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Could exercise hormone irisin be a therapeutic agent against Parkinson’s and other 
neurodegenerative diseases?  
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A B S T R A C T   

Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer’s disease (AD). 
The pathologic hallmarks of the disease are the loss of dopaminergic neurons of substantia nigra pars compacta 
and the presence of intraneuronal alpha synuclein (a-syn) aggregates. Clinical features of PD include motor 
symptoms such as bradykinesia, rigidity, tremors, postural instability, and gait impairment, and non-motor 
symptoms such as constipation, orthostatic hypotension, REM sleep disorder, depression and dementia. 
Currently, there is no disease-modifying therapy for PD. Several human studies have shown that exercise reduces 
progression of motor symptoms, improves performance on cognitive tasks, and slows functional deterioration. 
However, regular exercise may not always be feasible in PD patients. Irisin is an exercise-induced myokine 
involved in metabolism modulation and body fat reduction, but it also crosses the blood-brain barrier and may 
mediate some of the benefits of exercise in brain function. Recent evidence has shown that irisin could be 
therapeutically promising in PD as an “exercise-mimicking” intervention. Exogenous irisin administration de-
creases brain a-syn pathology and loss of dopaminergic neurons, while it improves motor outcomes in preclinical 
models. Several other neurodegenerative disorders such as AD share common underlying pathogenetic mecha-
nisms with PD such as protein misfolding and aggregation, neuroinflammation, brain metabolic abnormalities, 
and neuronal loss. Therefore, investigation of irisin as a disease-modifying therapy could be promising for PD and 
other neurodegenerative disorders including AD.   

Parkinson’s disease (PD) is the second most common neurodegen-
erative disease after Alzheimer’s disease (AD). It has been estimated that 
globally, 6.1 million individuals were affected in 2016 [1], and it is 
projected that over 17 million may suffer from PD by 2040 [2]. The 
disease’s symptoms are divided into motor (bradykinesia, rigidity, 
resting tremor, dysphagia, postural instability, gait freezing) and 
non-motor (constipation, REM sleep behavior disorder, hyposmia, 
depression, pain, orthostatic hypotension, and dementia) [3]. Parkin-
son’s disease profoundly impacts the quality of life of patients and their 
caregivers [4], and has been associated with significant medical costs 
attributed to medications, hospitalizations and productivity loss [5]. 

Neurodegeneration in PD is the result of multiple interacting path-
ological processes that include abnormal a-synuclein (a-syn) aggrega-
tion, dysfunction of mitochondria and lysosomes, synaptic transmission 
abnormalities, and neuroinflammation [6]. Loss of dopaminergic neu-
rons is a well-known characteristic of the disease and is primarily 
evident in substantia nigra pars compacta, but is also found in the locus 
coeruleus, nucleus basalis of Meynert, pedunculopontine nucleus, raphe 
nucleus, dorsal motor nucleus of vagus, caudate nucleus, amygdala and 
hypothalamus [3,7]. Currently, there is no disease-modifying therapy 
against neurodegeneration in PD and the available therapies treat only 
symptoms of the disease. 

The mainstay treatment for PD’s motor symptoms includes medica-
tions that elevate dopamine levels or stimulate dopamine receptors 

intracerebrally such as levodopa, dopamine agonists, monoamine oxi-
dase B inhibitors and amantadine [3]. Dementia is treated with acetyl-
cholinesterase inhibitors; depression with selective serotonin reuptake 
inhibitors/serotonin and norepinephrine reuptake inhibitors/tricyclic 
antidepressants; psychosis with atypical anti-psychotics; sleep disorders 
with benzodiazepines and melatonin; and fatigue with stimulants such 
as methylphenidate and modafinil [3]. 

In addition to medications, physical exercise has been investigated as 
a possible intervention in PD with promising effects in humans that 
include reduced decline of postural and gait instability, improved 
overall mobility, favorable performance on cognitive tasks such as 
processing speed and cognitive control, and slower deterioration on 
activities of daily living [8–10]. Evidence from neuroimaging studies 
suggests that the clinical effects of exercise in PD could be associated 
with the positive effects of exercise on brain function and structure [9, 
11]. In a study involving individuals with mild to moderate PD, 3-month 
aerobic exercise increased ventral striatum activity shown on fMRI 
during a task involving 75% probability of monetary reward following 
patients’ random selection of one out of four cards [11]. The same study 
also showed that exercise increased transcranial magnetic 
stimulation-induced dopamine release in caudate nucleus measured by 
[11C] raclopride PET [11]. Another study involving mild PD patients 
showed that 6-month aerobic exercise increased functional connectivity 
of the right frontoparietal network which was correlated with improved 
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measures of fitness [9]. In addition, exercise reduced global brain at-
rophy [9]. 

Despite the promising effects of exercise in PD, the molecular 
mechanisms involved in these benefits are not clear. Studies in pre-
clinical models of PD have provided some insights into the effects of 
exercise in PD at the molecular level. In a chronic 1-methyl-4-phenyl- 
1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD with 
moderate neurodegeneration, 18-weeks exercise increased striatal 
antioxidant enzymes [Mn superoxide dismutase (SOD) and Cu–Zn SOD], 
improved mitochondrial functional indicators in striatum such as the 
rate of mitochondrial state 3/4 respiration and ATP content, and boos-
ted the neurotrophic factors brain-derived neurotrophic factor (BDNF) 
in substantia nigra and glial cell line-derived neurotrophic factor 
(GDNF) in striatum [12]. In a transgenic mouse model expressing a 
human form of a-syn in all neurons, animals that exercised for 3 months 
had elevated cortical BDNF, DJ-1 and Hsp70 proteins, and these changes 
were accompanied by decreased brain a-syn aggregation [13]. 

In 2002, fibronectin type III domain-containing protein 5 (FNDC5), a 
transmembrane protein, was discovered and shown to be expressed in 
skeletal muscle, heart, and brain [14]. After a decade, a study showed 
that in response to exercise in mice, the extracellular component of 
FNDC5 was released from skeletal muscle into the blood circulation and 
induced a transition of white adipose tissue (WAT) to adipose tissue with 
brown adipose tissue (BAT)-like morphology (browning) as well as a 
thermogenic program dissipating energy as heat [15]. The secretory 
soluble peptide produced from the proteolytic processing of FNDC5, 
irisin, is a myokine playing an important role in the modulation of 
metabolism and body fat reduction, increasing energy expenditure and 
oxygen consumption while reducing insulinemia [16]. Thus, irisin 
acting as myokine may present a potential protective effect on the 
progress of obesity-related conditions [16–27]. Obesity has risen 
significantly in recent decades, becoming a major global public health 
concern associated with a variety of diseases including cardiovascular 
disease, metabolic syndrome, insulin resistance, type 2 diabetes melli-
tus, cancers and dementia [28–41]. Current data from experiments in 
rodents suggest that exercise induces significant browning of inguinal 
WAT. Nevertheless, there is little evidence that this extends to humans, 
which is attributed mainly to the different fat depots and role of sub-
cutaneous WAT in humans compared with mice [42–44]. Other pre-
clinical studies have shown that irisin exerts a plethora of additional 
biologic actions such as osteoblast proliferation and differentiation, in-
crease of insulin sensitivity in muscle, and importantly, neuronal dif-
ferentiation, rescue of synaptic plasticity and improvements in cognition 
and memory [45–47]. There are many challenges related to irisin’s 
physiology, molecular mechanisms and laboratory determination. 
Studies are needed to identify the cleavage site of FNDC5 and the related 
secretase, the molecular mechanism of shedding, the associated mech-
anism of irisin’s passage into the blood-brain barrier (BBB) and its 
relationship with the regulation of BDNF and neurogenesis in mice [42]. 
The generation of FNDC5 knockout mice may provide a new tool to 
study many facets of FNDC5/irisin biology [48]. Nevertheless, irisin has 
emerged as an important exercise-induced hormone with therapeutic 
potential across multiple diseases due to its pleiotropic actions. 

In a recent study, Kam et al. used the a-synuclein preformed fibril (a- 
syn PFF) seeding model of PD to investigate the role of the irisin in PD 
[45]. They leveraged prior knowledge that irisin is induced by exercise 
not only in humans, but also in mice, and directly administered irisin to 
their PD model to test whether it can ameliorate the hallmark PD pa-
thology a-syn, and whether it can improve PD-relevant motor outcomes. 
Initially, the authors used primary cortical cultures treated with a-syn 
PFF which is shown to induce toxic-for-cells misfolding of endogenous 
a-syn. It was demonstrated that sustained treatment with various con-
centrations of irisin starting 1 hour before introduction and continuing 
during the administration of a-syn PFF, resulted in the reduction of a-syn 
pathology in a concentration-dependent manner (studied with immu-
nocytochemistry). Additionally, irisin treatment prevented neuronal 

death when started 1 hour before, 1 or 2 days after, but not 4 or 7 days 
after a-syn PFF administration. Overall, these findings suggested that 
irisin has the potential to prevent formation of pathologic a-syn and 
protect neurons against its toxicity. 

Furthermore, to assess the protective role of irisin against dopami-
nergic neuronal loss in PD in vivo, Kam et al. stereotactically injected a- 
syn PFF into mice striatum which induces approximately 50% striatal 
dopaminergic neuron loss within 6 months in the wild type mice [45]. 
Two weeks after intra-striatal injection of a-syn PFF, researchers injec-
ted irisin or control within a vector via the tail vein of mice. Six months 
after intra-striatal a-syn PFF injection, irisin treatment reduced dopa-
minergic neuron loss by 35% measured as stereologic counts of tyrosine 
hydroxylase (TH) and Nissl-stained neurons compared with control. The 
effect was larger when assessed with immunoblot as it was shown that 
irisin decreased neuronal loss by 43% measured as levels of TH and by 
39% measured as dopamine transporters. Moreover, in mice given irisin, 
the loss of striatal dopamine and its metabolites 3, 4-dihydroxyphenyl-
acetic acid (DOPAC), homovanilic acid (HVA) and 3-methoxytyramine 
(3-MT) was inhibited by 87%, 95%, 72% and 70% respectively, as 
revealed in high-performance liquid chromatography. Interestingly, 
compared with control, irisin administration through vector in mice 
decreased insoluble levels of phosphorylated a-syn (p-a-syn) and a-syn, 
without any effect on soluble monomeric a-syn. In terms of motor out-
comes, at 6 months after a-syn PFF intra-striatal injection, irisin 
improved performance on the pole test which assesses the time for mice 
to climb down to the bottom of a vertical pole after being placed on the 
top of it. Similarly, irisin improved performance on grip strength test 
which assesses peak tension of mice limbs while they are gently being 
pulled away of a metal grid until they release the handle [45]. 

To gain insights on the molecular pathways of irisin’s effect against 
a-syn pathology in neurons, proteomic analyses from primary cultures of 
cortical neurons treated with a-syn PFF in the absence or presence of 
irisin using liquid chromatography tandem mass spectrometry were 
performed. Interestingly, compared with control, irisin decreased the a- 
syn protein itself and opposed a-syn PFF-induced ApoE upregulation. 
ApoE downregulation by irisin is beneficial since individuals with the e4 
allele(s) are not only at an increased risk for AD, but also at a higher risk 
for earlier PD onset and dementia in PD [49]. 

After that, the authors asked the question whether irisin’s effects on 
decreasing a-syn pathology could be explained by a block of neuronal 
internalization and propagation of a-syn [45]. Previous published work 
showed that biotin-labeled a-syn (biotin-a-syn) PFF is internalized by 
neurons and induces a-syn pathology similarly to the unlabeled a-syn 
PFF [50]. Therefore, the authors treated cortical neurons with 
biotin-a-syn PFF and irisin showing that 50 ng/ml of irisin reduced 
biotin-a-syn PFF and endogenous a-syn parallelly, 1 and 4 days 
following treatment. The formation of p-a-syn which is known to start on 
day 4 was also inhibited by irisin. These findings show that irisin likely 
intervenes in the processes of internalization of a-syn in neurons and 
intra-neuronal aggregation. 

The authors additionally asked the question whether irisin treatment 
is associated with lysosome-related degradation of a-syn [45]. It was 
shown that treatment of cortical neurons with 50 ng/ml irisin starting 1 
hour before and continuing during treatment with a-syn-biotin PFF, 
resulted in decreased a-syn-biotin PFF in the endolysosome-containing 
fraction, thereby providing evidence that irisin might reduce a-syn pa-
thology by acting in endolysosomes. The authors also showed that a 
known lysosomal inhibitor (NH4Cl) inhibits the irisin-induced degra-
dation of a-syn-biotin-PFF but the proteasome inhibitor MG132 does not 
inhibit degradation. Taken together, these experiments provide impor-
tant mechanistic evidence that a-syn pathology reduction in neurons by 
irisin is at least partially endolysosome mediated. 

Overall, by showing that irisin decreases a-syn pathology and 
neuronal loss, and improves motor outcomes in a series of in vitro and in 
vivo experiments using the a-syn PFF seeding model of PD, Kam et al. 
provide a possible explanation for the clinical benefits of exercise in 
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individuals with PD. Importantly, the study offers mechanistic evidence 
that a-syn pathology amelioration by irisin takes place at least via three 
pathways which include: downregulation of ApoE4, reduction of a-syn 
internalization by neurons, and endolysosomal degradation of a-syn 
[45]. A novelty of this study was that irisin was directly administered to 
the studied PD model rather than induced by exercise. A previous study 
in mice implementing cellular pathway analysis showed that irisin in-
jection has similar effects with exercise on brain proteome [51] sup-
porting the idea that irisin administration could be used instead of 
exercise when the latter is not feasible. 

The encouraging findings demonstrated by Kam et al. on the effects 
of irisin in PD could also be relevant in the context of other neuro-
degerative disorders such as AD, multiple sclerosis (MS), and Hunting-
ton’s disease (HD), since these diseases share common underlying 
pathogenetic mechanisms with PD, such as protein misfolding and ag-
gregation, neuroinflammation, metabolic abnormalities, vascular ab-
normalities, and neuronal loss [52–54]. The view that investigation of 
irisin could be promising in the context of other neurodegenerative 
disorders is supported by clinical studies that have shown 
exercise-induced improvements in neuropsychiatric, functional and 
cognitive outcomes across multiple neurodegenerative disorders 
[55–57]. Interestingly, several preclinical and clinical studies have 
shown that irisin induces the expression of brain BDNF [58,59], a factor 
that is also increased following exercise in neurodegenerative disorders 
[60,61]. 

In conclusion, given that peripheral irisin itself or factors induced by 
irisin may cross the BBB [62], exogenous irisin administration could be a 
promising alternative therapeutic approach to exercise in PD, especially 
since implementing a frequent exercise regimen in individuals with such 
a disease might be difficult or even risky. Although the safety and 
feasibility of exogenous irisin in humans is unknown, the current evi-
dence is supportive of pursuing research towards development and 
testing of irisin administration for the treatment of PD and other 
neurodegenerative disorders. 
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Nisticò R, et al. Exercise interventions in Alzheimer’s disease: a systematic review 
and meta-analysis of randomized controlled trials. Ageing Res Rev 2021;72: 
101479. 

[56] Dauwan M, Begemann MJH, Slot MIE, Lee EHM, Scheltens P, Sommer IE. Physical 
exercise improves quality of life, depressive symptoms, and cognition across 
chronic brain disorders: a transdiagnostic systematic review and meta-analysis of 
randomized controlled trials. J Neurol 2021;268(4):1222–46. 
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