
Journal of

Clinical Medicine

Article

Polycystic Ovary Syndrome Susceptibility Loci Inform Disease
Etiological Heterogeneity

Yanfei Zhang 1,*, Vani C. Movva 2, Marc S. Williams 1 and Ming Ta Michael Lee 1

����������
�������

Citation: Zhang, Y.; Movva, V.C.;

Williams, M.S.; Lee, M.T.M. Polycystic

Ovary Syndrome Susceptibility Loci

Inform Disease Etiological

Heterogeneity. J. Clin. Med. 2021, 10,

2688. https://doi.org/10.3390/

jcm10122688

Academic Editor: Johannes Ott

Received: 15 May 2021

Accepted: 15 June 2021

Published: 18 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Genomic Medicine Institute, Geisinger, Danville, PA 17822, USA; mswilliams1@geisinger.edu (M.S.W.);
mlee2@geisinger.edu (M.T.M.L.)

2 Department of Obstetrics and Gynecology, Geisinger Medical Center, Danville, PA 17822, USA;
vmovva@geisinger.edu

* Correspondence: zhyanfei123@gmail.com

Abstract: Polycystic ovary syndrome (PCOS) is a complex disorder with heterogenous phenotypes
and unclear etiology. A recent phenotypic clustering study identified metabolic and reproductive
subtypes of PCOS. We hypothesize that the heterogeneity of PCOS manifestations reflects different
mechanistic pathways and can be identified using a genetic approach. We applied k-means clustering
to categorize the genome-wide significant PCOS variants into clusters based on their associations
with selected quantitative traits that likely reflect PCOS etiological pathways. We evaluated the
association of each cluster with PCOS-related traits and disease outcomes. We then applied Mendelian
randomization to estimate the causal effects between the traits and PCOS. Three categories of
variants were identified: adiposity, insulin resistant, and reproductive. Significant associations were
observed for variants in the adiposity cluster with body mass index (BMI), waist circumference and
breast cancer, and variants in the insulin-resistant cluster with fasting insulin, glucose values, and
homeostatic model assessment of insulin resistance (HOMA-IR). Sex hormone binding globulin
(SHBG) has strong association with all three clusters. Mendelian randomization suggested a causal
role of BMI and SHBG on PCOS. No causal associations were observed for PCOS on disease outcomes.

Keywords: polycystic ovary syndrome; clustering; genetic heterogeneity; adiposity; insulin resis-
tance; Mendelian randomization; causality; sex hormone binding globulin

1. Introduction

Polycystic ovary syndrome (PCOS) is a complex disorder affecting approximately 15%
of women of reproductive age [1]. PCOS includes highly heterogeneous phenotypic mani-
festations characterized by a variety of reproductive and metabolic abnormalities, including
ovulatory dysfunction, hyperandrogenism, hirsutism, obesity, and insulin resistance [1].
The commonly used National Institutes of Health (NIH) [2] and Rotterdam [3,4] diagnostic
criteria for PCOS are designed to account for the diverse phenotypic presentations but do
not provide mechanistic insights [5]. The etiology or etiologies of PCOS are still unclear.

To obtain insight into the etiology and deconstruct the heterogeneity of PCOS, a
recent study performed clustering analysis using body mass index (BMI) and seven bio-
chemical biomarkers in a PCOS cohort and identified two distinct phenotypic clusters:
a “reproductive” subtype characterized by high luteinizing hormone (LH) and sex hor-
mone binding globulin (SHBG) levels with low BMI and insulin levels, and a “metabolic”
subtype characterized by high BMI, glucose, and insulin levels with low SHBG and LH
levels [5]. It is important to note that biochemical markers change with many factors, such
as aging, certain metabolic traits, such as obesity and type 2 diabetes, and use of insulin
and contraceptive pills. Given the observational nature of cross-sectional studies, it is
also unclear whether these biomarkers are causal or consequential to the disease. Unlike
biomarkers, germline DNA remains constant regardless of external factors and age. Thus,
genetic variants are often used as variables to explore causality.
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PCOS is highly heritable with an estimated heritability of 38–71% as noted in the twin
study [6]. Recent large-scale genome-wide association studies (GWAS) brought significant
progress in identification of PCOS susceptibility loci [7–12]. Thirty-seven variants with
genome-wide significance have been identified so far by GWAS in European and East
Asian populations, offering insights into causal biological pathways for PCOS. With the
public access to GWAS dataset of many traits and disease outcomes, it is now possible to
elucidate disease mechanisms using variant clustering techniques assuming that genetic
variants that act along a shared pathway will have similar directional effect on a trait [13].
Such a strategy was previously applied to deconstruct the mechanistic heterogeneity of
type 2 diabetes mellitus (T2DM) [13–15].

In this study, we hypothesize that the heterogeneity of PCOS manifestations reflects
different mechanistic pathways and can be identified using a genetic approach. We per-
formed clustering analysis on the association of PCOS susceptibility loci with various traits
that are related to PCOS. We then used genetic risk scoring to evaluate the effect of each
cluster. We further performed Mendelian randomization to estimate the causal effect of the
traits on PCOS and PCOS on disease outcomes.

2. Materials and Methods
2.1. Selection of PCOS-Associated Genetic Variants, Traits and Disease Outcomes

We compiled a list of 37 genome-wide significant variants associated with PCOS
(p < 5 × 10−8) from previously published GWAS (Supplementary Table S1). Only variants
that are not in linkage disequilibrium (LD R2 < 0.5) were included. Four variants were
excluded later as they were not included in the summary statistics of most of the traits
or disease outcomes, and no proxy single nucleotide variants (SNVs) could be identified
for them. A total of 26 variants were included in the final analysis. The single nucleotide
variants (SNVs) rs10993397 (C9orf3) and rs8043701 (TOX3) were replaced by their proxy
SNVs rs7865239 and rs11075468 (Supplementary Table S1).

We selected four groups of traits that are likely to inform PCOS etiologies: (1) adipos-
ity traits: female body mass index (BMI, general adiposity), female waist circumstances
(WC) and female waist hip ratio (WHR, central adiposity) [16,17]; (2) hormonal traits: sex
hormone binding globulin (SHBG), luteinizing hormone (LH) [18]; (3) insulin-resistant
traits: fasting insulin (FI), fasting glucose (FG), homeostatic model assessment of insulin
resistance (HOMA-IR) [19,20]; (4) lipids: high-density lipoprotein (HDL), low-density
lipoprotein (LDL), total cholesterol (TC) and triglycerides (TG) [21]. Disease outcomes
include T2DM [22], coronary artery disease (CAD) [23], and breast cancer [24]. Traits and
outcomes such as follicle stimulating hormone (FSH), testosterone, dehydroepiandros-
terone sulfate (DEHAS), and other female reproductive organ cancers, such as endometrial
and ovarian cancer, although planned, could not be included as the GWAS datasets were
unavailable or included very few PCOS susceptibility loci and proxy SNVs. The TwoSam-
pleMR package was developed to ease Mendelian randomization analysis [25]. It connects
to the IEU open GWAS database, making it convenient to extract and harmonize data. We
employed the TwoSampleMR package to retrieve, read in, and harmonize the association
summary statistics of PCOS variants with these traits and outcomes. All the datasets used in
this study are publicly available and the resources are provided in Supplementary Table S2.

2.2. Clustering Analysis

First, we calculated the z-score (z-score = β/se) from the summary statistics of the
26 PCOS variants from the GWAS of the four groups of quantitative traits
(Supplementary Table S3). All effects were aligned to the PCOS risk-increasing alleles.
We then applied k-means clustering on the association z-scores where variants are clustered
together based on the similar associations with the traits. This method is widely applied to
quantitative data and was previously used by our team to identify subgroups of patients
with different responses to phenylephrine [26]. As k-means clustering requires defining
the number of clusters in advance, we used the NbClust package to decide the best num-
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ber of clusters [27]. Supplementary Figure S1 shows that 8 indices suggest a three-cluster
solution. Analyses were performed using R (version 3.6.3).

2.3. Trait and Disease Associations with Each Cluster

The association of the genetic risk scores of each cluster with each trait and disease
outcome was performed by an inverse-variance fixed effect meta-analysis of the summary
statistics of the variant–trait and variant–disease from GWAS described previously [13–15].
Association with five disease outcomes, which were not used in clustering analysis were
also examined. P-value < 0.0024 is considered significant with Bonferroni correction for
16 traits and 5 disease outcomes (0.05/21).

2.4. Mendelian Randomization Analysis

Based on the association results of genetic risk score with traits and disease out-
comes, we performed Mendelian randomization analysis to evaluate the causal role of
SHBG, BMI, WC, WHR, and insulin resistance on PCOS. Instrumental variables for SHBG,
BMI, WC, WHR were extracted from the curated dataset by the IEU open GWAS project
(Supplementary Table S2). For insulin resistance, we used the 53 significant variants associ-
ated with an integrated insulin-resistant phenotype composed of FI, TG, and HDL [28]. We
adopted the β and SE from the study of Wang et al., who meta-analyzed the absolute value
of the standardized β coefficient for each of the 53 SNV associations with the individual
components of the composite IR phenotype using a fixed-effect inverse-variance-weighted
(IVW) method (Supplementary Table S4) [29]. When evaluating the causal roles of these
traits on PCOS, we meta-analyzed the results from studies by Day et al. (without samples
from 23andme) [11] and Zhang et al., [12] using METAL [30] to increase the GWAS sample
size for PCOS. When evaluating the causal role of PCOS on disease outcomes, we used the
14 variants reported from the largest meta-analysis for PCOS as instrumental variables [11].
TwoSampleMR R package was used to perform MR using the inverse-variance-weighted
(IVW) method for main analysis and MR-Egger and weighted median methods for sensi-
tivity analyses to evaluate the robustness [25]. P-value < 0.05 is considered significant.

3. Results
3.1. Clustering Suggests Mechanistic Heterogeneity for PCOS Etiology

Three variant clusters were identified by k-means clustering on association z-scores of
26 PCOS variants and 16 traits. These clusters were mainly distinguished by the BMI-related
traits, insulin-resistant traits, and SHBG, as visualized in the PCA plot
(Figure 1). Thus, we named them “adiposity”, “insulin resistant” and “reproductive”
clusters. Table 1 provides the association statistics of genetic risk score of each cluster and
the traits. The adiposity cluster includes three variants in DENND1A and one variant in
FSHR. BMI (β = 0.015, p = 2.59 × 10−7) and WC (β = 0.017, p = 1.67 × 10−7) are the most
significantly associated traits. WC remains significant even with BMI adjustment (β = 0.01,
p = 0.001). WHR is only significant without BMI adjustment (β = 0.011, p = 0.0008). Addi-
tionally, the adiposity cluster is negatively associated with SHBG (β = −0.198,
p = 7.34 × 10−6). The insulin-resistant cluster has 10 variants in nine genes includ-
ing THADA (two variants), LHCGR, FSHB, FSHR, ERBB3, TOX3, GATA4, HMGA2, and
KRR1. Fasting insulin is the most significant trait, both with and without BMI adjustment
(β = 0.004, p = 2.12 × 10−5; β = 0.005, p = 1.93 × 10−5, respectively). HOMA-IR (β = 0.005,
p = 0.0013), fasting glucose (β = 0.004, p = 0.0004) and total cholesterol (β = −0.006,
p = 0.0009) are only significant without BMI adjustment. The reproductive cluster includes
12 variants in 11 genes of ERBB4, RAB5B, IRF1, SOD2, YAP1, SUMO1B, ZBTB16, C9orf3
(2 variants), INSR, THADA, and TOX3. SHBG is the only significant trait associated with
this cluster (β= 0.0052, p = 1.70 × 10−6).
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Figure 1. PCA plot of the variant–trait associations for PCOS variants. PCOS variants are plotted 
on the first 2 principal components (PCs) of the association Z-score and colored by the assigned 
clusters. The relative magnitude and direction of trait correlation with the PCs are shown with 
arrows. BMI, body mass index; WC: waist circumference; WHR: waist–hip ratio; PC, principal 
component; PCA, principal component analysis; FG: fasting glucose; FI: fasting insulin; SHBG, sex 
hormone binding globulin; LH, luteinizing hormone; HOMA-IR: homeostatic model assessment of 
insulin resistance; FI: fasting insulin; FG: fasting glucose; HDL: high-density lipoprotein; LDL: 
low-density lipoprotein; TC: total cholesterol; TG: triglycerides. 

Table 1. The association of the genetic risk score of each cluster with traits and disease outcomes. 

 Adiposity Insulin Resistant Reproductive 
 β p-Value β p-Value β p-Value 

SHBG −0.198 7.377 × 10−6 −0.069 0.0052 0.111 1.70 × 10−6 
LH 0.025 0.1462 0.002 0.8053 −0.001 0.8898 
FI 0.004 0.0855 0.005 1.93E-05 −0.003 0.0101 

FI-BMI adj. 0.002 0.3702 0.004 2.12E-05 −0.001 0.1558 
FG 0.004 0.0519 0.004 0.0004 −0.002 0.0653 

FG-BMI adj. 0.003 0.1947 0.003 0.0138 −0.001 0.3067 
HOMA-IR 0.003 0.2389 0.005 0.0013 −0.003 0.0633 

HDL −0.008 0.0035 0 0.9734 0.003 0.0411 
LDL 0.003 0.335 −0.004 0.0152 −0.002 0.2336 
TG 0.001 0.6019 −0.003 0.0499 −0.004 0.0207 
TC −0.001 0.7885 −0.006 0.0009 −0.001 0.5062 

BMI 0.015 2.59 × 10−7 0 0.9586 −0.001 0.4855 
WC 0.017 1.67 × 10−7 0 0.892 0.001 0.7129 

WC-BMI adj. 0.01 0.001 0 0.8755 0.004 0.0264 
WHR 0.011 0.0008 −0.002 0.3264 0 0.8949 

WHR-BMI adj. 0.006 0.0807 −0.002 0.251 0.001 0.5162 
CAD −0.007 0.1482 0 0.8988 0 0.8444 

T2DM 0.009 0.0726 −0.004 0.2279 −0.005 0.0964 

Figure 1. PCA plot of the variant–trait associations for PCOS variants. PCOS variants are plotted on
the first 2 principal components (PCs) of the association Z-score and colored by the assigned clusters.
The relative magnitude and direction of trait correlation with the PCs are shown with arrows. BMI,
body mass index; WC: waist circumference; WHR: waist–hip ratio; PC, principal component; PCA,
principal component analysis; FG: fasting glucose; FI: fasting insulin; SHBG, sex hormone binding
globulin; LH, luteinizing hormone; HOMA-IR: homeostatic model assessment of insulin resistance;
FI: fasting insulin; FG: fasting glucose; HDL: high-density lipoprotein; LDL: low-density lipoprotein;
TC: total cholesterol; TG: triglycerides.

We also investigated the association of clusters with disease outcomes (Table 1). None
of the three clusters are associated with CAD or T2DM. The adiposity cluster is significantly
associated with breast cancer (β = 0.014, p = 0.0008). The insulin-resistant and reproductive
clusters are associated with breast cancer at nominal significance (p < 0.05).

3.2. Mendelian Randomization Suggests a Causal Role of SHBG and BMI on PCOS

The clustering analysis suggests that BMI, insulin resistance, and SHBG are involved
in PCOS etiology. We applied MR to further estimate the causal roles of these factors on
PCOS. The inverse-variance-weighted method suggests a causal effect of SHBG, BMI, WC,
and insulin resistance (Table 2). In the sensitivity analysis using the weighted median and
MR-Egger methods, only SHBG and BMI remained significant (p < 0.05). SHBG shows a
mild protective effect (odds ratio (OR) < 1) on PCOS with an OR of 0.988, 95% confidence
interval (CI) of 0.981 to 0.995, per 1nmol/L higher SHBG (p = 6.694 × 10−4, Table 2). BMI
shows a moderate risk effect with an OR of 2.421, 95% CI of 1.910 to 3.068, per 1 standard
deviation (SD), which is 4.77 kg/m2 in the original GWAS cohort, and an increase in BMI
(p = 2.611 × 10−13, Table 2). Some epidemiologic studies have reported increased risk for
T2DM, CAD and breast cancer in women with PCOS. Therefore, we evaluated the causal
effect of PCOS on disease outcomes. We did not observe significant evidence to support
a causal role for PCOS on T2DM or CAD. According to the IVW results, PCOS shows a
causal effect on breast cancer (β = 0.0646, p = 0.00195), especially the estrogen receptor (ER)
positive type (β = 0.0862, p = 7.9 × 10−3). However, the MR-Egger results are no longer
significant, suggesting pleiotropic effect of the instrumental variants.
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Table 1. The association of the genetic risk score of each cluster with traits and disease outcomes.

Adiposity Insulin Resistant Reproductive
β p-Value β p-Value β p-Value

SHBG −0.198 7.377 × 10−6 −0.069 0.0052 0.111 1.70 × 10−6

LH 0.025 0.1462 0.002 0.8053 −0.001 0.8898
FI 0.004 0.0855 0.005 1.93E-05 −0.003 0.0101

FI-BMI adj. 0.002 0.3702 0.004 2.12E-05 −0.001 0.1558
FG 0.004 0.0519 0.004 0.0004 −0.002 0.0653

FG-BMI adj. 0.003 0.1947 0.003 0.0138 −0.001 0.3067
HOMA-IR 0.003 0.2389 0.005 0.0013 −0.003 0.0633

HDL −0.008 0.0035 0 0.9734 0.003 0.0411
LDL 0.003 0.335 −0.004 0.0152 −0.002 0.2336
TG 0.001 0.6019 −0.003 0.0499 −0.004 0.0207
TC −0.001 0.7885 −0.006 0.0009 −0.001 0.5062

BMI 0.015 2.59 × 10−7 0 0.9586 −0.001 0.4855
WC 0.017 1.67 × 10−7 0 0.892 0.001 0.7129

WC-BMI adj. 0.01 0.001 0 0.8755 0.004 0.0264
WHR 0.011 0.0008 −0.002 0.3264 0 0.8949

WHR-BMI adj. 0.006 0.0807 −0.002 0.251 0.001 0.5162
CAD −0.007 0.1482 0 0.8988 0 0.8444

T2DM 0.009 0.0726 −0.004 0.2279 −0.005 0.0964
Breast cancer 0.014 0.0008 0.007 0.0106 0.006 0.0192
ER positive 0.012 0.0201 0.008 0.0146 0.005 0.0864
ER negative 0.016 0.0423 0.002 0.6789 0.003 0.4304

Adj.: adjusted; WC: waist circumference; WHR: waist–hip ratio; BC: breast cancer; ER: estrogen receptor; T2DM: type 2 diabetes
mellitus; CAD: coronary artery disease; SHBG: sex hormone binding globulin; BMI: body mass index; LH: luteinizing hormone; HOMA-IR:
homeostatic model assessment of insulin resistance; FI: fasting insulin; FG: fasting glucose; HDL: high-density lipoprotein; LDL; low-density
lipoprotein; TG: triglyceride; TC: total cholesterol.

Table 2. Result of Mendelian randomization of traits on PCOS and PCOS on disease outcomes.

Trait Method nSNV β SE OR (95%CI) p-Value

SHBG MR Egger 171 −0.0140 0.0067 0.986 [0.973, 0.999] 3.926 × 10−2

SHBG Weighted median 171 −0.0162 0.0052 0.984 [0.974, 0.994] 1.785 × 10−3

SHBG IVW 171 −0.0120 0.0035 0.988 [0.981, 0.995] 6.694 × 10−4

BMI—female MR Egger 35 1.2206 0.3224 3.389 [1.802, 6.376] 6.157 × 10−4

BMI—female Weighted median 35 0.9210 0.1887 2.512 [1.735, 3.636] 1.056 × 10−6

BMI—female IVW 35 0.8842 0.1209 2.421 [1.910, 3.068] 2.611 × 10−13

Insulin resistance MR Egger 51 0.5460 0.4531 1.726 [0.710, 4.196] 2.340 × 10−1

Insulin resistance Weighted median 51 0.1011 0.2687 1.106 [0.653, 1.873] 7.067 × 10−1

Insulin resistance IVW 51 0.5267 0.2220 1.693 [1.096, 2.616] 1.768 × 10−2

WC—female MR Egger 18 0.9313 0.7627 2.538 [0.569, 11.316] 2.398 × 10−1

WC—female Weighted median 18 0.6591 0.2646 1.933 [1.151, 3.247] 1.276 × 10−2

WC—female IVW 18 0.5738 0.2112 1.775 [1.173, 2.685] 6.596 × 10−3

BMI adj. WC—female MR Egger 24 0.6659 0.7861 1.946 [0.417, 9.085] 4.061 × 10−1

BMI adj. WC—female Weighted median 24 0.2865 0.2213 1.332 [0.863, 2.055] 1.955 × 10−1

BMI adj. WC—female IVW 24 0.3255 0.1774 1.385 [0.978, 1.961] 6.650 × 10−2

WHR—female MR Egger 20 −0.7122 1.1173 0.491 [0.055, 4.383] 5.319 × 10−1

WHR—female Weighted median 20 0.2172 0.2383 1.243 [0.779, 1.982] 3.619 × 10−1

WHR—female IVW 20 0.3912 0.2220 1.479 [0.957, 2.285] 7.806 × 10−2

BMI adj. WHR—female MR Egger 32 0.0927 0.5285 1.097 [0.389, 3.091] 8.620 × 10−1

BMI adj. WHR—female Weighted median 32 0.1742 0.1743 1.190 [0.846, 1.675] 3.175 × 10−1

BMI adj. WHR—female IVW 32 0.2089 0.1387 1.232 [0.939, 1.617] 1.322 × 10−1
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Table 2. Cont.

Outcome Method nSNP β SE OR (95%CI) p-Value

T2DM MR Egger 8 0.0244 0.1823 1.025 [0.717, 1.465] 8.979 × 10−1

T2DM Weighted median 8 −0.0285 0.0355 0.972 [0.907, 1.042] 4.208 × 10−1

T2DM IVW 8 −0.0325 0.0384 0.968 [0.898, 1.044] 3.962 × 10−1

CAD MR Egger 10 −0.0226 0.1086 0.978 [0.790, 1.210] 8.403 × 10−1

CAD Weighted median 10 −0.0474 0.0283 0.954 [0.902, 1.008] 9.473 × 10−2

CAD IVW 10 −0.0349 0.0228 0.966 [0.923, 1.010] 1.258 × 10−1

BC MR Egger 9 0.0441 0.1278 1.045 [0.814, 1.343] 7.403 × 10−1

BC Weighted median 9 0.0727 0.0268 1.075 [1.020, 1.133] 6.697 × 10−3

BC IVW 9 0.0646 0.0277 1.067 [1.010, 1.126] 1.950 × 10−2

ER + BC MR Egger 9 0.0859 0.1501 1.090 [0.812, 1.462] 5.850 × 10−1

ER + BC Weighted median 9 0.0981 0.0341 1.103 [1.032, 1.179] 4.015 × 10−3

ER + BC IVW 9 0.0862 0.0324 1.090 [1.023, 1.161] 7.900 × 10−3

ER − BC MR Egger 9 −0.0564 0.1630 0.945 [0.687, 1.301] 7.394 × 10−1

ER − BC Weighted median 9 0.0168 0.0399 1.017 [0.940, 1.100] 6.744 × 10−1

ER − BC IVW 9 0.0605 0.0368 1.062 [0.988, 1.142] 1.001 × 10−1

Adj.: adjusted; IVW: inverse variance weighted; WC: waist circumference; WHR: waist–hip ratio; BC: breast cancer; ER: estrogen receptor;
T2DM: type 2 diabetes mellitus; CAD: coronary artery disease; SHBG: sex hormone binding globulin; BMI: body mass index; SE: standard
error; OR: odds ratio; CI: confidence interval.

4. Discussion

Common complex diseases consist of combinations of symptoms and phenotypes
that may result from different mechanistic pathways. Several studies have identified
subtypes of T2DM using biomarkers or phenotypes [31,32]. These subtypes indicate
different mechanistic pathways of T2DM, which were later supported by deconstruction
of T2DM susceptibility loci [13,15]. In this study, we performed a clustering analysis on
PCOS susceptibility variants and identified three clusters of variants that associate with
adiposity, insulin-resistant and hormonal traits, providing genetic evidence for the recently
reported metabolic and reproductive subtypes of PCOS in a phenotypic clustering using
BMI and seven serum biochemical markers [5].

Similar to the phenotypic clustering study where BMI, fasting insulin, and SHBG
are the key features separating the metabolic and reproductive subtypes [5], the clusters
of variants in our analysis were mainly differentiated by associations with SHBG, BMI,
and fasting insulin. However, in the prior study, BMI and fasting insulin were clustered
together as the metabolic subtype, and thus could not be separated by phenotypic clus-
tering. In this analysis, the adiposity and insulin-resistant clusters were clearly separated
by associations with BMI and fasting insulin, suggesting a higher resolution for the ge-
netic variant clustering than the phenotypic clustering. In the phenotypic clustering, the
metabolic subtype showed relatively higher BMI, fasting insulin, and lower SHBG, while
the reproductive subtype showed higher SHBG but lower BMI and fasting insulin. The
current study provides orthogonal evidence to phenotypic clustering as evidenced by the
directionally concordant results where the adiposity and insulin-resistant clusters showed
significant positive associations with BMI and fasting insulin but negative association with
SHBG, while the reproductive cluster showed significant positive association with SHBG
and negative association with fasting insulin (p = 0.01) and a consistent direction of associa-
tion with BMI (not significant, p = 0.4855). We also investigated the role of fat distribution
patterns using WC and WHR. WC is significantly associated with the adiposity cluster
even after BMI adjustment. However, the association with WHR became nonsignificant
with BMI adjustment. These results suggest that general adiposity, but not central adiposity,
is the main associated feature.

In the MR analysis, we confirmed the causal association of BMI on PCOS by the IVW
and MR Egger methods, which are consistent with previous studies [9,33,34]. To investigate
the causal effect of insulin resistance, we used the 53 variants associated with an integrated
insulin-resistant phenotype that included three components—high levels of fasting insulin
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and TG, low levels of HDL [28]. Using the IVW method, we identified a potential causal
relationship between insulin resistance and PCOS, although the weighted median and
MR-Egger test suggested that the causal effect might be driven by genetic pleiotropy, for
example, the potential pleotropic effect on BMI. However, accumulating evidence suggests
insulin resistance as an important mechanism, and several insulin sensitizing drugs have
been used to ameliorate PCOS symptoms and signs, including metformin, the first insulin
sensitizing drug used in PCOS [35], and inositol isoforms, evidenced by several recent
studies showing high safety profile and effectiveness [36,37].

We also explored the association of variant clusters with the disease outcomes. Epi-
demiologic studies showed increased risk of diabetes in patients with PCOS [38,39]. How-
ever, these studies often suffer from unknown confounding factors making it difficult
to infer causality. In our analysis, we did not observe significant associations between
variant clusters and T2DM. MR also did not identify a potential causal effect of PCOS on
T2DM. Conflicting results were observed between PCOS and breast cancer [40]. To date,
studies have not observed an association between PCOS and breast cancer risk [41]. In
our study, we observed marginal associations of breast cancer with three variant clusters.
The subsequent MR-Egger analysis suggested that the effect of PCOS on breast cancer is
possibly mediated by other factors, such as BMI and estrogen.

Our study has limitations. First, we used k-means clustering, which is a “hard-
clustering” method where one variant is assigned to only one cluster. However, this
does not reflect the reality most of the time as a single gene can be involved in multi-
ple pathways (pleiotropy). In our analysis, we observed that different variants from the
same genes are classified into different clusters, such as variants in THADA, FSHR, and
TOX3. Second, our study is limited by the GWAS datasets available for PCOS-related
traits, especially gonadotropin. Only SHBG and LH were included in our analysis. FSH,
testosterone and DEHAS, which are also important hormonal traits for PCOS, were not
analyzed as the corresponding GWAS dataset was either unavailable or had very few
PCOS-associated variants. The SHBG protein level varied largely depending on factors
including age, BMI, insulin resistance and liver diseases. However, the original GWAS
of SHBG in our analysis by the Neale lab using UK biobank data was only adjusted for
sex, but not for BMI or insulin resistance. Even though MR analysis suggested causal
association of SHBG with PCOS, future SHBG GWAS with a larger sample size and proper
adjustment will be required to definitively establish a causal association. There was no
association with LH in the variant clustering as observed in the phenotypic clustering.
FSH and LH vary significantly between individuals and changes rapidly in response to
physiologic factors such as menstrual cycle, which cannot be easily accounted for in these
types of analyses [42]. A GWAS of LH with small sample size may lack statistical power to
capture the variabilities nature of LH levels in the general population. This may explain
why variants in FSHR, FSHB, and LHCGR do not cluster together. Furthermore, GWAS of
PCOS-related disease outcomes, such as hirsutism, endometrial and ovarian cancer, are
not available or have a limited number of variants, thus we were unable to evaluate the
associations of genetic risk score of each cluster with these outcomes. With increasing
access to more large-scale GWAS with more granular features, future studies can apply a
more sophisticated “soft-clustering” method on more non-disease quantitative traits that
hopefully can overcome the limitations of this study.

5. Conclusions

Our study is the first to use a genetic approach to deconstruct PCOS etiological
heterogeneity. Clustering of variants associated with PCOS has identified three likely
etiologic pathways involving adiposity, insulin resistance and SHBG. Subsequent MR
analysis suggests a causal role for BMI and SHBG and a suggestive causal effect of insulin
resistance on PCOS. Studies such as this will accelerate the deep phenotyping of PCOS and
could inform diagnostic criteria that currently do not distinguish the subtypes of PCOS. If
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successful, this could help to classify women with PCOS and improve treatment precision
in future.
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