotypes emerged. Resistant tumors treated with combination therapy 

showed accelerated loss of estrogen signaling with convergent up-regulation of JNK signaling 

through growth factor receptors. In contrast, cancer cells maintaining estrogen signaling during 

mono- or combination therapy showed potentiation of CDK4/6 activation and ERK upregulation 

through ERBB4 signaling. These results indicate that combination therapy in early-stage ER+ 

breast cancer leads to emergence of resistance through a shift from estrogen to alternative growth 

signal-mediated proliferation.

Introduction

Hormone receptor positive (estrogen receptor positive (ER+) and/or progesterone receptor 

positive (PR+)) breast cancer comprises 70–80% of all breast cancers (1). In ER+ breast 

cancer, estrogen receptors are activated by estrogen and transduction of this signal to the 

nucleus promotes cell proliferation and tumor growth. The primary treatment for ER+ breast 

cancer is endocrine therapy, which either depletes endogenous estrogen and estrogen made 

by breast cancer cells using aromatase-inhibition (AI) or blocks ER activity through direct 

modulation or degradation (2, 3). Approximately 90% of all patients with metastatic breast 

cancer eventually develop resistance to endocrine therapy and at least 33% of patients 

with early-stage disease will develop endocrine resistance (4, 5). Combination of endocrine 

therapy with cyclin-dependent kinase (CDK) 4/6 inhibitors has improved disease control in 

metastatic ER+ breast cancer and adjuvant trials to study the efficacy of this combination 

in early stage, non-metastatic breast cancer are ongoing (NATALEE) or have completed 

accrual and are in the follow-up phase (monarchE, PENELOPE-B and PALLAS) (6–9). 

Preliminary results after short term follow-up from adjuvant trials have shown contradictory 

results, with the MonachE trial showing an improvement in invasive disease-free survival 

with two years of adjuvant abemaciclib added to endocrine therapy, while the PALLAS 

trial failed to show an improvement in the same endpoint with two years of adjuvant 

palbocilib. It is not known to what extent such differences are due to biologic effects of 

the drugs versus biologic differences in different populations of early breast cancer patients; 

therefore, additional research is needed to characterize the effects of CDK4/6 inhibitor and 

mechanisms of resistance in surviving cells.
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CDK4/6 proteins form a complex with cyclin D that phosphorylates and deactivates the key 

cell cycle checkpoint regulator retinoblastoma protein (RB1), leading to E2F transcription 

factor activation, production of cell cycle promoting genes, and progression from G1 to 

S phase (10). Binding of estrogen to ER and of growth factors binding to growth factor 

receptors (GFR) drive proliferation through cyclin D/CDK4/6 activation (11, 12). ER can 

also activate extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase 

(MAPK) signaling and drive transcription of cyclin D genes and cell cycle progression (13). 

Some known mechanisms of endocrine therapy resistance include loss or modification of the 

key estrogen receptor-alpha (ESR1) and activation of the phosphoinositide 3-kinases (PI3K) 

or epidermal growth factor receptor (EGFR) pathways (14). Prior studies have also revealed 

mechanisms underlying resistance to CDK4/6 inhibitor treatment in the metastatic setting 

(15), including disruption or loss of CDK6 and cyclin E2 (CCNE2), as well as activation 

of AKT1, RAS, ERBB2, and FGFR genes. Resistance mechanisms in early, non-metastatic 

breast tumors remain unknown.

Phosphorylation of ER serine residue at position 118 is required for its full activity. Ser118 

is phosphorylated by MAPK, specifically MAPK1/3 (ERK1/2), initiated by GFR activation 

(16). Likewise, estrogens also activate ERK1/2 through multiple signaling pathways, 

highlighting the crosstalk among these pathways (17, 18). Additional MAPK pathways, 

including MAPK8–10 (Jun amino-terminal kinases; JNK1–3) and MAPK11–14 (p38α), 

have also been shown to interact with ER signaling, but their role in response to therapy or 

evolution to resistance is unknown.

To address the questions detailed above including the impact of therapy on signaling and 

response in early-stage ER+ breast cancer, we detail how resistance evolves in response 

to endocrine and cell cycle inhibitor therapies in early stage ER+ breast cancers. These 

analyses demonstrate multiple convergent phenotypes conveying resistance to combination 

therapy.

Results

Clinical trial: Patient treatment and sample collection

We studied the evolution of endocrine and CDK inhibitor resistant cancer cell genotypes and 

phenotypes in post-menopausal women with node positive or >2 cm ER and or PR+, HER2 

negative breast cancer enrolled in the FELINE trial (clinicaltrials.gov # NCT02712723) 

(19). This trial evaluated of the addition of CDK inhibition to endocrine therapy in the neo­

adjuvant setting Patients (n=120) were randomized equally into three arms: A) endocrine 

therapy alone (letrozole plus placebo), B) intermittent high dose combination therapy 

(letrozole plus ribociclib (600 mg/d, three on/one week off)) or C) continuous lower dose 

combination therapy (letrozole plus ribociclib (400 mg/d)) (Figure 1a). Patients were treated 

for six cycles and biopsies were collected at baseline (day 0), following treatment initiation 

(day 14), and end of treatment (surgery around day 180).

We used tumor growth measurements over time to define resistance and sensitivity during 

the six months of therapy. Specifically, we mathematically reconstructed tumor size 

continuously over time during treatment using data from magnetic resonance imaging 
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(MRI), ultrasound (US), mammogram (MG), clinical physical assessment (CA) taken 

throughout therapy, and at time of surgical pathology (SP) (20). This estimation was 

determined using a Gaussian Process Latent Variable Model to account for known biases 

and differences in accuracy between measurement modalities (21, 22). Groups of similar 

tumor trajectories were then identified using a Gaussian mixture model. Patients exhibiting 

either a sustained shrinkage in tumor size during treatment or an initial shrinkage followed 

by a plateau during treatment were classified as sensitive to therapy. Alternatively, tumors 

classified as resistant show either 1) no change in size during treatment, 2) a rebound 

indicated by an initial tumor shrinkage followed by growth during treatment, or 3) 

continual increased growth (Extended Data Fig. 1a–b). Tumors defined as resistant had a 

significantly higher proportion of tumor remaining after therapy (>2/3 initial size) compared 

to sensitive tumors (t=4.45, p<0.001), and have a significant correlation between clinical 

and modeling classifications (Extended Data Fig. 1a–c). All patient modeling classifications 

match RECIST 1.1 classification except for two patients. One tumor classified as resistant 

by the model but PR by RECIST 1.1 shrunk on imaging and clinical exam at day 90 but then 

both pathology and ultrasound show a rebound by day 180. The second tumor classified as 

sensitive by the model but marginally SD by RECIST 1.1 exhibited a steady 30% decrease 

in size at surgery.

Biopsies from the first 60 patients were processed and analyzed (20 patients from each 

treatment arm). From 60 total patients, 45 had sufficient high-quality tissue in optimal 

cutting temperature compound (OCT) at day 0 and a follow-up time point. Serial single-cell 

RNA-sequencing profiles (scRNAseq) and whole exome sequencing (WES) pre- and post­

treatment was performed as detailed in the methods (Figure 1a). From the 45 patients 

sampled, 34 had enough cancer cells and high-quality sequencing data for scRNAseq 

analysis of the progression of tumor RNA phenotypes and 24 patients yielded WES data 

(Figure 1e shows patient samples processed on the 10x and Supplementary Table 1 shows 

patient samples processed using the ICELL8). For samples with sufficient DNA, WES 

(mean depth 234x) was performed on pre- and day 180 post-treatment tumor biopsies 

with matched blood sequenced in parallel (mean depth 230x) to identify somatic mutations 

(Supplementary Table 2).

Genomic analysis of patient tumor samples

We obtained scRNAseq transcriptional profiles for 176,644 cells after filtering out low­

quality cells and doublets (Supplementary Table 3). Counts were normalized using a zero­

inflated negative binomial model (zinbwave) (23). Cells across patients were integrated 

using the Seurat normalization package and the reciprocal PCA method (24). Cancer 

cells were distinguished from normal cells by performing gene copy number analysis of 

the scRNAseq data using inferCNV for each single cell (25) (Supplementary Information 

Dataset 1/2). As shown in Figure 1c and Extended Data Fig. 2b, some cells have frequent 

and pronounced changes in copy numbers and were therefore classified as cancer cells. 

Using t-SNE, we confirmed that cancer cells with copy number alterations clustered 

together; and normal cells that show no copy number alterations also cluster with themselves 

(26). Finally, marker gene expression shown in Figure 1d was used to verify the cell type 

annotations. A total of 32,781 (18.56%) stromal cells and 16,672 (9.44%) immune cells 
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were identified, using singleR cell type annotation and verified by cell type specific marker 

gene expression (Figures 1b and 1c, Extended Data Fig. 2, and Supplementary Table 3) 

(27). Immune and stromal cells were clearly identifiable by expression of PTPRC and 

FAP/HTRA1, while cancer and normal epithelial cells expressed KRT19 and/or E-cadherin 

(CDH1) (Figure 1d).

Tumors undergo subclonal evolution during treatment

To understand how selective pressures of endocrine and CDK4/6 inhibitors drove evolution 

of cancer cells, WES data was analyzed as detailed in the methods. On average, 99 non­

synonymous mutations (range 7–916) and 89 indels (range 24–380) were detected in each 

sample (Supplementary Table 4). Two patients had substantially higher mutation burden 

compared to average (Supplementary Table 4) and shared a distinct mutational signature 

enriched in APOBEC signatures 2 and 13 (Extended Data Fig. 3). Gene mutations known 

to be frequent in ER+ breast cancer were seen, including PIK3CA (46%), TP53 (29%), and 

MAP3K1 (21%) (Figure 2a). Gene copy number alterations (CNA) were also frequently 

identified in the WES data, including gains in AKT3, CCND1, CCNE2, CDK6, FGFR1 and 

losses in ESR1, RB1 and TP53 (Figure 2b). In general, copy number alterations were more 

frequent in resistant than sensitive tumors, with most present prior to therapy (Figure 2b, 

Supplementary Table 5). When summarized at the pathway level, cell cycle, TGF-beta, and 

TP53 pathway related genes were frequently mutated in this cohort (Extended Data Fig. 4 

and Supplementary Table 6). Over time, allele frequency of variants in 19 genes (PTEN, 

GATA3, and others) increase in 10 patients, suggesting enrichment of clones carrying those 

mutations (Supplementary Table 7).

Subclonal cancer cell populations were identified using PyClone (28). All patients’ tumors 

show polyclonal populations, with a range of 2–7 subclones present over the course of 

therapy (Figure 2c). Unlike later stage ER+ breast cancer (29) or triple negative breast 

cancer (TNBC) (30), few patients show bottleneck events, in which a single dominant 

subclone emerges during treatment, with the majority of patient tumors maintaining 

persistent polyclonal populations (Figure 2c) (23).

Evolution of tumor heterogeneity between treatment arms was examined by assessing the 

frequency of mono- or poly-clonal populations over time (Figure 2d). Diversity includes 

two components: richness (the number of subclones) and dominance (the uneven fraction 

of subclones) (Figure 2d). For each biopsy, overall tumor diversity was measured using 

Shannon’s index and changes in dominance by differences in Simpson’s index (34). Tumor 

heterogeneity was found to decrease during endocrine treatment, due to an increase in 

the dominance of resistant subclones (t=2.33, p<005). In contrast, overall heterogeneity 

increased during combination treatment due to decreasing dominance (t=−5.06, p<0.001) 

(Supplementary Table 8). The increase in tumor genetic diversity under combined therapy 

suggests that multiple genetic mechanisms of resistance to ribociclib can lead to a resistance 

phenotype with similar fitness.
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Identifying resistant phenotypes during treatment

To determine how cancer cell phenotypes evolved during treatment, we analyzed single cell 

pathway activity across all three time points (day 0, 14 and 180), using single sample Gene 

Set Enrichment Analysis (ssGSEA) scores (31). We identified pathways from the Molecular 

Signatures Database (MSigDB; c2 and hallmark pathways) significantly dysregulated during 

each treatment (Supplementary Table 9) (32). A hierarchical regression model determined 

overall and patient specific trajectories of pathway expression within treatment arms, with a 

Holm’s conservative correction for statistical significance (p-values) of pathway activation 

(33). The most significantly altered pathways (n=87) were categorized by major biological 

processes, including estrogen receptor activity, signal transduction and proliferation (cell 

cycle activity) (Supplementary Table 10). The phenotypic heterogeneity in these three 

processes were assessed in detail through the extraction, dimension reduction, and model­

based analysis of the individual genes constituting the detected pathways. Of note, following 

6 months of treatment, remaining tumor cells may include those with a resistance phenotype 

(29, 30).

Accelerated evolution of diminished estrogen signaling

Analysis of the pathway trajectories shows that persistent tumors treated with endocrine 

therapy alone maintained estrogen signaling following treatment (measured by Hallmark 

estrogen response early signature), indicating little or no sensitivity to therapy (t=0.77, 

p=0.45), while shrinking tumors showed a significant but modest decrease in estrogen 

signaling (Figure 3a, top left panel) (t=−2.138, p<0.05). This result indicates that effective 

response occurs with effective block of estrogen signaling. In contrast, combination 

therapy caused a stark decrease in estrogen signaling during treatment in persistent tumors 

(t=−2.721, p=0.05), demonstrating acquisition of a low estrogen dependent state with 

diminished endocrine signaling activity (Figure 3a, top middle and right panels). Tumors 

shrinking during combination therapy show similar diminished levels of endocrine signaling 

in cancer cells across all treatment arms.

During combination therapy, diminished ER expression and pathway activity was 

accompanied by a transition from luminal-like to basal-like characteristics (Figure 3a, 

middle and bottom panels) (transition under high dose combination therapy: t=2.85, p<0.05; 

low dose: t=2.97, p<0.05). The transition occurred repeatedly in different subclones from 

patient’s tumors (Extended Data Fig. 5 and Supplementary Table 11). Cells with increased 

basal-like phenotype score had lower estrogen receptor (ESR1) expression (t=−5.77, 

p<0.001), and this negative association was strengthened under both ribociclib treatment 

arms (t=−3.15, p<0.005) (Supplementary Table 12). Estrogen signaling loss also correlated 

with an increased signature of endocrine therapy resistance (Supplementary Table 12). The 

switch to an estrogen independent state of proliferation was only weakly observable during 

endocrine therapy alone, indicating that the selective pressure of combination therapy, 

especially at high doses, promoted accelerated evolution of the phenotypic switch away from 

estrogen signaling activity in resistant tumors. Sensitive tumors that shrink during treatment 

show a more moderate decrease in estrogen signaling.
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We also analyzed gene level changes in ESR1 during treatment. We quantified the 

trajectories of ESR1 expression using a hierarchical generalized additive model while 

accounting for differences in initial tumor expression. In line with other studies, we found 

from the WES data that loss of ESR1 heterozygosity (LOH) also significantly diminished 

expression of ESR1 mRNA (Figure 3b, W=20, p<0.05), including some pre-treatment 

samples, indicating innate resistance to endocrine therapy (34, 35). Combination therapy 

accelerated the reduction of ESR1 mRNA levels over time (ESR1 reduction: t=−31.54, 

p<0.001) (Figure 3c), with persistent tumors showing the most dramatic reductions in 

expression (t=−80.28, p<0.001). Shrinking tumors also show reductions in receptor mRNA 

expression, but more comparable to letrozole alone levels (t=−79.50, p<0.001).

Convergence on JNK MAPK signaling in growing tumors

To identify the proliferative stimuli in cancer cells with diminished estrogen signaling, we 

analyzed alternative growth pathways that were dysregulated during combination therapy 

(Supplementary Table 10). In addition to a loss of ER signaling, the pathway analysis 

detected several signatures of MAPK signaling network alterations. The JNK and ERK 

pathways are major component of the MAPK network, along with the p38 MAPK pathway; 

both showed divergent patterns of activity following combination therapy but not endocrine 

therapy alone (Figure 4a; Extended Data Fig.6; Supplementary Table 10).

The JNK pathway was upregulated during combination therapy in resistant tumor cells at 

day 14, but not in sensitive cells (Figure 4a) (high dose: t=3.10, p<0.01, low dose: t=2.40, 

p<0.05, resistant versus sensitive t=2.79, p<0.05). Tumor cells from all patients remaining 

after six months of combination therapy showed upregulation of JNK expression. This result 

indicates the acquired resistance in persistent cells, even in tumors that are initially sensitive 

(as shown in Figure 2c). Significant activation of the JNK pathway score was not seen in 

resistant tumors treated with endocrine therapy alone (Figure 4a left panel) (t=0.81, p=0.44), 

indicating its specific role in CDK inhibitor resistance.

Growth factor signaling can mimic estrogen action and ERK can phosphorylate ESR1, 

leading to estrogen independent activation (16–18). During combination therapy, resistant 

tumors became less dependent on ERK signaling (Extended Data Fig.6) (t=−2.83, p<0.05). 

In contrast, sensitive tumors maintained higher ERK signaling (no significant ERK change: 

t=0.89, p=0.41) perhaps due to the significant crosstalk between ERK and ER, including ER 

activation of growth factor signaling. Taken together with the activation of JNK signaling 

under combination therapy, the lack of ERK signal utilization further reflects the transition 

to an endocrine independent resistance state, with reduced reliance on ESR1/ERK crosstalk 

(17, 36).

An inverse expression pattern occurred between JNK and ERK pathway genes (MAPK gene 

set in Supplementary Table 13). Pathway level analysis also shows an inverse relationship 

(Figure 4b). This dichotomy was consistent in cells across treatments and timepoints 

(Extended Data Fig.6). An overall JNK activation phenotype score was constructed which 

integrates expression across MAPK genes, providing a pseudotime metric and placing cells 

on a continuum from JNK to ERK dominated signal transduction. Utilizing the collinearity 

of MAPK gene expression, we performed Uniform Manifold Approximation and Projection 
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(UMAP) dimension reduction of MAPK genes and used the major axis of variation to 

measure JNK activation (Extended Data Fig.7). High JNK activation was verified to 

correlate strongly with single cell upregulation of ASK1 and JNK1/3 genes, while low 

scores reflected ERK activation, including MEK4, MEKK1–3, and ERBB4 upregulation.

To understand how JNK signaling relates to resistance, we examined the link between 

JNK activation and the expression of the ribociclib target gene, cyclin dependent kinase 6 

(CDK6). Across each subclone in all tumors, the average CDK6 expression was calculated 

along with JNK activation levels (Figure 4c, red line). In addition to expression levels 

in copy number neutral cells, we also separately analyzed JNK levels in subclones with 

amplified CDK6 (Figure 4c, blue line; no patients in arm B had CDK6 CNA). Using 

generalized additive models, we analyzed the nonlinear CDK6:JNK relationship in each 

treatment and CDK6 amplification group (Figure 4c).

Following combination therapy, JNK activation was concurrent with the upregulation 

of CDK6 in patients lacking pre-existing CDK6 copy number alterations (Figure 4c) 

(F=130.10, p<0.001). Subclonal populations with low JNK activation had low CDK6 

expression (t=12.39, p<0.001), indicating that these cells were not in a proliferative state. 

In contrast, tumors with CDK6 copy number alterations had high CDK6 expression 

independent of their JNK activation status (t=16.03; p< 0.001), indicating that genetic 

alteration removed the requirement for altered signal transduction. Overall, tumors with 

higher JNK activation decreased in size less during combination therapy (t=13.84, p<0.001).

Estrogen signaling was explored between subclone populations differing in JNK activation 

and CDK6 amplification. Subclonal populations with low ESR1 expression exhibited 

CDK6 upregulation (Figure 4c) (t=−3.89, p<0.001). In patients lacking CDK6 amplification 

(Figure 4c, filled circles), estrogen loss was linked to JNK activation (t=−6.13, p<0.001). 

Meanwhile, patients with CDK6 amplified tumors lost ESR1 expression independent of JNK 

activity (Figure 4c, open triangles) (t=−0.20, p=0.84). In the absence of CDK6 amplification, 

JNK activation provides an alternative pathway to estrogen independent proliferation under 

combined therapy. Increased expression of the anti-apoptotic MCL1 gene was also observed 

in persistent tumor cells after treatment (t=2.68, p<0.05), in line with studies showing JNK 

stabilization of MCL1 through phosphorylation (37, 38).

Receptor tyrosine kinase upregulation is common during treatment

As both JNK activation and CDK6 amplification allowed estrogen independence and/or 

potentiation, we examined GFRs that showed compensatory increases in expression. 

Receptor genes comprising ssGSEA signatures detected in the pathway analysis were 

identified along with genes listed in the cell surface protein atlas (n=1406) (39). For 

each patient, we compared pre- and post-treatment expression using analysis of variance 

and identified receptors with a) increased expression during treatment or b) that had 

initially higher expression in resistant tumors. Of these genes, we identified receptors 

with expression inversely correlated to estrogen receptor activity (Extended Data Fig.8; 

Supplementary Table 14).
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Following this method, we found that Erb-B4 Receptor Tyrosine Kinase 4 (ERBB4) gene 

was significantly upregulated relative to baseline in 50% of tumors (n=13), including all but 

one patient with CDK6 copy number amplification (n=4/5). ERBB4 is upstream of MAPK 

signaling and an ER coregulator that can drive proliferation via ERK signaling (40). Tumors 

lacking CDK6 amplification showed less ERBB4 upregulation than tumors with CDK6 

amplification (Figure 5a, top row) (t=−13.06, p<0.001), indicating that it is a mechanism of 

resistance to endocrine but not CDK inhibition. Consistent with this hypothesis, higher 

expression of ERBB4 was also seen in tumors after endocrine monotherapy (t=11.88, 

p<0.001).

Fibroblast Growth Factor Receptor 2 (FGFR2) was also upregulated in JNK activated 

cells following high dose intermittent combination therapy when patients lacked CDK6 

amplification (Figure 5a, bottom row). FGF receptors can activate JNK MAPK signaling 

(41, 42). This relationship was most evident in JNK activated cells following intermittent 

high dose combination therapy (t=18.38, p<0.001), with 64% (7/11) of patients showing 

high expression of FGFR2 (Supplementary Table 14). An additional receptor upregulated 

over time in resistant cells was RAR Related Orphan Receptor A (RORA), a nuclear 

receptor that potentially modulates both aromatase enzyme (43) and the ribociclib target, 

CDK6.

Single cell relationships were constructed through a cluster tree and show that as subclones 

evolve during treatment, the acquisition of alternative receptors is accompanied by a loss 

of ESR1 (Figure 5b; Extended Data Fig.9) (Supplementary Information Dataset 2 shows 

single-cell copy number alterations of each patients’ tumor). As an example, subclones 

with reduced ESR1 and upregulated ERBB4 emerged after endocrine therapy (P20) or 

combination therapy (P34) (Figure 5b). In addition, subclones with dysregulated ESR1 

and upregulated FGFR2 emerged after endocrine therapy (P15) or disappeared after 

combination therapy (P21) (Figure 5b). As summarized in Figure 5c, in tumor cells with 

high estrogen signaling, potentiation of CDK4/6 activation can occur through ERBB4 and 

ERK upregulation and activation. Alternatively, cancer cells with diminished endocrine 

signaling can bypass CDK4/6 inhibition through upregulation of the JNK pathway. CDK6 

amplification itself can potentiate its activity and correlates with cell proliferation. In sum, 

resistant cancer cell state reflects a phenotypic shift from ERK to JNK MAPK signaling and 

diminished estrogen signaling in tumors without CDK6 amplification.

Consequences of therapy: cell cycle rewiring to bypass CDK inhibition

Cancer cell proliferation during treatment was examined by measuring changes in cell 

cycle pathway activity. Cell cycle activity was initially inhibited by both endocrine therapy 

alone and combination therapy (Figure 6a) (Biocarta cell cycle pathway decline: t=−2.728, 

p<0.05). However, by the end of combination treatment, cell cycle activity had rebounded 

(t=2.678, p<0.05). Tumor cells that persisted following intermittent high dose combination 

therapy showed the largest initial reduction in cell cycle activity (t=−3.290, p<0.05), 

followed by the greatest proliferative rebound, suggesting stronger selection and cell cycle 

rewiring to bypass the G1 checkpoint and proliferate independent of estrogen deprivation. 

In contrast, tumors persistent to letrozole treatment alone exhibited the weaker initial and 
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subsequent reductions in cell cycle activity compared to shrinking tumors, reflective of 

innate resistance.

Cell cycle dysregulation is reflected in the changing distribution of cells across cell cycle 

phases and altered expression of cell cycle regulating genes. To reveal these alterations 

from single cell data, we extended the Markov model-based reCAT algorithm (44) to 

reconstruct the cancer cell cycle transitions (Extended Data Fig.10). Cell cycle states 

were identified by applying UMAP dimension reduction followed by clustering with a 

Gaussian mixture model. States were connected by finding the shortest path that visited all 

states. Extending this algorithm, the dynamics of gene expression around distinct cell cycle 

phases was delineated using cyclical generalized additive models (Figure 6b). Through the 

reconstruction of the cell cycle from scRNAseq data (Figure 6b), we recovered expected 

cell cycle stages, including a G1 checkpoint transition where cyclin D initially rises and is 

followed by CDK6 expression. Further, we observed that Retinoblastoma (RB1), the key 

G1 checkpoint protein, was downregulated in concert with increased expression of the E2F3 

proliferation gene.

The fraction of cancer cells in each patient biopsy that were in the division (S/G2) phase 

was calculated. During combination therapies, an increasing fraction of each patient’s cancer 

cells were found to be in the division and growth (S/G2) phase (t=2.94, p<0.001). The 

frequency of proliferating cells increased in persistent tumors, especially those receiving 

high dose combination therapy (t=2.1, p<0.05). In contrast, those receiving endocrine 

therapy alone exhibited fewer proliferating cells (t=−2.08, p<0.05), with no detectable 

difference between tumors that shrank or persisted while on therapy. This result indicates 

effective bypass of the ribociclib enhanced G1/S checkpoint in surviving subclonal 

populations.

Next, fluctuations in the expression of ESR1 and JNK genes around the cell cycle were 

recovered by applying the cyclical generalized additive models. By applying this approach 

to cells sampled at different timepoints and from patients given different therapies, we 

distinguished whether treatment altered expression at specific cell cycle stages or if 

genes expression was dysregulated independent of the cell cycle. ESR1 was expressed at 

consistent levels throughout the cell cycle (Figure 6d, top row). However, when looking 

across combination therapy arms, decreasing ESR1 expression was observed over time, 

accompanied by increasing expression of JNK1 and its target JUNB (Figure 6d, second 

row) (t=2.57, p<0.05 and t= 10.10, p<0.001) (Supplementary Table 15). Further, during 

combination treatment, we observed a decrease in cyclin dependent kinase inhibitor 2A 

(CDKN2A (coding for p14 and p16)) (t=−3.07, p<0.005) and an increase in CDK6 

expression in the G1 to S/G2 phases (t=4.81, p<0.001) (Figure 6d, bottom two rows). 

Taken together, these observations support the role of estrogen independent JNK signaling 

in decreasing cell cycle inhibition prior to the G1 checkpoint, thereby permitting cell cycle 

reactivation.

Griffiths et al. Page 10

Nat Cancer. Author manuscript; available in PMC 2021 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

With their proven success in treatment of metastatic ER positive breast cancer (45–47), 

CDK 4/6 inhibitors are currently being tested in the treatment of early-stage breast cancer 

(6–9). We studied the evolution to resistant states in patient tumors during treatment 

with endocrine therapy alone or in combination with the CDK4/6 inhibitor, ribociclib. 

In patients treated with endocrine therapy alone, we see compensatory signaling between 

ESR1 and ERBB4 receptor tyrosine kinase, with activation of RTK and downstream ERK 

MAPK upregulation offsetting decreased ESR1 levels in resistant tumors. We uncovered 

convergence towards distinct pathways of resistance in patients treated with combined 

letrozole and ribociclib, including the evolution of estrogen independent proliferation 

through the upregulation of alternative growth factor receptors (e.g. ERBB4, FGFR2 and 

RORA) and JNK MAPK signaling including ASK1/MAP3K5 and JNK1–3 (MAPK8–10) 

(48, 49). 21% of tumors had genetic amplification of the CDK6 gene through copy number 

gain, directly enhancing its transcription, while those lacking CDK6 amplification initially 

upregulated JNK signaling during treatment, providing an alternative route to upregulation 

of CDK6 levels. Due to gene dropouts in scRNAseq data, transcription of all genes was not 

measured, and additional pathways and genes may also be dysregulated in this setting. It is 

possible that alternative pathways drive proliferation and response to CDK4/6 inhibitors in 

early versus late-stage breast cancer (50–53).

JNK has been found to drive aberrant tumor growth in a drosophila model system by 

modulating cell survival (54, 55), highlighting a potential role for JNK in tumorigenesis 

and cell-cell interactions. Further, JNK has been shown to activate cell cycle regulated 

proteins such as CDK4 (56, 57). Regulation of these pathways can drive proliferation of 

ER+ tumors without a requirement for estrogen. The CDK inhibitor abemaciclib, which 

recently demonstrated clinical benefit in early-stage patients, is less specific for CDK4/6 

than ribociclib, has a different CDK4/CDK6 inhibition ratio, and may include targets such as 

JNK (58).

Changes in markers of proliferation after 2 weeks of endocrine therapy have been used 

as early indicators of efficacy (53, 59). Our results demonstrate that information beyond 

proliferation can be learned from early biopsies in neoadjuvant therapy trials. As a 

prognostic marker, changes in JNK activation, endocrine signaling and luminal/basal-like 

features, or cell cycle state could be tested at 2 weeks as a biomarker. Tumors that show 

an insufficient decrease in estrogen signaling and proliferation after two weeks of endocrine 

therapy alone may benefit from switching to another endocrine therapy or receiving growth 

factor receptor signaling inhibitors. Given the potential for additional therapy to increase 

selective pressure, it will be imperative to rationally determine optimal dosing and timing of 

drug treatment regimens to reverse or prevent a resistant state while minimizing side effects.

In conclusion, our analysis identifies mechanisms of how tumors circumvent endocrine and 

CDK4/6 inhibition through phenotypic and subclonal evolution. These mechanisms include 

shifts to alternative proliferative signaling pathways, bypassing dependence on ER and 

CDK6 activation. This approach provides a method to detect resistance mechanisms early 
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in cancer treatment to identify phenotypic targets directed at surviving tumor subclones in 

tumors.

Methods

Patient cohort and sample collection

Patient tumor core biopsies were collected prospectively under Clinical Trial 

#NCT02712723, as a multicenter study led by Dr. Qamar Khan at the University 

of Kansas Medical Center (IND #127673) entitled: Femara (letrozole) plus ribociclib 

(LEE011) or placebo as neo-adjuvant endocrine therapy for women with ER-positive, 

HER2-negative early breast cancer (FELINE Trial). FELINE is a randomized, placebo 

controlled, multicenter investigator-initiated trial. Patients in this trial were enrolled from 

10 centers in the United States. Postmenopausal women with pathologically confirmed 

non-metastatic, operable, invasive breast cancer and clinical tumor size of at least 2 cm 

were included. Invasive breast cancer had to be ER positive (≥66% of the cells positive 

or ER Allred score 6–8) and HER2 negative by ASCO-CAP guidelines. Patients were 

randomized between three treatment arms (1:1:1). Arm A received letrozole plus placebo, 

Arm B letrozole plus ribociclib 600 mg daily for 21 out of 28 days of each cycle and Arm 

C received letrozole plus ribociclib 400 mg continuously. Protocol therapy was continued 

until the day before surgery. Mammogram, MRI and ultrasound of the affected breast were 

performed at baseline and a mammogram and ultrasound was performed at completion of 

neoadjuvant therapy. MRI of the breast was performed after completion of 2 cycles of 

treatment (Day 1 of cycle 3). Sample collection for tissue was mandatory, providing three 

tumor core biopsies over the course of treatment: screening (Day 0), Cycle 1 Day 14 (Day 

14), and end of trial (Day 180) using a 14-gauge needle. Immediately after collection, 

biopsy samples were snap frozen embedded in optimal cutting temperature (OCT). Informed 

consent was obtained from all patients following protocols approved by the institutional 

IRBs and in accordance with the Declaration of Helsinki. This study was approved by 

University of Kansas Institutional Review Board (protocol #CLEE011XUS10T). Further 

information on research design is available in the Nature Research Reporting Summary 

linked to this article (Supplementary Information Dataset 3 shows study protocols).

Statistics & Reproducibility

Trial sample size was determined based on existing information of the rate of PEPI scores 

of zero and powered to have a Type I error rate of 10% and Type II error rate of 20%. No 

samples were excluded due to patient specific factors and both the trial and experiments 

were blinded and randomized. Statistical tests are two-sided and multiple comparison p­

value corrections were applied using Holm’s conservative approach.

Exome sequencing, variant calling, and copy number alteration

Whole-exome sequencing was performed for 24 patients with cancer cells that are present 

at both pre- (Day 0) and post-treatment (Day 14 or Day 180). Genomic DNA of tumor 

and matched germline samples were captured using the SureSelect Human All Exon 

v7 (Agilent) or xGen Exome Research Panel v2 (IDT). Enriched DNA samples were 

sequenced on an Illumina NovaSeq 6000 with 150 bp paired-end reads. Sequence analyses 
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were performed with a Bioinformatics ExperT SYstem (BETSY) (60). Briefly, sequences 

were processed by trimmomatic v0.39-1 (61) (MINLEN:15 LEADING:3 TRAILING:3 

SLIDINGWINDOW:4:15) to trim adaptors and low-quality sequences. Trimmed sequences 

were aligned to the hg19 human genome with BWA-MEM v0.7.17 (62–64) and bam files 

were sorted by sambamba v0.6.8 (https://lomereiter.github.io/sambamba/). PCR duplicates 

were marked using Picard v2.18.4 (65). Local realignment around the 1000 Genomes Phase 

I indels were performed with the Genome Analysis Toolkit (GATK v3.8) (66).

Somatic single-nucleotide variations (SNVs) and small indels (≤ 50 bp) were identified 

with MuTect2 (in GATK v3.8) (66), Strelka v2.9.2 (67), and Varscan2 v2.4.3-2 (68) using 

tumor-normal pairs. Variants with read depth ≥ 25, alternative allele read depth ≥ 5, variant 

allele frequency (VAF) ≥ 0.05 in tumor samples, and VAF ≤ 1% in normal samples were 

characterized as somatic variants for further analysis. Somatic variants were annotated 

with ANNOVAR v2018Apr16 (69). Somatic copy number, tumor purity, and ploidy were 

estimated from WES using FACETS v0.5.14 (70) and Sequenza v2.1.2 (71) (Supplementary 

Information Dataset 1). Multiple runs with different parameters were performed for each 

tool. A best model was chosen for each patient through inspection of log-ratio and copy 

number profile of each patient. Copy number alteration of cancer driver genes were 

determined based on the median log-ratio of the segment (cnlr.median) and copy number 

estimated by FACETS. Copy number gain or loss were defined as genes located on a 

segment with cnlr.median ≥ 0.2 and copy number > ploidy or cnlr.median ≤ 0.2 and copy 

number < ploidy respectively. A loss of heterozygosity (LOH) was defined as genes located 

on a segment with minor allele completely lost (minor_cn = 0).

Clonal structure and evolution

Somatic mutations obtained from the above analysis were clustered by PyClone v0.13.1 

using the Beta Binomial model (10,000 iterations). Tumor purity and copy number were 

used by PyClone to estimate cellular prevalence of somatic mutations and mutation clusters. 

Clonal evolution models were inferred by ClonEvol v0.99.11 (72) based on mutation 

clusters and cellular prevalence of somatic mutations. The truncal cluster was assigned to 

the cluster with 80% cellular prevalence in at least one sample. Mutation clusters with five 

or fewer mutations were discarded unless the cluster represented a truncal cluster. Mutation 

clusters showing similar changes across samples were merged when ClonEvol failed to 

predict clonal evolution models.

Evolution of subclonal diversity

Evolution of tumor heterogeneity during treatment was assessed by changes in subclonal 

diversity in each arm. The relative frequency of cancer subclones (ps(i, T)) was calculated 

for tumor samples from each patient (i) at the first and last treatment timepoints (T). The 

overall subclonal heterogeneity of each tumor was measured using the Shannon diversity 

index. To disentangle the two key components of diversity (richness and dominance), 

we calculated richness by the number of subclones identified per sample and measured 

dominance as 1 - Simpson’s index (∑(ps(i, T)2)).
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Changes in tumor diversity (D) over time (T) and between treatment arms (A), were 

assessed using a random effects model:

Di Normal β0 + u0i + βAA + βTT + βATAT , σD2

u0i Normal 0, σ02

Pre-treatment differences in tumor diversity between arms were accounted for by the 

treatment-specific estimates of initial diversity (β0 vs βA). Subsequent changes in diversity 

were described by treatment-specific temporal trend terms (βT and βAT). Individual 

variability in pre-treatment tumor heterogeneity was accounted for by allowing the model 

intercepts to vary among patients (u0i). Likelihood ratio tests were used to assess whether 

significant changes in tumor heterogeneity occurred during treatment. The likelihood of 

the above model was compared with that of nested null hypothesis models in which no 

change in tumor heterogeneity occurred (fixing βT& βAT = 0) or equal changes in tumor 

heterogeneity occurred across treatment groups (fixing βAT = 0 but estimating βT). The 

likelihood function for these models was:

L D, σD2 = ∏
i = 1

N e−
Di − Dı

2

2σD2
2πσD2 ,

were Dı is the expected diversity of the linear predictor and N is the sample size (patients 

number=34).

Single nuclei RNA sequencing and processing

Tumor cell nuclei were isolated from OCT embedded core tumor biopsies using a modified 

lysis buffer containing 0.2% Igepal CA-630 as previously described (73). Single cell RNA­

Sequencing (scRNA-Seq) was performed on single nuclei suspensions using either the 

Takara Bio ICELL8 Single Cell System (10 patients) or the 10X Genomics Chromium 

(35 patients), to prepare cDNA sequencing libraries (Supplementary Table 3). Samples 

processed on the ICELL8 Single Cell System (Takara Bio) were prepared using the 

SMARTer ICELL8 3’ DE Reagent Kit V2 (Takara Bio, Cat#640167) from isolated nuclei. 

DAPI stained nuclei were diluted to 60,000 cell/mL in 1x PBS + 1% BSA + 1x Second 

Diluent + 0.2U SUPERase∙In RNase Inhibitor and dispensed onto the ICELL8 3’ DE 

Chip (Takara Bio, Cat#640143) using the ICELL8 MultiSample NanoDispenser. Single 

nuclei candidates were selected using the ICELL8 imaging system with CellSelect Software 

(Takara Bio) selecting for DAPI positive nuclei and reverse transcription and sequencing 

library preparation was performed according to manufacturer instructions. ICELL8 cDNA 

sequencing libraries were sequenced at a depth of 200K reads/cell on Illumina HiSeq 2500 

(read #1=26nt and read #2=100nt). Samples processed on the 10X Genomics Chromium 

were processed using the Chromium Single Cell 3’ V3 Kit (10X Genomics, Cat #1000075) 

using isolated nuclei. Single nuclei were diluted to 1,000 cells/μL in 1x PBS + 1.0% BSA 
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+ 0.2U/μL SUPERase∙In RNase Inhibitor to generate GEM’s prepared at 5,000 cells per 

sample. Barcoding, reverse transcription, and library preparation were performed according 

to manufacturer instructions.10X Genomics generated cDNA libraries were sequenced on 

Illumina HiSeq 2500 or NovaSeq 6000 instruments using 150 bp paired-end sequencing at 

a median depth of 34K reads/cell. scRNA-Seq was performed at the Integrative Genomics 

Core at City of Hope, Fulgent Genetics, and the High Throughput Genomics Core at 

Huntsman Cancer Institute (HCI) of University of Utah. Sequence reads were processed 

with BETSY and CellRanger v3.0.2, which aligned reads to reference genome (GRChg38) 

using STAR v2.6.0 (74). Counts on gene transcripts were calculated by featureCounts using 

subread v1.5.2. A gene-barcode matrix was generated for each sample containing counts of 

unique molecular identifiers (UMIs) for each gene in each cell.

Copy number alteration and subclone analysis from scRNA

Copy number alterations of each cell were estimated based on the count matrix using R 

package ‘infercnv’ v1.0.2 (cutoff=0, min_cells_per_gene=100 or 500, cluster_by_groups=T, 

HMM=T, analysis_mode=“subclusters”), which uses gene expression intensity to predict 

copy number changes in tumor cells compared to normal reference cells. A subset of 500 

immune or stromal cells from this study were used as reference for ‘infercnv’ analysis. 

Cancer cells from each patient were clustered based on the estimated gene copy numbers 

in each cell using ‘hclust’ from R package ‘fastcluster’ v1.1.25 (75) (method=‘ward.D2’). 

Clusters with distinct copy number profiles were defined as subclones for each patient. 

Single-cell grouping was performed based on hierarchical cluster analysis.

Cell type classification

An integrative approach was used to classify cell types in samples from 45 patients. First, 

cell type of each cell was predicted using the R package ‘SingleR’ v1.0.1 to generate 

preliminary cell type classifications for all patients. Second, we applied Seurat v3.1.1.9023 

Reciprocal PCA integration workflow to 34 patients with 10x scRNA data to integrate cells 

from different samples (24). Patients with ICELL8 scRNA data were analyzed with standard 

Seurat workflow. Cell clusters were identified using ‘FindClusters’ method (resolution=0.8) 

in R package Seurat v3.1.1.9023. Third, each cell cluster was defined as epithelial cells, 

stromal cells (fibroblasts, endothelial cells) or immune cells (macrophages, T cells, B cells) 

based on the most frequent cell type annotation by ‘SingleR’. Expression profiles of marker 

genes validated the cell type classifications: epithelial cells (KRT19, CDH1), immune cells 

(PTPRC), stromal cells (HTRA1, FAP). Finally, epithelial cells were classified into cancer 

cells and normal epithelial cells based on presence and absence of copy number alteration. 

Cell type annotation was summarized in Supplementary Table 3.

Breast cancer intrinsic subtype prediction

Primary molecular subtypes of breast cancer (basal-like, HER2-enriched, luminal A, luminal 

B) for each cell was predicted based on the log(CPM+1) count matrix by R package 

‘genefu’ v2.18.0 (74) with default parameters (sbt.model = scmod1). The predicted subtype 

that has the highest prediction probability was assigned as breast cancer intrinsic subtype of 

each cell. This analysis was performed only on patients with 10x scRNA data. Patients with 

ICELL8 scRNA have very few cancer cells, thereby were not included in this analysis.
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Gene Set enrichment analysis

The count matrix of each cell type was filtered to keep genes expressed in at least 

10 cells. The filtered count matrix was normalized by R package ‘zinbwave’ v 1.8.0 

(23) with total number of counts and gene length and GC-content as covariates (K=2, 

X=“~log (total number of counts)”, V=“~ GC-content + log (gene length)”, epsilon=1000, 

normalizedValues=TRUE). Single sample Gene Set Enrichment Analysis (ssGSEA) scores 

of 50 hallmark signatures (MSigDB, hallmark) (32) and 4725 curated pathway signatures 

(MSigDB, c2) (32) were calculated for each cell based on the normalized count matrix using 

R package ‘GSVA’ v1.30.0 (kcdf=“Gaussian”, method=‘ssgsea’) (76).

Pathway analysis: identifying response related phenotypes

For each ssGSEA pathway in the C2-level and Hallmark pathway signatures, changes in 

cancer cell pathway activity (x) over time (T) was examined during each treatment arm 

of the trial (A). Phenotypic changes linked to treatment or differing between sensitive and 

resistant patients (R) were identified. A random effects model (77) with the following linear 

predictor and error structure was constructed for each pathway:

E ssGSEA x i β0 + u0i + βRR + βT + uTi T + βRTRT

ssGSEA x i Normal E ssGSEA x i , σx2

u0i Normal 0, σ02

uTi Normal 0, σT2

Initial differences in pathway activity between cancer cells from sensitive and resistant 

tumors, at the pre-treatment time point were captured by the group-specific intercepts 

(β0vs βR). Subsequent changes in pathway activity were described by temporal effect 

terms of sensitive and resistant tumors (βTand βRT). Preexisting individual variability in 

gene expression and patient specific susceptibility of pathway activation to therapy, were 

accounted for by allowing the model intercept and temporal effect to vary among patients 

(i) (u0iand uTi). Significant differences in pathway activity before or during treatment were 

identified between treatment arms and patient response groups, using likelihood ratio tests 

with multiple comparison corrections following Holm’s p-value correction. Compared to 

false discovery rate (FDR) correction, Holm’s adjustment was more conservative, avoiding 

spurious detection of response related phenotypes. The likelihood of the full model was 

compared against that of nested null models in which: i) no change in pathway activity 

occurred in sensitive or resistant tumors (fixing βT& βRT = 0) or ii) equal changes in 

pathway activity occurred in sensitive and resistant tumors (fixing βRT = 0 but estimating 

βT). The likelihood function for each of these models was:
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L ssGSEA x ı, σD2 = ∏
i = 1

N 1
2πσx2e−

ssGSEA x i − ssGSEA x ı
2

2σx2 ,

were ssGSEA x ı is the expected pathway activity (E(ssGSEA[x]i)) and N is the number of 

single cells.

Significant pathway activation in sensitive and resistant tumors (non-zero βTand βRT 

parameters) was assessed using a two-tailed t-tests (sample size based on patient number; 

per arms (A=11, B=11, C=12). The Satterthwaite method was applied to perform degree 

of freedom, t-statistic and p-value calculations for the hierarchical regression model 

coefficients, using the ‘lmerTest’ R package (78). The hierarchical regression model 

explicitly described the paired structure in our dataset, with earlier and later samples 

per patient, and this non-independence of cells within a sample determined the effective 

residual degrees of freedom. Statistical tests of pathway activation related tumor growth thus 

controlled for this pairing of samples per patient tumor. Detected ssGSEA signatures were 

classified into functional categories (Supplementary Table 10). Genes contributing to each 

pathway category were identified from the MSigDB and used for downstream analyzes of 

each process.

Assessing the loss of estrogen receptor expression

Changes in single cell ESR1 expression during treatment were assessed using a hierarchical 

generalized additive model (79). The nonlinear trajectory of ESR1 expression during the 

trial was described by a thin plate spline. Baseline differences in patients’ ESR1 expression 

was accounted for by a patient specific random intercept term. Single cell ESR1 expression 

over time was assessed separately for patients in each treatment arm.

MAPK signaling gene network co-regulation

To investigate the co-regulation of signal transduction states of cancer cells, we analyzed 

the pairwise correlation of MAPK gene expression. Hierarchical clustering of the correlation 

matrices showed the dichotomy between the expressions of kinases acting in the JNK versus 

the ERK pathways of signal transduction.

The primary phenotypic variation in MAPK signaling across cancer cells was determined 

by performing dimension reduction of MAPK gene expression, using UMAP (confirmed 

by Principle component analysis). To assess phenotypic variation across patients, without 

large patient samples biasing results, the dataset was initially down sampled to 100 cells per 

biopsy. The UMAP model was then trained and used to calculate phenotypic scores of the 

full dataset. This analysis confirmed that JNK activation status was the primary component 

of heterogeneity in MAPK signaling state across cancer cells (Extended Data Fig.7). A 

single cell JNK activation score (high JNK, low ERK) was determined, using the major axis 

of phenotypic variation, due to the collinearity of gene expression between JNK and ERK 

genes. For each patient, average scRNAseq gene expression was calculated for subclonal 

cancer cell populations with different levels of JNK activation (n=40 levels).
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Relating CDK6 expression to JNK activation

We characterized the subclonal relationship between JNK activation and the expression 

of the key ribociclib target gene, CDK6, accounting for genetic differences in CDK6 

copy number amplification status. Resistance phenotypes were examined specifically, by 

focusing on the transcription profiles of cells at end of treatment. Using generalized 

additive models, a nonlinear smooth function was fitted describing how the average CDK6 

expression changed as the JNK activation of subclonal populations increased. A separate 

relationship was identified for each arm of therapy and for patients with and without 

baseline CDK6 genetic copy number amplification (identified by CNA analysis). The 

significance of CDK6:JNK relationships in each group were assessed using likelihood ration 

tests comparing the full model to a null model without a CDK6:JNK association.

Cell surface receptor compensation for ER loss

The Cell Surface Protein Atlas (39) provides a database of known cell receptor proteins. 

Genes encoding each protein were identified from the Ensembl database (80) (n=1406). 

For each patient, we identified genes with: i) significantly higher/lower than average initial 

expression, or b) altered expression during treatment, using an ANOVA test. Receptor genes 

identified consistently across patients were identified as those overlapping gene detected by 

our pathway analysis as well as being detectable in multiple patients using the ANOVA 

approach. Genes activated to compensate for the loss of estrogen signaling during treatment 

were determined by correlating estrogen pathway activity with alternative receptor gene 

expression for cells in each treatment arm and response group.

Cell cycle reconstruction

We next assessed the cell cycle consequences of endocrine and combination therapy. As 

individual marker genes are insufficient to resolve cell cycle state, we reconstructed the cell 

cycle, using the reCAT model of the cell cycle pseudo-time transitions (44) and a set of cell 

cycle genes and obtained from the Biocarta cell cycle pathway (48 genes). This signature 

was repeatedly detected in the pathway analysis and its predicted changes in cell cycle 

activity mirrored KI-67 antigen expression changes and tumor size dynamics.

Discrete cell cycle states were first identified by applying a Gaussian mixture model to 

the cell cycle gene set. The reconstruction of cell cycle transitions was then formulated 

as a traveling salesman problem and the shortest cycle that passes through each cell cycle 

stage was identified based on subclonal distances on a UMAP, using the arbitrary insertion 

traveling salesman algorithm (81) (Extended Data Fig.10).

Fluctuations in gene expression throughout the cell cycle (including non-cell cycle genes) 

were recovered using cyclical generalized additive models. The expected expression of each 

gene, as cells transition through the cell cycle, was described using a smooth and cyclical 

cubic spline function relating gene expression to cell stage. Three distinct phases of the cell 

cycle (G0, G1, S/G2) were identified by reclassifying cell states, by applying a Gaussian 

mixture model to the reconstructed gene expression of cell cycle genes in each stage. Cell 

frequencies in each cell cycle phase were calculated and compared across tumors between 

arms and over time. Treatment induced differences in the frequency of cells from a sample 
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found to be in the proliferative S/G2 phase was assessed using a quasi-binomial generalized 

additive model (79).

Extended Data

Extended Data Fig. 1. Classification of patient tumors as sensitive or resistant to treatment, 
reflecting changes in tumor size observed at pathology relative to baseline.
Reconstructed trajectories of tumor burden are consistent with results of RECIST 
1.1 MRI assessment at day 90 and allow sensitive and resistant tumors to be 
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distinguished at end of treatment (day 180). a, Changes in tumor size during therapy 

for tumors classified as sensitive or resistant. Tumor growth (y-axis) calculated directly 

from data as the proportion tumor remaining at end of trial (final observed tumor size 

at pathology/baseline MRI tumor measurement). Values <1 indicate tumor shrinkage, 

whilst values>1 indicate an increase in size (Dashed horizontal line = no change in size 

during trial). A detailed biological response classification was determined by classifying 

tumors with similar trajectories using a Gaussian mixture model (colors). Sustained or 

partial responses were grouped and defined as sensitive tumors, whilst those with stable, 

progressive or rebound disease were classified as resistant tumors. The changes in tumor 

size are highly significantly different between resistance categories (two-sided ANOVA 

test: t=4.45, p<0.001). Violins show the distinct distribution of tumor growth observed 

across patients. Heatmap shows the strong agreement in the end of treatment classification 

obtained by classifying trajectories of tumor growth vs simple pathology/baseline MRI 

RECIST assessment of change in size during trial. Number patients (P) with sensitive (S) 

versus resistant (R) tumors by arm = Letrozole alone:P=11,(S=6, R=5); Intermittent high 

dose ribociclib: P=12 (S=6, R=6) Continuous low dose ribociclib: P=11 (S=4, R=7). b, 
Spiderplots show the reconstructed trajectories of tumor size (relative to day 0) during the 

trial, as inferred using all available clinical measurements of patients’ tumor size. Predicted 

tumor sizes at day 90 match the RECIST assessments of tumor response (top panels) whilst 

trajectories of tumor burden distinguish sensitive (shrinking) and resistant (persistent) tumor 

through to the end of the trial (bottom panels). Number patients (P) with sensitive (S) 

versus resistant (R) tumors by arm = Letrozole alone:P=11,(S=6, R=5); Intermittent high 

dose ribociclib: P=12 (S=6, R=6) Continuous low dose ribociclib: P=11 (S=4, R=7). c, 
Inferred change in tumor size between the start- midpoint (left panel) or start-end (right 

panel) of the trial, in patient response groups classified by either RECIST assessment at 

trial midpoint (top row) or the biological response classification from tumor trajectories 

(bottom row). RECIST assessments distinguish response/non-response at day 90 but not day 

180, whilst the biological response classification does distinguish resistance or sensitivity 

at day 180 (two-sided ANOVA test: MRI day 180 p-value= 0.38 and Biological response 

day 90 p-value= 0.34). Number patients (P) with sensitive (S) versus resistant (R) tumors by 

arm = Letrozole alone:P=11,(S=6, R=5); Intermittent high dose ribociclib: P=12 (S=6, R=6) 

Continuous low dose ribociclib: P=11 (S=4, R=7).
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Extended Data Fig. 2. Landscape of tumor and microenvironment of 10 patients with single 
nucleus isolated by ICELL8 platform.
a, t-SNE plot of 3,484 cells. Cells were classified into cancer cells, normal epithelial cells, 

immune cells, stromal cells, and unclassified cells, which are indicated by colors and labels. 

The 3,484 cells are from 7 patients (3 from the Intermittent high dose arm and 4 from 

the Continuous low dose ribociclib arm. b, Gene copy number profile in cancer cells and 

neighboring normal cells. Blue color indicates copy number loss and red color indicates 

copy number gain. c, Expression of marker genes of cancer cells and normal epithelial cells 
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(KRT19, CDH1), stromal cells (FAP, HTRA1), and immune cells (PTPRC). d, Proportion of 

cancer cells and neighboring normal cells in each patient.

Extended Data Fig. 3. Mutational signature in 24 patients with whole-exome sequencing data.
a, Relative contribution of trinucleotide changes to three de novo mutational signatures 

identified in 24 patients. b, Relative contribution of each mutational signature to mutations 

in each patient.

Griffiths et al. Page 22

Nat Cancer. Author manuscript; available in PMC 2021 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 4. Mutated genes in three frequently altered oncogenic pathways.
Genes are grouped by oncogenic pathway. Presence of gene mutations in each patient is 

colored as indicated in the legend. Treatment arm and clinical response (Response: sensitive, 

resistant) are indicated in final two rows of the plot (colors indicated in legend).
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Extended Data Fig. 5. Intrinsic subtype of 35 patients with single nucleus isolated by 10x 
genomics platform and reduced subclonal estrogen receptor (ESR1) expression at end of therapy 
as correlated with increased basal-like pathway and Creighton endocrine therapy resistance 
signatures, independent of treatment.
a, Intrinsic subtyping. Each row represents a patient and each column represents an intrinsic 

subtype at three timepoints. The proportion of cancer cells in each intrinsic subtype was 

indicated by colors ranging from 0 to 85. Patient samples without cancer cells were 

indicated by gray. b, Reduced subclonal estrogen receptor (ESR1) expression. Top row 

shows the ESR1 expression and basal-like (left) and endocrine resistance (right) pathway 
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signatures across subclonal cancer populations with differing MAPK activation (points) 

and the coloration signifies the treatment received. Fitted lines show the overall trend 

between ESR1 expression and pathway activity (shaded regions show 95% confidence 

bands). Bottom row shows the correlation between ESR1 expression and basal-like (left) and 

endocrine resistance (right) pathway signatures for each cancer subclone present at end of 

trial, in patients treated with different therapies (colors). Black points and error bars signifies 

the mean and confidence interval for the correlation between ESR1 and pathway activity 

under each treatment. Number of cells (n) and patients (P) with sensitive (S) versus resistant 

(R) tumors by arm = Letrozole alone: n= 46986, P=11, S=6, R=5; Intermittent high dose 

ribociclib: n= 27790, P=12, S=6, R=6; Continuous low dose ribociclib: n= 34543, P=11, 

S=4, R=7.
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Extended Data Fig. 6. Divergence of JNK and ERK signalling pathway activity during treatment 
with combination therapy, especially in resistant tumors and heatmaps of the correlation 
between MAPK gene expression in each treatment arm (columns), showing the dichotomy 
between JNK and ERK activating genes across treatments.
A, JNK and ERK expression (color=pathway) during treatment (columns) in sensitive 

and resistant tumors (rows). Pathway trends determined across patients using hierarchical 

regression (solid lines). Inter-patient variability in pathway activity shown by dashed lines 

indicating patient specific responses and shaded regions showing confidence intervals of 

model estimates (JNK ssGSEA pathway=St JNK MAPK and ERK pathway=Biocarta ERK). 

Number of cells (n) and patients (P) with sensitive (S) versus resistant (R) tumors by 
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arm = Letrozole alone: n= 46986, P=11, S=6, R=5; Intermittent high dose ribociclib: n= 

27790, P=12, S=6, R=6; Continuous low dose ribociclib: n= 34543, P=11, S=4, R=7. B, 
Dendrograms show the collinearity of MAPK gene expression following each endocrine or 

combination therapies (columns).

Extended Data Fig. 7. Construction of the overall JNK activation phenotype score, utilizing this 
collinearity of gene expression between ERK and JNK genes
a, UMAP dimension reduction of MAPK genes, showing the bivariate Gaussian distribution 

of UMAP values, centered around the major axis of phenotypic variation (black line). The 
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frequency of cells found in different parts of the UMAP phenotype space is shown by the 

color gradient. The major axis of phenotypic variation (the JNK activation phenotype) is 

identified as the first principle component in the UMAP phenotype space. b, Relationship 

between the JNK activation phenotype and expression of MAPK genes that are known a 

JNK activators (red) or ERK activators (blue) across subclonal cancer populations. Loess 

smooths are added showing the positive relationship between the JNK phenotype score 

and key JNK activators and the negative association between ERK activators and the JNK 

phenotype. Number of cells (n) and patients (P) with sensitive (S) versus resistant (R) 

tumors by arm = Letrozole alone: n= 46986, P=11, S=6, R=5; Intermittent high dose 

ribociclib: n= 27790, P=12, S=6, R=6; Continuous low dose ribociclib: n= 34543, P=11, 

S=4, R=7.
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Extended Data Fig. 8. Correlation of growth factor receptors expression with estrogen pathway 
activity (Hallmark estrogen response early) in cancer cells from sensitive and resistant tumors 
under each therapy.
Strong negative correlations identify genes that are upregulated as estrogen signaling is 

lost. Specifically, tumors resistant to intermittent high dose and continuous low dose show 

compensatory activation of FGFR2 and ERBB4 respectively. Number of cells (n) and 

patients (P) with sensitive (S) versus resistant (R) tumors by arm = Letrozole alone: n= 

46986, P=11, S=6, R=5; Intermittent high dose ribociclib: n= 27790, P=12, S=6, R=6; 

Continuous low dose ribociclib: n= 34543, P=11, S=4, R=7.
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Extended Data Fig. 9. Transcriptional heterogeneity of key resistant genes.
a, sensitive and b, resistant tumors. For each patient’s tumor cells, a single-cell phylogenetic 

tree is shown at the center of circos plot. Cell annotation (timepoint and subclone) as well 

as expression of key resistance genes (ESR1, CDK6, FGFR2, ERBB4, RORA) are shown 

as heatmap. Phylogenetic tree of cells were constructed based on the distance between cell 

gene copy number profile. Subclones were inferred based on gene copy number profile. 

Zinbwave normalized gene expression were centered and scaled.
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Extended Data Fig. 10. Reconstruction of cell cycle, fluctuations in gene expression during the 
cell cycle, distinct cell cycle phases, frequencies of cells throughout the cell cycle and shifts in 
gene expression within the cell cycle during therapy.
a, Single cell RNA seq gene expression profiles of cell cycle genes are extracted and used 

to perform dimension reduction with the UMAP algorithm. Cell cycle states (colors) with 

differing expression were identified using a Gaussian mixture model and the transitions 

between these states determined by the shortest distance to travel through each state and 

return to the original (Traveling salesman route=black line). b, Cells states ordered along 

the traveling salesman route. c, Example of fluctuations in gene expression of cells around 
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the cell cycle (distance of points from origin=RB1 expression; colors=cell cycle state) 

Reconstruction of the fluctuation in average gene expression is predicted using a cyclical 

generalised additive model (black line with shaded confidence bands). d, Reconstructed 

fluctuations (coloured curves) in expression of genes around the cell cycle are used to 

classify distinct phases of the cell cycle (annotated by arrows around). Here we show four 

examples of key cell cycle genes, which influence the classification of cell cycle phases (G0, 

G1, S/G2). e, The frequency of cells in each stage of the cell cycle (height of bars) was 

counted and used to examine changes in the fraction of sampled cells in each phases cell 

cycle phase over time and between treatment and response groups. f, During treatment, the 

changes in gene expression fluctuations around the cell cycle were examined. Distance of 

the curve from the origin indicates gene expression and colored curves shows expression at 

different timepoints. g, Consistent cell cycle stages present across patients. For each patient 

(subpanel), single cell RNAseq gene expression profiles for cell cycle genes were extracted 

and the fitted UMAP model used to project cells onto the lower dimensional cell phenotype 

space (UMAP dimensions 1 and 2). Cell cycle stages (colors) with differing expression, 

identified using the Gaussian mixture model, were overlaid, showing that all patients have 

cells that are distributed across the cell cycle phenotype space. The traveling salesman 

route (black line) shows the transitions between these stages, as determined by the shortest 

distance to travel through each state and return to the original.
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Figure 1. Landscape of tumor and macroenvironment of early-stage ER+ breast cancer patients 
in FELINE trial.
a, Schematic diagram of single-cell RNA-seq workflow. The data of 34 patients generated 

using the 10x genomics platform are shown in Fig.1 b–d. Number of cancer cells (n) and 

patients (P) with sensitive (S) versus resistant (R) tumors by arm = Letrozole alone: n= 

46986, P=11, S=6, R=5; Intermittent high dose ribociclib: n= 27790, P=12, S=6, R=6; 

Continuous low dose ribociclib: n= 34543, P=11, S=4, R=7. The data of 10 patients 

generated using ICELL8 platform are shown in Extended Data Fig.2. b, Distinction of 

different cell types is shown by a t-SNE plot of single cells of 34 ER+ breast cancer patients 

Griffiths et al. Page 39

Nat Cancer. Author manuscript; available in PMC 2021 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(color=cell type). c, Gene copy number profile in cancer cells and neighboring normal 

cells. Blue color indicates copy number loss and red color indicates copy number gain. d, 
Expression of marker genes of cancer cells and normal epithelial cells (KRT19, CDH1), 

stromal cells (FAP, HTRA1), and immune cells (PTPRC). e, Proportion of cancer cells and 

neighboring normal cells in each patient.
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Figure 2. Evolution of genomic mutations in response to endocrine or combination therapy.
a, Frequently mutated genes. Cancer driver genes were ranked based on number of patients 

carrying large impact somatic mutations. Mutations were counted if they are present in one 

or both biopsies. The top 10 frequently mutated genes are shown. b, Copy number alteration 

of key resistant genes in sensitive and resistant tumors. Gene copy number alterations were 

counted for a patient if one or both biopsies carry the alteration. c, Clonal evolution in 

response to endocrine therapy or combination therapy. Patient tumors were ranked by initial 

diversity (Shannon index at Day 0). The height of fishplot scaled to reflect changes of 

tumor size during treatment. Two biopsies (pre- and post-treatment) were sequenced and 
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used to perform analyses of clonal evolution for each tumor. Day 180 biopsies were used as 

post-treatment samples except P36, P44, P45, and P46. Only Day 14 biopsies were available 

for sequencing for these four patients. Copy number alteration (CNA) of ESR1 loss, TP53 

loss, and AKT3 gain are labelled for each patient when present at one or both biopsies. 

A “T” in parentheses indicates CNA is truncal in this tumor defined based on FACETS 

copy number analysis using WES and inferCNV copy number profiles using scRNAseq. 

Number of cells (n) and patients (P) with sensitive (S) versus resistant (R) tumors by arm 

= Letrozole alone: n= 46986, P=11, S=6, R=5; Intermittent high dose ribociclib: n= 27790, 

P=12, S=6, R=6; Continuous low dose ribociclib: n= 34543, P=11, S=4, R=7. d, Change of 

tumor heterogeneity in response to endocrine therapy or combination therapy, as measured 

by Shannon index of overall diversity, and broken down in to the diversity components of 

subclonal dominance and richness. Violin curves show the between patient variability in the 

change of heterogeneity during the trial (small points show observed changes in diversity). 

Hierarchical regression models identified the average change in tumor heterogeneity (large 

points) during endocrine (blue) or combination therapy (yellow) (uncertainty quantified 

by 95% confidence interval error bars). Schematic diagrams show the distinction between 

differences in dominance and richness.
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Figure 3. Accelerated evolution of estrogen independence during combination therapy.
a, Changes in single cell estrogen receptor activity and signatures of estrogen dependent 

(luminal) and estrogen independent (basal) phenotypes during treatment (columns), in 

tumors resistant (persistent=red) or sensitive (shrinking=blue) to therapy. Pathway trends 

across tumors were determined using hierarchical regression (solid lines). Tumor’s pathway 

trajectories are shown by dashed lines and confidence intervals of model estimates shown 

by shaded regions. Pathway activity measured using the ssGSEA signatures (Hallmark 

estrogen response early, Smid breast cancer luminal A up and Smid breast cancer basal 

up respectively). Number of cells (n) and patients (P) with sensitive (S) versus resistant 

(R) tumors by arm = Letrozole alone: n= 46986, P=11, S=6, R=5; Intermittent high dose 

ribociclib: n= 27790, P=12, S=6, R=6; Continuous low dose ribociclib: n= 34543, P=11, 
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S=4, R=7. b, Loss of heterozygosity (LOH) of the estrogen receptor gene (ESR1) associated 

with reduced average expression in pre-treatment biopsies (two-sided Mann-Whitney test). 

Violin curves show the distribution of average ESR1 expression in tumors with or without 

LOH. Points indicate patient specific averages (color indicates treatment and shape signifies 

tumor response). Box and whisker plots indicate the median and upper/lower quantiles 

of patient tumor expression, with whiskers signifying the data range. c, Reduction in 

ESR1 expression accelerated under combination treatments, compared to endocrine therapy 

(columns: letrozole vs ribociclib treatments). Violin curves show the distribution of single 

cell expression during each treatment (color). Expression normalized relative to the baseline 

average (grey dashed line). Hierarchical generalized additive models predict the changes 

in expression during treatment, accounting for initial patient specific difference (colored 

curves). Number of cells (n) and patients (P) with sensitive (S) versus resistant (R) tumors 

by arm = Letrozole alone: n= 46986, P=11, S=6, R=5; Intermittent high dose ribociclib: n= 

27790, P=12, S=6, R=6; Continuous low dose ribociclib: n= 34543, P=11, S=4, R=7.
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Figure 4. JNK pathway activation occurs during the emergence of combination therapy 
resistance and is associated with estrogen independence and increased CDK6 expression.
a, JNK pathway activity increases during treatments (columns) in resistant tumors (red) 

compared to sensitive tumors (blue) at day 14, and in cancer cells of most tumors by end of 

treatment (day 180). Pathway trends determined using hierarchical regression (solid lines). 

Tumor’s pathway trajectories are shown (dashed lines) along with confidence intervals of 

model estimates (shaded regions) (JNK ssGSEA pathway=St JNK MAPK). Number of 

cells (n) and patients (P) with sensitive (S) versus resistant (R) tumors by arm = Letrozole 

alone: n= 46986, P=11, S=6, R=5; Intermittent high dose ribociclib: n= 27790, P=12, 
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S=6, R=6; Continuous low dose ribociclib: n= 34543, P=11, S=4, R=7. b, Heatmap of 

correlation between MAPK gene expression, showing the dichotomy between JNK and 

ERK activating genes across treatments (ESR1, ERBB4 and FGFR2 receptors added to 

indicate their relationship to MAPK genes). Number of cells (n) and patients (P) with 

sensitive (S) versus resistant (R) tumors by arm = Letrozole alone: n= 46986, P=11, S=6, 

R=5; Intermittent high dose ribociclib: n= 27790, P=12, S=6, R=6; Continuous low dose 

ribociclib: n= 34543, P=11, S=4, R=7. c, End of trial expression of CDK6 (ribociclib target 

gene) in subclonal tumor populations with differing levels of JNK activation (phenotype 

integrates across MAPK gene expression) and for patients with CDK6 genetic amplification 

(triangles and blue curves) or normal copy number (circles and red curves). Generalized 

additive models describe the relationship between JNK signaling activity and CDK6 

expression at end of therapy (curves), with shaded regions indicating model confidence 

bands. Average estrogen receptor (ESR1) expression is shown for each subclonal population 

with differing JNK activation (point color gradient). Number of cells (n) and patients (P) 

with sensitive (S) versus resistant (R) tumors by arm = Letrozole alone: n= 46986, P=11, 

S=6, R=5; Intermittent high dose ribociclib: n= 27790, P=12, S=6, R=6; Continuous low 

dose ribociclib: n= 34543, P=11, S=4, R=7.
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Figure 5. Activation of ERBB4 and FGFR2 as resistance mechanisms to endocrine and 
combination therapy.
a, Average end of trial growth factor receptor expression (point color gradient) of ERBB4 

(top) and FGFR2 (bottom) is shown for subclonal populations with differing JNK activation 

(x-axis) and for tumors with genetic amplification (triangles and blue curves) or normal copy 

number (circles and red curves). Cyclin-dependent kinase 6 (CDK6; ribociclib target gene) 

expression is shown for each population and generalized additive models (curves) describe 

the relationship between JNK signaling activity and CDK6 expression at end of therapy, 

(shaded regions indicate model confidence bands). Number of cells (n) and patients (P) 

with sensitive (S) versus resistant (R) tumors by arm = Letrozole alone: n= 46986, P=11, 

S=6, R=5; Intermittent high dose ribociclib: n= 27790, P=12, S=6, R=6; Continuous low 

dose ribociclib: n= 34543, P=11, S=4, R=7. b, Hierarchical clustering of tumors showing 

dysregulated ESR1 as well as upregulated ERBB4 and/or FGFR2. For each patient’s tumor 

biopsies, a hierarchical clustering tree is shown at the center of circos plots. Cell annotation 

(timepoint and subclone) as well as expression of key resistance genes (ESR1, CDK6, 

FGFR2, ERBB4, RORA) were shown as heatmap. c, Schematic diagram showing resistance 

mechinisms driven by upregulation of ERBB4 and CDK6 amplification (red circle signifies 

amplification) or alternative signaling via FGFR2/RTK’s and JNK signal transduction.
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Figure 6. Cell cycle reactivates during combination therapy follows the loss of estrogen receptor 
expression, activation of JNK1, repression of the cell cycle inhibitor cyclin-dependent kinase 2A 
and upregulation of CDK6 during the G1 checkpoint phase.
a, Cell cycle activity of resistant (red) and sensitive (blue) tumors during treatment 

(columns= regimes). Trend in cell cycle activity, measured by the ssGSEA biocarta cell 

cycle pathway, are determined by hierarchical regression (solid lines). Tumor specific 

trajectories are shown (dashed lines) along with confidence intervals of model estimates 

(shaded regions). Number of cells (n) and patients (P) with sensitive (S) versus resistant 

(R) tumors by arm = Letrozole alone: n= 46986, P=11, S=6, R=5; Intermittent high dose 

ribociclib: n= 27790, P=12, S=6, R=6; Continuous low dose ribociclib: n= 34543, P=11, 

S=4, R=7. b, Visualization of the pseudotime cell cycle reconstruction obtained using the 

Markov model-based reCAT algorithm. The dynamics of key cell cycle gene expression 

across stages of the cell cycle (black lines) were recovered from cell specific gene 

expression (points), using cyclical generalized additive models. The recovered fluctuations 

of cell cycle gene expression were used to identify three distinct cell cycle phases (colors; 

G0, G1 and S/G2), using a Gaussian mixture model. Cell cycle stages (clusters of cells) are 

colored by cell cycle phase and the distance of the point from the origin signifies the cells 

expression in that stage. Cell cycle orientation is consistent and comparable across circular 

plots. c, The proportion of S/G2 phase cells (passed the G1 checkpoint) in samples from 

resistant and sensitive tumors (color) during each treatment (column). Logistic generalized 

additive models describe trends in S/G2 phase cell frequency over time (solid lines) and 

heterogeneity across tumors (shaded regions signify confidence bands). Number of cells (n) 
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and patients (P) with sensitive (S) versus resistant (R) tumors by arm = Letrozole alone: 

n= 46986, P=11, S=6, R=5; Intermittent high dose ribociclib: n= 27790, P=12, S=6, R=6; 

Continuous low dose ribociclib: n= 34543, P=11, S=4, R=7. d, Changes in ESR1, JNK1, 

CDKN2A expression around the cell cycle and during treatment (columns). Colored lines 

show the expected gene expression of cells throughout the cell cycle prior (blue), during 

(orange) and after treatment (red). The distance from the center of the circle shows gene 

expression at point in the cell cycle.
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