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Abstract: The emergence and evolution of antibiotic-resistant bacteria is considered a public health
concern. Salmonella is one of the most common pathogens that cause high mortality and morbidity
rates in humans, animals, and poultry annually. In this work, we developed a combination of silver
nanoparticles (AgNPs) with bacteriophage (phage) as an antimicrobial agent to control microbial
growth. The synthesized AgNPs with propolis were characterized by testing their color change
from transparent to deep brown by transmission electron microscopy (TEM) and Fourier-Transform
Infrared Spectroscopy (FTIR). The phage ZCSE2 was found to be stable when combined with AgNPs.
Both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were
evaluated for AgNPs, phage, and their combination. The results indicated that MIC and MBC
values were equal to 23 µg/mL against Salmonella bacteria at a concentration of 107 CFU/mL. The
combination of 0.4× MIC from AgNPs and phage with Multiplicity of Infection (MOI) 0.1 showed
an inhibitory effect. This combination of AgNPs and phage offers a prospect of nanoparticles with
significantly enhanced antibacterial properties and therapeutic performance.

Keywords: AgNPs; antibacterial; antimicrobial; antibiotic-resistant bacteria; green synthesis; phage
therapy; green synthesis; synergetic effect; FTIR; time-killing curve

1. Introduction

Salmonella is one of the most common pathogens with transfer occuring from ani-
mal feces to food, soil, and water. It is considered the second most frequently reported
pathogen that is associated with zoonosis. As a facultative anaerobic Gram-negative,
non-spore-forming, and non-capsulated bacteria, Salmonella belongs to the Enterobacteri-
aceae family [1]. It is responsible for around 150,000 deaths annually. About 93 million
cases are diagnosed yearly with salmonellosis, accompanied by symptoms of gastroen-
teritis, bacteremia, and enteric fever [2]. Antibiotics are still considered the first line of
treatment of Salmonella infection, including ampicillin, amoxicillin, chloramphenicol, and
trimethoprim-sulfamethoxazole. However, due to excessive use of antibiotics in thera-
peutic and industrial applications, multidrug-resistant (MRD) Salmonella is widely spread
and transmitted from animals to humans [3]. Following the spread of antibiotic-resistant
strains, alternatives are sought to limit the resulting medical and economic effects.

Phages are among the promising alternative to antibiotics. Virulent phages are viruses
that infect bacterial cells, produce new virions, and obligatorily kill their hosts. Phages are
the natural enemies of bacteria, without interfering with mammalian and human cells [4,5].
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Their narrow host range enables their specific targeting of bacterial species or sub-strains
in the same species, including Salmonella treatment [6,7]. Compared to antibiotics, phage
isolation and laboratory preparation are time, effort, and cost-effective, yet further efforts
are needed to transfer phage applications from laboratory bench to markets and to increase
their shelf life [8–10]. However, the issue of bacterial resistance development towards
phages could happen during the process of phage treatment [11–14]. Therefore, to improve
phage efficiency, tolerance, and delivery, recent approaches support coupling phages with
other bio-control agents such as antibiotics [15], natural products (e.g., venom, propolis,
and extracted oils) [16], phage purified enzymes (e.g., lysins, endopeptidases, amidases,
and transglycosylases) [17], in addition to syntactic compounds and nanoparticles [18–20].

Another approach is to use antibacterial compounds such as silver, which has been
administrated before as an antimicrobial agent due to its efficiency against Gram-positive
and Gram-negative bacteria [21,22]. AgNPs have growth inhibitory effects on various
multidrug-resistant bacteria including Salmonella [23,24]. Similar to phages, the antimi-
crobial action of AgNPs relies on the recognition of the bacterial cell wall and membrane,
bacterial penetration and damage through inducing the cellular toxicity and oxidative
stress [25]. However, many studies have revealed various concerns regarding unpleasant
side effects of AgNPs on human internal organs such as the lung, liver, and neurons [26,27].
Therefore, it is recommended to apply low concentrations of AgNPs to limit the side effects
on human health and the environment. One common method is to use natural compounds
such as an extract of propolis as a capping agent for AgNPs [28,29]. Propolis is produced
by honeybees and is rich in flavonoids and phenolic acids [30]. In addition, it has many
biological benefits including antimicrobial activity, antioxidant effect, in addition to its
ability to improve the immune function [31,32].

Few studies have investigated the effect of combining the two approaches: phages
with metal nanoparticles. The previous findings were controversial since they reported
that metal nanoparticles such as silver, gold, and copper oxide inactivate T4 phage, indi-
cating that phages are not stable when combined with nanoparticles [33]. Another study
suggested that AgNPs negatively affected a phage’s life cycle because the nanoparticles
interfere with the bacterial host cell and respectively might weaken the infectivity of
phages [34]. Whereas, other studies introduced the combined approach, of C3 phage and
gold nanoparticles (AuNPs), as a promising treatment for Pseudomonas aeruginosa plank-
tonic and biofilm states, with high stability under a broad range of temperature, pH, and
salt concentration [35]. Moreover, other recent research work highlighted the high potential
of green AuNPs and phage combination in eradicating the multi-drug resistant Staphylococ-
cus aureus biofilms [36]. These data represent a gap in understanding the underlying of
mechanism and effect of the phage-NPs combined approach.

Although both phages and AgNPs independently present interesting provisionary
antibacterial implications, they have some limitations. Herein, we hypothesize that by
mixing phage with AgNPs coated with propolis as a natural product, we can ascertain their
bio-control capabilities with low doses of AgNPs and low incidences of resistance. Accord-
ingly, this study amalgamates the activity of the previously isolated virulent phage ZCSE2
with a freshly-made and well-characterized AgNPs to investigate the possible synergetic
effect in controlling the growth and spread of Salmonella. The mixture of phage ZCSE2 and
AgNPs as a treatment will enhance our understanding of phage-nanoparticle stability and
interactions, in addition to providing a potential bio-control agent for various applications.

2. Results and Discussion
2.1. Characterization of AgNPs

In this work, the bio-reduction of AgI ions to form the AgNPs was achieved success-
fully using the propolis extract presented as a bio-reducing agent. The AgNPs formation
was confirmed by the color change of the transparent AgNO3 solution and propolis ex-
traction into deep brown color after 5 h (Figure 1). AgNPs formation has also confirmed
by the measurement of surface plasmon resonance in the resultant nanoparticles [37,38].
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The various phytochemical compounds detected in the propolis extract (phenolic acids,
flavonoids, and terpenoids) could be the reason behind the bio-reduction of the AgI ions
and the capping with the formed AgNPs [39].
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Figure 1. Flask A represents the color changes at time 0 (before) for AgNO3 and propolis extraction, while Flask B represents
the biosynthesis of AgNPs following 5 h (after).

2.2. The UV–Vis Spectrum

The UV–Vis spectrum provided evidence of the formation of AgNPs prepared at
85 ◦C. The maximum absorption at 422 to 430 nm is an indication of surface plasmon
resonance (Figure 2). By contrast, a single peak is visible at room temperature [40]. Bio-
reduction of Ag+ through biomolecules found in the propolis could be the reason behind
this observation [41]. In addition, the solution was diluted by using deionized water
(Figure S6A). The resulting signal were time dependent (Figure S6B) and temperature
dependent (Figure 2). The most optimal temperature, displaying a sharp peak at 422
to 430 nm was 85 ◦C, followed by 55 ◦C. However, the room temperature (25 ◦C) and
above water boiling point (115 ◦C) preparations did not form nanoparticles. In previous
work, the absorbance of biosynthesized AgNPs with propolis showed a similar wavelength
peak from 324 to 449 nm and lower absorbance intensity ~2.25 a.u without dilution [29].
Another study supports λmax of AgNPs, which is biosynthesized by propolis extraction at
424 nm [28].

2.3. Visualization by TEM

The morphology and size of the nanoparticles was examined by using TEM as shown
in Figure 3. The micrographs showed that the biosynthesized AgNPs are oval in shape
with a range of sizes from 2 to 41 nm in diameter, which is within the range of nanoparti-
cles. Figure 3A represents the smart form of core-shell particles of AgNP and Figure 3B
depicts the two different color intensities which indicate the capping process of AgNP
with ethanolic extract of propolis [42]. This capping process is essential to control the size
of AgNPs [43]. It enhances the antibacterial activity and biofilm clearance [44], provides
bio-stability over the course of infection time [45], and most importantly it provides lower
cytotoxicity effect [46]. It was clear that the AgNPs were bound to the capsid and tail fibers
of the phage (Figure 4). This interaction will facilitate the delivery of nanoparticles during
phage binding to specific bacterial receptors.
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2.4. Zeta Potential

The zeta potential of the biosynthesized AgNPs displayed a sharp peak at −22.2 mV
(Figure S4), which indicates that the surface of the AgNPs has a negative charge that
is uniformly distributed in the solution. In addition, because of this negative charge the
AgNPs showed that there was a high stability in the medium due to propolis extraction that
electrostatically stabilized the biosynthesized AgNPs surfaces [47]. One of the important
requirements to realize the use of AgNPs is to predict the interaction between nanoparticles
and macromolecules in the body. For example, DNA carries a negative charge as AgNPs
and this reduces the cytotoxicity of AgNPs in the cells [48]. Moreover, since most plasma
proteins have a negative charge at physiological pH, the negative charge of AgNPs will
provide a low risk of the protein corona [49].

2.5. FTIR Analysis

FTIR is one of the significant tools used to identify the functional groups and the
presence of organic compounds that bind to biosynthesized AgNPs surfaces. The FTIR spec-
trum obtained from AgNPs coated by propolis extraction (Figure S5) displayed the follow-
ing peaks 3385 cm−1 (for hydroxyls [50]), 2996 cm−1 (for stretching vibration (O)CH3 that
found in propolis components [51,52], 2894 cm−1 for the saturated CH stretches), 1644 cm−1

(bonds in carbonyls and carboxy [53]), 1387 cm−1 (heterocyclic compounds (C–O–C) which
is in alkaloids and flavones [54]), 1226 cm−1 (C–O group in hydroxyflavonoids [55]), and
1193 cm−1 (methylene beside the carbonyl group [56]). The FTIR analysis implied that the
biological molecules had been involved in capping and stabilizing AgNPs.

2.6. Disc and Well Diffusion Methods

The antibacterial effect of the AgNPs was tested against pathogenic S. Enteritidis
WT (Platten). Direct spotting provides information on whether the concentration has an
antibacterial effect or not. The diameters of the inhibitory zones of different concentrations
of biosynthesized AgNPs were measured (Table 1). In our previous published work [6],
the antibiotic sensitivity profile for the same strain was conducted and revealed that
the bacterium is resistant to many antibiotics including Cefaclor 30 µg, Clarithromycin
15 µg, Erythromycin 15 µg, Vancomycin 30 µg, Linezolid 30 µg, and Novobiocin 30 µg [6].
However, AgNPs displayed a higher efficiency to inhibit the growth of the bacterial culture.
All experiments were performed in parallel with the use of propolis extract to confirm that
antibacterial activity is due to the biosynthesized AgNPs (Figure S3). AgNO3 solution had
similar antibacterial activity to biosynthesized AgNPs against Salmonella bacteria when
direct spotting, well, and disc diffusion methods are used (Table S2). AgNO3 is used as a
supplier source of Ag+ in the solution because it has antibacterial activity against bacteria
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due to its ability to bind to biomacromolecules such as DNA, RNA, proteins [57,58]. The
antibacterial effect of AgNPs is due to the inner membrane damage without affecting
the outer membrane and the accumulation of reactive oxygen species and intracellular
Ca2+ [59].

Table 1. Zone of inhibition obtained though the direct spotting, disk and well diffusion tests.

Serial Dilution
Dimeter (mm)

Direct Spotting Disk Diffusion Well Diffusion

3% and 1.5% Propolis extract without antibacterial effect 0 0

184 µ/mL of AgNPs antibacterial effect 11 12

92 µg/mL of AgNPs antibacterial effect 10 10

46 µg/mL of AgNPs antibacterial effect 8 10

23 µg/mL of AgNPs antibacterial effect 9 7

11.5 µg/mL of AgNPs without antibacterial effect 8 6~7

2.7. Phage Stability

The Salmonella phage ZCSE2 (MK673511) was characterized in order to determine its
potential treatment to control the growth of Salmonella. The phage displayed high stability
in different environmental conditions including pH and temperature [6]. To the best of
our knowledge, no previous studies were conducted to investigate the stability of phage
with biosynthesized AgNPs. This gap of information limits the possibility of combining
phage therapy with antibacterial use of nanoparticles. Our results showed an in significant
difference between the phage titer before and after incubation for 4 h with the 92 µg/mL
of AgNPs at 37 ◦C (Figure 5). Compared to other viruses including (H3N2) influenza
virus [60] and the chikungunya virus [61], phage ZCSE2 showed a higher stability when
combined with AgNPs. The titer of ZCSE2 with AgNPs was around 3.8 × 106 PFU/mL
and the titer of phage alone was 2.1 × 106 PFU/mL after 4 h at 37 ◦C without a significant
difference (p > 0.05). This stability data cannot be generalized for all phage families since
previous studies showed that high concentrations of AgNPs inactivated T4 phage [33].
Therefore, further work is needed to test the stabilities of different biosynthesized AgNPs
on different phage families. Unfortunately, low-speed centrifugation and filtration can
only remove some of the bacterial debris without reducing the lipopolysaccharides (LPS),
peptidoglycan, and flagella [14] in addition to the different proteins that are produced as
a result of bacterial burst after phage infection. This bacterial debris could interfere with
AgNPs and affect their interaction with phage. For this reason, we used Bradford assay to
predict the total proteins that may be produced and affect the phage/AgNPs interaction
(supplementary data). Therefore, the phage stock was centrifugated at medium speed
(15,300× g for 1 h at 4 ◦C) in order to reduce the amount of these proteins as much as
possible by precipitating the phage and discarding the supernatant that contain most of
these proteins.

2.8. MIC and MBC

As long as the concentration of AgNPs is higher than 23 µg/mL, no bacterial growth
was observed after 24 h. Therefore, the minimum concentration of AgNPs that was able to
inhibit the growth of S. Enteritidis WT (Platten) is 23 µg/mL and it is the same concentration
that was needed to kill the bacteria. This concentration is higher than the concentration
that was used by Shimaa et al. who reported that the values of both MIC and MBC were
equal to 16 µg/mL when they used it against S. Enteritidis bacteria [62]. However, our
reported concentration was significantly lower than the concentration used by Ragaa et al.
who found that the MIC was 1 mg/mL against S. enterica subsp. salamae bacterium [63].
We also studied the synergistic effect of both phage ZCSE2 and AgNPs to inhibit the
growth of S. Enteritidis WT (Platten). For instance, using 0.5× MIC AgNPs with different
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MOIs of ZCSE2 from 1 to 0.01 showed an inhibitory effect. To the best of our knowledge,
this synergetic effect is the first to be reported and proposed a novel approach to control
pathogenic bacteria. The applications of nanoparticles to control MRD bacteria opens the
door for using it as an alternative to antibiotics. This study is the first to discuss the synergy
between biosynthesized sub-lethal dose of AgNPs and phage. Stressing the bacteria under
the effect of the sub-lethal dose of AgNPs enabled them to be lysed easily by phage [64]
even at low concentrations. From the pharmacokinetic aspect, the high phage dosages will
increase its possibility to be detected by the immune system and increase the chance of
its clearance from the human/animal body [65]. By optimizing the combination between
phage therapy and AgNPs, the dosses of both will be minimized and consequently limit
the inflammatory immune responses.
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2.9. Time-Killing Curve

An effective quantitative analysis was conducted to study the pharmacodynamics of
AgNPs, in which the time-killing curves for bacteria were measured as a change in the
optical density for λ = 600 (OD600) [66]. At the first 360 min (6 h), the curves showed that
AgNPs 10 µg/mL had the lowest effect to reduce the bacterial growth, followed by the
combination of AgNPs 10 µg/mL and ZCSE2 at MOI of 0.1, then AgNPs 23 µg/mL, while
the highest effect was observed with the treatment with ZCSE2 at MOI of 0.1. However, a
secondary bacterial growth was observed after the first 6h of infection with the treatment
of phage alone due to bacterial resistance. On the other hand, phage ZCSE2 at MOI of 0.1 in
combination with AgNPs 10 µg/mL were able to inhibit the bacterial growth after 930 min
of the treatment (Figure 6). These results showed the significant difference between using
phage alone and using it in combination with biosynthesized AgNPs. As a result, the data
indicated that phage ZCSE2 alone at MOI 0.1 was able to reduce the bacterial intensity by
1.5 and 0.416 OD600 compared to the control after 330 and 930 min (p < 0.001), respectively.
Nonetheless, the AgNPs alone reduced the bacterial growth by 0.691 and 0.527 OD600
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(p < 0.001) after 330 and 930 min of the experiment, respectively. On the other hand, the
mixture of phage ZCSE2 at MOI 0.1 and 0.4× MIC of AgNPs displayed a reduction of 1.205
and 1.14 OD600 compared to the control (p < 0.001) after 330 and 930 min of the experiment,
respectively. The most interesting observation is that bacterial persistence occurs when the
phage was used alone, while it was defeated when the phage was used in combination
with AgNPs. Overall, there is a significant inhibitory effect when phage ZCSE2 at MOI
of 0.1 combined with AgNPs in a sublethal concentration of 10 µg/mL in comparison to
using AgNPs with the same concentration alone or the phage with the same MOI alone.
Different experiments support these findings in supplementary data.
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Figure 6. Illustrates the Time-Killing curve of S. Enteritidis WT (Platten) with 1× MBC of AgNPs, phage MOI 0.1, AgNPs of
final concentration of 10 µg/mL, and mixture of AgNPs of final concentration of 10 µg/mL and phage MOI 0.1.

3. Materials and Methods
3.1. Preparation of Propolis

The propolis we used in this experiment was collected from the beehive and weighted
as 0.5 g then grounded coarsely by mortar and pestle. The powder was suspended in 50 mL
80% ethanol then placed at 80 ◦C for 4 h before we store the solution at 4 ◦C overnight. The
solution was filtered through 0.45 µm pore membranes filter (Steradisc, Kurabo Co., Ltd.,
Osaka, Japan) to remove any suspended particles then stored at −20 ◦C.

3.2. Biosynthesis of AgNPs

The process of biosynthesis of AgNPs was done by preparing 10 mL of 1 mM silver
nitrate (Techno pharmachem, India) using deionized water. Exactly, 8.5 mg of silver nitrate
was added to 10 mL of deionized water in a beaker and the beaker was covered without any
exposure to the light. Exactly, 10 mL of 3% of pre-prepared propolis was added carefully
to the silver nitrate solution. Then, the solution was left for 5 h on the hot plate with a
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magnetic stirrer at different temperatures (25, 55, 85, and 105 ◦C) to form the nanoparticle.
The nanoparticle formation was confirmed by color change (brown) as a first step.

3.3. Characterization of AgNPs
3.3.1. UV–Vis Spectroscopy

The formation of AgNPs coated by propolis was characterized by the spectropho-
tometer (Jenway 7200 visible spectrophotometer) in the range of 340–800 nm. The resulted
nanoparticles were diluted 10 folds using deionized water then placed in the cuvette, and
the spectrum was measured.

3.3.2. FTIR Analysis

To detect product formation as a result of the interaction among biomolecules found in
the propolis and nano silver particles, the bonds were analyzed by the FTIR spectrum of the
biosynthesized AgNPs (Agilent system Cary 630 FTIR model)in the range of 4000–400 cm−1

at room temperature, as previously described [67].

3.3.3. TEM and Zeta Potential

The size and shape of the biosynthesized AgNPs were investigated by using TEM
at the National Research Center (Cairo, Egypt). The produced AgNPs were put on the
copper grids and left to dry. Then, the sample was placed in TEM (JEOL 1230). The Image
J 1.8v program was used to measure the sizes and perform the magnification. For the
determination of the zeta potential of the AgNPs, Zetasizer (Nano ZS, Malvern, UK) was
used and the raw data were analyzed by Zetasizer software. The results from Zetasizer
were obtained after diluting the sample by 100 folds with deionized water. The zeta
potential of AgNPs was examined at Nawah Scientific Company.

3.4. Antibacterial Effect of AgNPs
3.4.1. Bacterial Culture

This work was done on Salmonella Enteritidis WT (Platten) (S. Enteritidis) that is a gift
from The University of Nottingham (United Kingdom). Stocks were maintained in 20%
(v/v) glycerol at −80 ◦C until needed. Bacterial strains were grown on Tryptone Soya Agar
(TSA; Oxoid, UK) overnight at 37 ◦C. The antibiotic sensitivity test was conducted on this
bacterium before and the bacterium was found to be resistant to eight different classes of
antibiotics “multidrug resistant bacterium” [6,68].

3.4.2. MIC and MBC of AgNps

To determine the MIC, a microbroth dilution method was conducted by following the
procedure described by Prashik et al. [69] by evaluating the visible growth of S. Enteritidis
in the Tryptone Soya Broth (TSB; Oxoid, UK) with some modifications. Briefly, S. Enteritidis
was grown on TSA plates. Then, fresh colonies were harvested to be inoculated in the
TSB, which incubated overnight at 37 ◦C. Ten µL of bacteria was added to 90 µL of clear
TSB and AgNPs. The AgNPs was adjusted to be diluted by two folds in each well with
different concentration from 92 µg/mL to 5.25 µg/mL. After 24 h of incubation, the
MIC was determined where the clear well with the lowest AgNPs concentration was
observed. In each clear well, 10 µL of TSB was withdrawn and added to fresh liquid
media and incubated for another 24 h. After the incubation, the clear well with the lowest
concentration of AgNPs was considered as MBC.

3.4.3. Antibacterial Effect of AgNPs Using Disk and Well Diffusion and Direct Spotting

The antibacterial effect of the AgNPs on Salmonella was determined by three different
methods. First, to predict if the AgNPs have antibacterial activity, direct spotting was
used according to Baldi et al. [70]. Briefly, different concentrations of AgNPs and AgNO3
(184 µg/mL, 92 µg/mL, 46 µg/mL, 23 µg/mL, 11.5 µg/mL, 5.75 µg/mL) were prepared
and directly spotted on an overlay of S. Enteritidis on TSA plate. The second method
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that was used is disc diffusion according to Ajitha et al. with slight modifications [71].
Briefly, a day culture of the bacteria was prepared by adding a single colony to 500 µL
TSB and incubated at 37 ◦C for 2 h. Then, the bacterial culture was swapped on TSA
plates and sterile disks were added directly on the surface of TSA plates that have the
bacterial culture. Then, the serial dilutions of NPs 10 µL were spotted on the disks. The
third method that was used is the well diffusion method according to Gavade et al. [31].
Briefly, different wells were formed in TSA plates that have the bacterial culture, then 20 µL
of different concentrations of AgNPs and AgNO3 were added. Propolis at two different
concentrations (3% and 1.5%) were also used throughout the experiment as a negative
control. The inhibition zones were assessed by measuring the diameters of the areas that
show no bacterial growth.

3.5. Phage Combination with AgNPs
3.5.1. Phage Stability with AgNPs

The Myoviridae phage ZCSE2 with ID MK673511 was used in combination with AgNPs
to investigate possible synergetic effects. To examine the stability of phage ZCSE2, we
added 100 µL of phage at 106 PFU/mL to an Eppendorf containing 100 µL of AgNPs
(184 µg/mL) to reach to 92 µg/mL of AgNPs as a final concentration and incubated it for
four hours at 37 ◦C in shaking incubator. The phage titer was determined before and after
incubation to test its stability by double-agar overlay plaque assays [32]. Briefly, 100 µL
of the bacterial culture was added to 4 mL of molten 0.7% (Bacto) top agar (≈55 ◦C), and
poured on the top of TSA plates. After 15 min, 10 µL of 10-fold serial-diluted phage and
phage mixed with biosynthesis AgNPs were spotted on the bacterial lawn. The plates were
left until the spots were dried and incubated upside down overnight at 37 ◦C.

3.5.2. MIC for Phage and AgNPs

The MIC was conducted as described above with different phage titers from 106 PFU/mL
to lower than 101 PFU with 0.5× MIC of AgNPs and in another experiment without AgNPs
to measure the MIC for the phage alone. The bacterial initial concentration to measure the
MIC was 1.5 × 107 CFU/mL to achieve a wide range of MOIs, from 0.1 to 0.000001.

3.5.3. In Vitro Time-Kill Assay

A cuvette containing 1 mL of S. Enteritidis in TSB at 0.35 OD600 was used as a positive
control. Another four cuvettes; one containing the bacteria with the phage at MOI of
0.1, one containing the bacteria and AgNPs with final concentration of 10 µg/mL, one
containing the bacteria and AgNPs with final concentration of 23 µg/mL, and the last
one containing phage ZCSE2 MOI 0.1, AgNPs with final concentration of 10 µg/mL and
bacteria were used. In addition, a negative control (fresh TSB without bacterial growth)
was used as a blank at the time point zero. All cuvettes were incubated at 37 ◦C with
gentle shaking for 930 min. During the incubation period the samples were analyzed by
measuring the OD600 at defined time points (0, 30, 60, 90, 150, 180, 210, 240, 300, 330, 390,
450, 540, 600, 720, and 930 min).

4. Conclusions

This study provides a novel approach by using a combination of phage and nanopar-
ticles as an alternative to antibiotics to get the maximum synergistic effect to control
pathogenic bacteria. The biosynthesized AgNPs were produced from silver nitrate and
propolis extract, in which they were characterized through a color change, UV–Vis spec-
trum, Zeta potential, FTIR, and TEM. The antibacterial effect of AgNPs alone and in
combination with ZCSE2 against Salmonella was evaluated by measuring MIC, MBC, time-
killing curve, bacterial survival and reduction. The data showed that the combination of
AgNPs and phage ZCSE2 reduced the bacterial growth significantly in comparison with
other treatments and this was clear when the bacterial turbidity after 15.5 h showed a
high reduction in OD600 for the treatment of both phage and AgNPs in comparison to the
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phage treatment. Our results suggest that the combination of phage and nanoparticles has
a potential for phage applications to control bacterial infections.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antibiotics10060678/s1, Figure S1: Shows the effect of using ZCSE2, AgNPs, and the mixture
of both of them on bacterial growth, Figure S2: Shows Time-Killing curve of S. Enteritidis with phage
at MOI 0.03, AgNPs of final concentration of 10 µg/mL, and mixture of AgNPs of final concentration
of 10 µg/mL and phage MOI 0.03, Figure S3: Shows the comparison between the inhibition zone of
AgNPs in disc diffusion, Figure S4: Shows the zeta potential distribution for biosynthesized AgNPs
with a single peak at 22.2mV, Figure S5: Represents FTIR spectrum of biosynthesized AgNPs, Table
S1: Shows the values of released proteins after using AgNPs, phage, and the combination of both of
them, Table S2: Shows the inhibition zones resulting from direct spotting, disk and well diffusion
tests for AgNO3 solution.
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