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THE BIGGER PICTURE Differential privacy is an innovative technique that can be applied to data to protect
confidentiality. This has been used primarily to protect private sector data, but has significant implications for
public health. We describe the methods of differential privacy in terms understandable to a non-computer-
science audience. To our knowledge, this is the first article describing differential privacy in language and
context appropriate for a health audience. The case study described shows the feasibility of the use of dif-
ferential privacy for public health surveillance data to optimize information sharing while protecting data
confidentiality. This method allows for data to be released in more granular detail in terms of time, place,
and person without compromising privacy and confidentiality. Future research needs to consider other
use cases, including a range of surveillance systems and applications in other types of health data.

Concept: Basic principles of a new
data science output observed and reported
SUMMARY

Coronavirus disease 2019 (COVID-19) has highlighted the need for the timely collection and sharing of public
health data. It is important that data sharing is balanced with protecting confidentiality. Here we discuss an
innovative mechanism to protect health data, called differential privacy. Differential privacy is a mathemati-
cally rigorous definition of privacy that aims to protect against all possible adversaries. In layperson’s terms,
statistical noise is applied to the data so that overall patterns can be described, but data on individuals are
unlikely to be extracted. One of the first use cases for health data in Australia is the development of the
COVID-19 Real-Time Information System for Preparedness and Epidemic Response (CRISPER), which pro-
vides proof of concept for the use of this technology in the health sector. If successful, this will benefit future
sharing of public health data.
BACKGROUND

The coronavirus disease 2019 (COVID-19) pandemic has high-

lighted the need for the timely collection and sharing of public

health data to provide information for policy makers and frontline

workers to make rapid and informed decisions. It is important

that sharing of data is balanced with protecting the confidenti-

ality of an individual’s health information. In this paper we
This is an open access article under the CC BY-N
discuss a cybersecurity method known as differential privacy,

an innovative mechanism that could be used to optimize infor-

mation sharing while protecting the confidentiality of public

health surveillance data. Privacy refers to an individual’s right

to decide whether information about him or her is released, while

confidentiality is an assurance given by a data holder that they

will not violate any individual’s privacy by releasing data the indi-

vidual desires to be private. Privacy prevents information about a
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person being shared, and confidentiality ensures data relating to

that individual are shared only with authorized parties, while his

or her identity is protected.1

PREVIOUS BREACHES OF HEALTH DATA
CONFIDENTIALITY IN AUSTRALIA

Concerns regarding data confidentiality are warranted, with

numerous previous data breaches occurring in relation to health

data in Australia. In one such example, a graph from South

Australia Health reporting data on children treated at hospital

for respiratory infection, gastroenteritis, and whooping cough

was displayed online from 2005 to 2018. The graph was linked

to the source data, including names, date of birth, and test re-

sults, and had recorded 300 views before the breach was iden-

tified and the data were removed.2 Another example of a serious

breach involved data provided by individuals to the Red Cross

Blood Service between 2010 and 2016. Personal and health in-

formation, including details about ‘‘at-risk behavior,’’ were

completed in an online application form. The file containing all

these data was moved to an unsecure device and accessed by

an unauthorized party.3 Both of these examples involve datasets

that contained personal identifiers.

There are also instances in which datasets have been shared

with measures put in place to protect confidentiality, such as the

removal of primary identifiers (e.g., name), but breaches have

occurred. For example, on August 1, 2016, the Australian

Department of Health publicly released medical billing records

of 2,985,511 unique individuals on the data.gov.au website.

The records included Medicare Benefits Scheme (MBS) data

from 1984 to 2014 and Pharmaceutical Benefits Scheme (PBS)

data from 2003 to 2014, containing historical health data of

around 10% of the population, including details on services pro-

vided by doctors, pathologists, diagnostic imaging, and allied

health.4 The dataset was released for research in the public inter-

est and used anonymized unique identifiers while applying

numerous confidentiality measures to prevent information from

being identifiable, including encryption, perturbation, aggrega-

tion, and exclusion of rare events. The dataset was downloaded

approximately 1,500 times while it was publicly available.

In December 2016, the Australian Department of Health was

alerted by computer science researchers at the University of

Melbourne that it was possible to decrypt Medicare service

provider unique identifiers.4 The University of Melbourne re-

searchers used cryptographic attack methods (finding a security

weakness, usually in the code) to recover information from the

dataset. The researchers did not reveal personal information

when reporting their findings, so no individual’s privacy was

compromised. Rather, it was used as an example of the impor-

tance of data security and the challenges of performing de-iden-

tification. The authors outlined their methods in a paper, ‘‘Health

Data in an Open World,’’4 which explains how individuals could

be re-identified through decryption and linking.

HOW PREVIOUS DATA BREACHES HAVE AFFECTED
ACCESS TO SURVEILLANCE DATA IN AUSTRALIA

Following an investigation into the MBS and PBS data breaches

described above, it was concluded that decision-making at the
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Australian Department of Health for releasing these data was

not a clear and documented approval process, and there were

no rigorous risk management processes or any significant degree

of cross-government coordination.5 Consequently, the Australian

government published guidance on the ‘‘Process for Publishing

Sensitive Unit Record Level Public Data as Open Data,’’6 which

provides guidance on releasing datasets related to sensitive infor-

mation. In addition, the Commonwealth Government Privacy

Amendment (Re-identification Offence) Bill 2016 was introduced

as a method of deterrence to make it an offense for an entity to

intentionally re-identify information that has been disclosed by a

Commonwealth agency.7 Overall, there was an emphasis on the

failure of the government, rather than appreciation for the relation-

ship between researcher and agency, to ensure privacy breaches

did not occur. The Notifiable Data Breaches program was also

introduced in 2018, which requires that organizations notify indi-

viduals and the Office of the Australian Information Commissioner

when a data breach, which may cause serious harm, occurs.8
CURRENT STRATEGIES TO ENSURE DATA PRIVACY

When data custodians allow access to data, several techniques

can be used to protect privacy, which focus on altering either da-

tasets or processes around data access, including the following:

d De-identification is the process of (1) removing personal

identifiers (such as name and address) and typically re-

placing them with token identifiers and (2) removing or

altering other information that may permit the re-identifica-

tion of an individual through linkage with other data

whereby persons are identified.9 This process should

also consider whether data are potentially identifiable,

even after the name and address are removed. Data,

particularly small datasets, can be potentially re-identifi-

able through indirect identification, using a combination

of variables such as date of birth and postcode, or these

variables can be used to significantly narrow down the

number of people who would fit the set of criteria.10,11

d Aggregation involves presenting data in a summarized

format, particularly when there is a small number of people

reported in a geographic area or as some other subgroup

(e.g., by ethnicity).12

d Authentication is the process of identifying the person(s)

accessing the data. Digital identity verification is a com-

mon feature of authentication, which results in having

multiple ‘‘digital identities’’ through the use of different

log-in and password combinations.13

d Authorization is providing defined roles or operations for

how the data are accessed and used.14

d Encryption is the process of using an algorithm to

scramble data, and a key is used by those with authoriza-

tion to unscramble and decrypt the data.13
A POTENTIAL INNOVATIVE SOLUTION: DIFFERENTIAL
PRIVACY

A possible solution to improve data security when making sensi-

tive health data securely available is the use of the recently

https://data.gov.au


Figure 1. Comparative plot of the density functions of the Laplace
(0; 1) and the Gaussian (0; 1) distributions
Note that the Laplace distribution has a sharp ‘‘peak’’ at zero, while the
Gaussian is more rounded. Also note that the tails of the Laplace distribution
are much heavier than those for the Gaussian distribution. That is, samples
drawn from the Laplace distribution are more likely to be farther away from the
mean than are samples drawn from the Gaussian distribution.

ll
OPEN ACCESSPerspective
developed cybersecurity method known as differential privacy.

Differential privacy is a mathematically rigorous definition of pri-

vacy that aims to protect against all possible adversaries who

might want to compromise privacy and confidentiality. It does

this by limiting the information gained by the worst possible ad-

versary: someone who knows all but one row of the database,

has infinite computing power, and attempts to discover the re-

maining row of the database through targeted queries. In layper-

son’s terms, statistical noise is applied to the data so that overall

epidemiological patterns can be described but individual data

cannot be extracted. To date, this has primarily been used in

the private sector and in the area of data science, with applica-

tion of the method by Apple and Google,15,16 as well as in the

release of the 2020 US census data.17 The application of differ-

ential privacy for health data is starting to be recognized, with

some researchers in the field recommending its use for creating

health datasets for secondary purposes,18 and one pilot study

applying the technique to query a patient database to select

individuals for recruitment into a clinical trial.19
CASE STUDY

What would a worst-case adversary look like? Imagine a sce-

nario where the adversary, Eve, knows everything about

everyone in her community except Alice. Suppose also that

Eve has unlimited computational resources. Eve’s goal is to

analyze any data that have been released about the people in

her community to try to determine if Alice has been diagnosed

with COVID-19.

d Is it safe to release aggregate data? No. If Eve has access

to any exact statistic, like themean, count, or variance, that

included Alice, she can easily compute what these statis-

tics would be in the case where Alice has/has not been
diagnosed with COVID-19. Eve can then compare these

to the true values and deducewhether Alice has been diag-

nosed with COVID-19.

d Will low-count cells suppression work? No, the privacy

attack detailed above works regardless of how many

people are in the community.

d Will methods like binning work? Binning is a method that

allows the grouping of continuous values into a smaller

number of groups or "bins."20 This may be useful for

some types of health data but not for all. Binning will some-

times protect Alice’s identity from Eve, but is much less

likely to be effective at protecting everyone’s identity

from all possible attackers. Suppose:

d the bins are counts of COVID-19 notifications of 0–5

and 6–10 cases,

d the true number of COVID-19 cases is 6, and

d Alice has been diagnosed with COVID-19.

Eve uses her ancillary data to calculate that the number of

COVID-19 cases, excluding Alice, is 5. Eve compares this

to the released data that state that the number of cases is

in the 6–10 bin and deduces that Alice has been diagnosed

with COVID-19.

One of the most common ways to achieve differential privacy

is to add Laplace noise to the statistics.21 To do so, we first

compute the exact statistics, then generate random values

distributed according to the Laplace distribution, and finally

add the random (noise) values to the exact statistics. This results

in a differentially private version of the original data, which are the

statistics that are released. We have used the term statistics

here, given that this is common terminology in public health.

However, in the language of differential privacy, the data that

we release would more commonly be called the ‘‘query re-

sponses’’ and will be referred to as this henceforth.

The Laplace distribution is similar to the more familiar

Gaussian (normal) distribution (as shown in Figure 1) in that

both are symmetric about some mean value and that random

samples drawn from either distribution will tend to be tightly clus-

tered around the mean. The Laplace distribution has somewhat

heavier tails than theGaussian distribution, however, and ismore

likely to produce samples that are far from its mean. It turns out

that this property is critical for ensuring that the addition of

Laplace noise is sufficient to guarantee differential privacy.

Following the case study above, assume that:

d Eve knows the COVID-19 status of all community residents

except Alice;

d Eve knows that there are 999 cases in her community. That

is, if Alice has not been diagnosed with COVID-19, there

will be 999 cases. Or if Alice has been diagnosed, there

will be 1,000 cases;

d random Laplace noise is added to the count before being

released to Eve;

d the query response released to Eve is 998;

d Eve knows the privacy protocol;

d Eve believes both outcomes are equally likely. That is,

before observing the query response, Eve believes that

there is a 50% chance that Alice has been diagnosed

with COVID-19.
Patterns 2, December 10, 2021 3



Figure 2. Distribution of the probabilities of query responses
produced by the Laplace mechanism when Alice has been
diagnosed with COVID-19 (blue) and when Alice has not been
diagnosed with COVID-19 (orange).
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Figure 2 shows the distribution of the values produced by the

Laplace mechanism when Alice has or has not been diagnosed

with COVID-19. The distributions of the probabilities of query re-

sponses under the two scenarios are virtually indistinguishable.

From Eve’s ancillary data, she knows that either there were

999 cases and Alice has not been diagnosed with COVID-19,

or there were 1,000 cases and Alice has been diagnosed with

COVID-19. Because Eve knows the privacy protocol, she can

calculate the probabilities that any count would be released un-

der each scenario. Because Eve believes both outcomes are

equally likely, Eve’s optimal strategy is to guess that Alice’s diag-

nosis is whatever maximizes the likelihood of the observed query

response. For example, suppose that the query response is 998.

Eve knows that the probability of this happening is 4.1% if Alice

has been diagnosed with COVID-19 and 4.5% otherwise. So,

Eve’s best guess is that Alice has not been diagnosed with

COVID-19. Suppose, however, that the query response is

1,003. Eve knows that the probability of this happening is 3.8%

if Alice has been diagnosed with COVID-19 and 3.3% otherwise.

So, in this case Eve’s best guess is that Alice been diagnosed

with COVID-19. Importantly, regardless of the actual query

response, we can apply Bayes formula (a mathematical formula

used for calculating conditional probabilities) to show that there

is a 47.5% chance that Eve’s guess is incorrect. Therefore, the

best Eve can do is little better than random guessing.
HISTOGRAM QUERIES

One particularly important class of queries that can be made

differentially private by addition of Laplace noise is histogram

queries. A histogram query returns the set of values for the

rows in the database and the number of rows that have each

possible value. For example, consider a database that consists

of the age group of every person who had a COVID-19 test on

a given date. A histogram query on that database simply counts

the number of persons in each age group.
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Histogram queries can be made differentially private by add-

ing independent Laplace noise to the count for each possible

value. Somewhat surprisingly, the scale of the noise that must

be added to achieve a given level of privacy (see ‘‘Privacy

budget’’ below) does not depend on the number of possible

values. For example, the amount of noise that must be added

to each count is the same whether there are 5 possible values

or 500. Furthermore, the scale of the noise does not depend

on the population size. Therefore, if the population size is large

and the number of possible values is small, then the magnitude

of the noise will be small relative to the true counts.

Returning to the example COVID-19 database described

above, suppose that the persons’ ages were reported in eight

categories: 0–9, 10–19, 20–29, 30–39, 40–49, 50–59, 60–69,

and 70+ years. A histogram query on this database would then

return eight counts, one for each possible age group. This query

can be made differentially private by adding independent

Laplace noise to each of these counts. Figure 3 depicts the re-

sults of a non-private histogram query alongside a differentially

private (perturbed counts) version of the same query, showing

very similar overall patterns of age distribution.

PRIVACY BUDGET

The strength of the privacy guarantee provided by a differentially

private release mechanism depends on the scale of the Laplace

noise that is added. In general, addingmore noise yields stronger

privacy. The strength of this privacy guarantee, or the privacy

budget, is based on the value of a privacy parameter called

epsilon (e). Smaller values of epsilon yield stronger privacy

guarantees.22,23 Unfortunately, smaller values of epsilon also

require adding more noise to the exact query responses, making

them less accurate. When releasing data, an appropriate bal-

ance between accuracy and privacy needs to be determined.

This is known as the privacy-utility trade-off.

The privacy guarantees described above apply only when a

differentially private release mechanism is used to answer a sin-

gle query. In practice, however, a release mechanism may be

required to compute responses to many queries. For example,

in a dataset containing COVID-19 data, an individual may search

for all COVID-19 cases in a specific location, for which a differen-

tially private result would be produced. However, each time this

search is run, a new differentially private result would be pro-

duced. Each resulting search is considered an additional query.

Answering multiple queries weakens the privacy guarantee that

any release mechanism can provide. Hence, if a system using

differential privacy allows more than one query, there should

be a limit on the number of queries allowed. If an unlimited num-

ber of queries were allowed, this may make the data re-identifi-

able. To see why, suppose that the Laplace mechanism is used

to compute many independent responses to a query. In this

case, an attacker could compute the average of the noisy query

responses to obtain a very accurate estimate of the exact query

response, which would defeat the purpose of applying noise in

the first place! One of the most important properties of differen-

tially private release mechanisms is that they allow us to quantify

the strength of the privacy guarantee that a release mechanism

can provide when used to answer multiple queries. In general,

halving the privacy parameter allows us to answer twice as



Figure 3. Histogram of real data (blue) compared with differentially
private query responses of the same dataset (e = 1/8; orange).
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many queries while providing the same privacy guarantee. This

property is known as composability.24

Composability offers a way to provide strong privacy guaran-

tees when a differentially private release mechanism is used to

respond to multiple queries. To do so, we need to calculate the

value of epsilon that we are going to use (i.e., how much noise

are we going to add) for each query. To calculate the privacy

budget, we compute the value of epsilon for each query individ-

ually and then add them up. The total is then compared with a

chosen threshold to ensure that the system provides a strong

enough privacy guarantee. As with individual queries, systems

with smaller privacy budgets provide stronger privacy guaran-

tees. One commonly applied rule of thumb is that epsilon

‘‘should be thought of as a small number, between approxi-

mately 1/1,000 and 1.’’25

PRACTICAL CONSIDERATIONS

One major barrier to the widespread adoption of differential

privacy is the paucity of available software tools that provide

secure and efficient implementations of differentially private

release mechanisms and that can be used by those without

computer science expertise. Some of the more popular existing

tools22,26–28 provide implementations of commonly used differ-

entially private release mechanisms for use in the Python, R,

SQL, and C++ programming languages. Unfortunately, even

the simplest of differentially private release mechanisms, such

as the Laplace mechanism described above, require careful im-

plementation to ensure adequate protection for real-world

data.29 Furthermore, it can be difficult for non-experts to effec-

tively wield the tools that are available, since doing so requires

an understanding of how to choose an appropriate value for

epsilon and of how to compute the sensitivity of a given query.

To address these shortcomings, one of the authors (M.P.) has

developed the Python library RelM,30 which provides easy-to-

use, secure implementations of many fundamental differentially

private release mechanisms. The package includes a synthetic
dataset designed to reflect possible real-world COVID-19 testing

data and examples of how RelM can be used to release differen-

tially private histograms as per the example described above.

ADVANTAGES AND LIMITATIONS OF USING
DIFFERENTIAL PRIVACY FOR HEALTH DATA

There are a number of distinct advantages to the use of differen-

tial privacy for health data. The examples described previously

are of small-scale datasets with minimal variables to explain

the concept. In real-world public health datasets, however, there

are often thousands of counts of disease incidence with a large

number of variables, such as age, sex, ethnicity, and geograph-

ical location. We suggest that differential privacy in this context

can be even more useful. The rigorous privacy guarantees that

differential privacy provides make it possible to determine how

many counts can be safely released given some fixed privacy

budget. For sufficiently large populations it is possible to release

thousands of differentially private query responses with both

small relative errors and strong privacy guarantees. So, it can

be possible to use differential privacy to release query responses

in forms such as dashboards that allow for interrogation of the

data across numerous variables.

In addition to providing added security, the primary datasets

can remain with the data custodian so that it is possible for users

to make queries even though the data have not been specifically

released to those conducting analyses, e.g., public health prac-

titioners and researchers. Data privacy can also be increased by

limiting the number of queries from each user. Differential privacy

is most suitable for large datasets for the presentation of counts,

rates, and summary statistics (with a caveat that users accept

that the released data have been perturbed).

There are also limitations to the use of this technology.

Differential privacy is less suitable for data where there are low

counts, as the amount of noise applied will more significantly

affect the results. For example, reporting a differentially private

estimate of 300 cases of COVID-19 in a postcode compared

with the true value of 297 has minimal impact on the usefulness

of the data. However, reporting a differentially private estimate of

eight cases compared with the true value of four has a larger

impact on accuracy and usefulness. In instances with very low

counts, differential privacy may also result in negative counts;

hence, further work is needed to extend differential privacy for

very low value counts to be used in public health surveillance.

Similarly, differential privacy is not useful in instances where

exact counts are required, or when exact counts are released

by other sources, e.g., media reports of the exact number of

new COVID-19 cases.

POSSIBLE USES FOR PUBLIC HEALTH

With the added protection afforded by differential privacy, it may

be possible to share more detailed information about health and

disease patterns in a public forum. This would allow clinicians,

public health practitioners, researchers, and the general public

to access more timely and detailed information about diseases.

This is particularly important during rapidly evolving situations

such as public health emergencies like outbreaks and pan-

demics. For example, during the COVID-19 pandemic, a number
Patterns 2, December 10, 2021 5
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of inquiries have identified the need to do better at including gen-

eral practitioners and other primary health care workers in the

response, including improving their ability to access detailed

data about disease epidemiology and spread.31,32 Currently,

releasing details about COVID-19 cases such as exposure site

and demographics (e.g., indigenous status and age) and post-

code could potentially enable identification of individuals who

have tested positive for COVID-19. Differential privacy could

significantly improve protection of this type of data release.

One of the first uses of differential privacy for health purposes

in Australia is the development of the COVID-19 Real-Time In-

formation System for Preparedness and Epidemic Response

(CRISPER) by our team. This system includes multiple dash-

boards to visualize and interact with data, including data on

confirmed cases and deaths, source of infection, contact

tracing alert locations, and laboratory testing. CRISPER’s inter-

active mapping tool allows users to interrogate data based on

time and place and source of infection, and answer questions

specific to their information needs.33 At the time of writing,

these functionalities were not available through health depart-

ment websites. For example, general practitioners could obtain

information about the number of locally acquired new cases

over the past 14 days in the postcodes surrounding the clinic,

and use this information for risk assessment for themselves,

their staff, and their patients. CRISPER is designed to use a dif-

ferential privacy algorithm through a data engine to protect data

that are not publicly available (e.g., data stratified by age, sex,

and comorbidities). Access to line-listed data has been the ma-

jor challenge for the CRISPER project, and the system currently

uses data scrapers and application programming interfaces

(APIs) to parse data from a number of public sources such as

health department websites. However, once access to line-

listed data has been approved, the system is ready to ingest

more detailed data and release differentially private query re-

sponses. The use of differential privacy in the CRISPER project

provides a proof of concept of the application of this innovative

mechanism, which may encourage sharing of public health

data in the future by providing enhanced privacy and confiden-

tiality.
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