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Abstract
Analyzing the mathematical models involving Itô integral, in particular in science and engi-
neering has receivedmuch attention, and the reason for this issue is the randomness and lack of
access to the exact answer of this type of models. For this purpose, in this paper, the approx-
imate solution of two dimensional (2-D) stochastic Volterra–Fredholm integral equations
(SVFIEs) based on the operational matrix method and orthonormal Bernoulli polynomials
(OBP) is investigated. Some results and convergence analysis are also presented. Finally, by
presenting three examples and reviewing the results and numerical comparisons, we showed
that the proposed method has an excellent performance.

Keywords Orthonormal Bernoulli polynomials · Stochastic Volterra–Fredholm integral
equations · Itô integral · Error analysis · Operational matrix

Mathematics Subject Classification 11B68 · 91G30 · 65C30 · 65R10 · 45B05 · 45D05

Introduction and Basic Definitions

Mathematical models can greatly assist researchers around the world. Many researchers
employed theoretical frameworks and numerical simulations to survey the manner of trans-
mission of different infectious diseases. Recently, Babei et al. [1] examined a stochastic
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model for the transmission of Coronavirus, which is a recent major crisis in many commu-
nities. Ganji et al. [2] presented a mathematical model of a brain tumor. This model was an
extension of a simple two-dimensional mathematical model of glioma growth and diffusion.
In [3] the Klein-Gordon equation (KGE) which has many scientific applications such as
quantum field theory, nonlinear optics and solid state physics is investigated. Jafari et al. [4],
examined the population dynamics model, including the hunting-hunting problem where the
logistics equation, is generalized using the fractional operator.

In many cases, real problems are dependent on some random factors which were ignored
due to poor computational power. By increasing the computational power in recent years,
these problems are modeled by various types of stochastic equations. Stochastic processes
occur in many real issues such as control systems [5], biological population growth [6],
biology and medicine [7]. In recent decades, due to the importance of stochastic differential
equations (SDE) and stochastic integral equations (SIE) in modeling programs where there
is considerable uncertainty, scientists have studied the stochastic process and its applications
[8–12].

The 2D Volterra–Fredholm integral equations are an important class of multi dimensional
integral equations which arise in various physical and biological models. These equations
can be rarely solved exactly and computational complexity of mathematical operations is
important obstacle for solving high dimensional stochastic integral equations. Therefore
obtaining their numerical solutions have attracted the attention of researchers in numerical
analysis branch and some numerical approaches have been presented to solve stochastic
integral equations. Such as: operational matrix method based on hat functions [13] and
block-pulse [14]. Also, some studies have been performed on different types of stochastic
differential integral equations [15–17].

Until now, the number of published papers on numerical solution of multi dimensional
stochastic integral equations are very few. Therefore, in this framework this study deals with
the numerical solution of 2-D SVFIEs in the following form

z(u, v) = g(u, v) +
∫ 1

0

∫ 1

0
k1(u, v, e, w)z(e, w)dwde

+
∫ u

0

∫ v

0
k2(u, v, e, w)z(e, w)dwde

+
∫ u

0

∫ v

0
k3(u, v, e, w)z(e, w)dB(w)dB(e),

(1.1)

where (u, v) ∈ [0, 1] × [0, 1]. In this equation, g(u, v) and ki (u, v, e, w) for i = 1, 2, 3
are known functions and z(u, v) are unknown functions that we try to determine with our
numerical method and B = {B(t), t ≥ 0} is a Brownian process. Also in this equation∫ u
0

∫ v

0 k3(u, v, e, w)z(e, w)dB(w)dB(e) is 2-D Itô integral.

This study applies the operational matrix method based on the OBP to obtain the approx-
imate solution of the SVFIEs and the analysis of convergence of the proposed method is
discussed.

Itô Integral

In this section, we briefly introduce the Itô integral and its properties. The reader can refer
to references [8,16,17] for more information.
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Definition 1.1 [8,18] For t ∈ [0, T ], B(t) is called the Brownian motion, if it satisfies the
following properties:

i. For t ≥ 0, B(t) is a continuous function of t .
ii. For t > t0, B(t) − B(t0), is independent of the past.
iii. B(t)−B(t0) has normal distribution i.e., E(B(t)−B(t0)) = 0 and var(B(t)−B(t0)) =

t − t0.

Remark 1.2 By using property (ii), we consider B(0) = 0 [16].

Definition 1.3 Assume now that g ∈ �(U , V ) and ϕm is a sequence of elementary functions
which satisfies in the following form

E

[∫ V

U
(g(v, l) − ϕm(v, l))2 dv

]
= 0, as m → ∞, (1.2)

then, the Itô integral of g [17] is defined as follows:
∫ V

U
g(v, l)dBv(l) = lim

m→∞

∫ V

U
ϕm(v, l)dBv(l). (1.3)

Property 1.4 One of the valuable properties of Itô integral is as follows [17]:
∫ v

0
g(u)dBu = g(v)Bv −

∫ v

0
B(u)dgu . (1.4)

2-D Orthonormal Bernoulli Polynomials

Definition 1.5 The Bernoulli polynomial of order m is defined as follows [19]:

m∑
i=0

(m + 1)!
i !(m + 1 − i)! Bi (t) = (m + 1)tm . (1.5)

One of the features of polynomials in the finite-dimensional, that makes them effective in
numerical methods is their orthogonality. But Bernoulli polynomials are not orthogonal,
despite their very useful properties [19]. Using Gram-Schmidt orthogonalization process,
these polynomials can be orthogonalized as defined below:

Definition 1.6 The orthonormal Bernoulli polynomial of order m is defined as follows:

Bm(t) = √
2m + 1

m∑
i=0

(−1)i
(

m

i

)(
2m − i

m − i

)
tm−i , m = 0, 1, 2, . . . . (1.6)

Therefore, according to the orthogonal property, we will have:

∫ 1

0
Bi (t)B j (t)dt =

{
1, i = j,

0, otherwise.
(1.7)

In this case, we express a set of OBP as follows:

B(u) = [B0(u), B1(u), . . . , Bm(u)]T . (1.8)
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Definition 1.7 2-D orthonormal Bernoulli polynomial of order m, n is defined as follows:

Bm,n(u, v) = Bm(u)Bn(v) m, n = 0, 1, 2, . . . , (1.9)

which applies to the following property:
∫ 1

0

∫ 1

0
Bm,n(u, v)Bp,q(u, v)dudv =

{
1, m = p, n = q,

0, otherwise.
(1.10)

Definition 1.8 The 2-D OBP vector B(u, v) is defined as:

B(u, v) = [B0,0(u, v), B0,1(u, v), . . . , B0,m(u, v), . . . , Bm,0(u, v), Bm,1(u, v), . . . , Bm,m

(u, v)]T , (1.11)

or

B(u, v) = B(u) ⊗ B(v), (1.12)

where B(u) and B(v) are one-dimensional OBP vector and ⊗ is the Kronecker product.

Assume now that B(u) = [B0(u), B1(u), . . . , Bm(u)]T . Then, by using Eq. (1.6) we
obtain

B(u) = ATm(u), (1.13)

where

Tm(u) = [1, u, . . . , um]T , (1.14)

and A(m+1)×(m+1) is signified by

A =

⎛
⎜⎜⎜⎜⎜⎝

(−1)0
(0
0
)(0
0
)

0 . . . 0

(−1)1
√
3
(1
1
)(1
0
)

(−1)0
√
3
(1
0
)(2
1
)

. . . 0
.
.
.

.

.

.
. . .

.

.

.

(−1)m√
2m + 1

(m
m

)(m
0
)

(−1)m−1√2m + 1
( m
m−1

)(m+1
1

)
. . . (−1)0

√
2m + 1

(m
0
)(2m

m
)

⎞
⎟⎟⎟⎟⎟⎠

. (1.15)

Since det(A) =| A |�= 0, therefore:

Tm(u) = A−1
B(u). (1.16)

If B(u) = ATm(u) and B(v) = ATm(v), then:

B(u, v) = B(u) ⊗ B(v)

= ATm(u) ⊗ ATm(v)

= (A ⊗ A)(Tm(u) ⊗ Tm(v))

= ÂTm(u, v),

(1.17)

where

Tm(u, v) = [1, v, . . . , vm, u, uv, . . . , uvm, . . . , um, umv, . . . , umvm]T . (1.18)

We can approximate the any function of two variables in the interval � = [0, 1] × [0, 1] as
follows:

f (u, v) 	 fm(u, v) =
m∑

i=0

m∑
j=0

Bi (u)ci j B j (v) = B
T (u)cB(v), (1.19)
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where c = [ci j ](m+1)×(m+1) and

ci j =
∫ 1

0

∫ 1

0
Bi (u) f (u, v)B j (v)dvdu, i, j = 0, 1, . . . , m. (1.20)

By doing calculations, it can easily be shown that:

f (u, v) 	 CT (B(u) ⊗ B(v)):=CT
B(u, v), (1.21)

where C is defined as follows:

C = [c00, c01, . . . , c0m, c10, c11, . . . , c1m, . . . , cm0, cm1, . . . , cmm]T .

Similarly, an arbitrary function k(r , s, e, w) is estimated via 2-D OBP as:

k(r , s, e, w) 	 B
T (r , s)KB(e, w) = B

T (e, w)K T
B(r , s), (1.22)

where K is a matrix of order (m + 1)2 × (m + 1)2.

Some Properties of Operational Matrices

Assume that B(u) = [B0(u), B1(u), . . . , Bm(u)]T . Then, we conclude that

∫ 1

0
B(u)BT (u)du =

∫ 1

0

⎛
⎜⎜⎜⎝

B0(u)B0(u) B0(u)B1(u) . . . B0(u)Bm(u)

B1(u)B0(u) B1(u)B1(u) . . . B1(u)Bm(u)
...

...
. . .

...

Bm(u)B0(u) Bm(u)B1(u) . . . Bm(u)Bm(u)

⎞
⎟⎟⎟⎠ du, (2.1)

therefore: ∫ 1

0
B(u)BT (u)du = I(m+1)×(m+1). (2.2)

By performing calculations from Eqs. (1.12) and (2.2), we deduce that
∫ 1

0

∫ 1

0
B(u, v)BT (u, v)dudv = I ⊗ I = Î . (2.3)

Theorem 2.1 Assume now thatB(u) be the OBP vector. Consequently, the operational matrix
of integration has the following form:∫ u

0
B(t)dt 	 PB(u), (2.4)

where P = AM A−1. Here, A is given in Eq. (1.15) and M is defined by:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0

0 0
1

2
. . . 0

...
...

... . . .
...

0 0 0 . . .
1

m
0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.5)
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Proof By performing calculations, the result can be easily obtained. 
�
Theorem 2.2 The operational matrix of integration based of integer order on the 2-D OBP
vector defined in Eq. (1.11) for mixed variables is as follows:

∫ u

0

∫ v

0
B(s, t)dsdt = P̂B(u, v), (2.6)

where P̂ = P ⊗ P.

Proof From Eq. (2.7) we have
∫ u

0

∫ v

0
B(s, t)dsdt =

∫ u

0

∫ v

0
(B(s) ⊗ B(t)) dsdt

=
(∫ u

0
B(s)ds

)
⊗

(∫ v

0
B(t)dt

)

= (PB(u)) ⊗ (PB(v))

= (P ⊗ P) (B(u) ⊗ B(v))

= P̂B(u, v).


�
Theorem 2.3 Assume now thatB(v) be OBP vector. Consequently, the stochastic operational
matrix of integration based on the OBP can be defined in the following form:

∫ u

0
B(v)dB(v) 	 QB(u), (2.7)

where Q = AE A−1, A is given in Eq. (1.15) and E is defined as:

E =

⎛
⎜⎜⎜⎜⎜⎝

B(0.5) 0 . . . 0 0

0
3

4
B(0.5) − 1

2
B(0.25) . . . 0 0

...

0 0 . . . 0 (1 − m

4
)B(0.5) − m

2m B(0.25)

⎞
⎟⎟⎟⎟⎟⎠

. (2.8)

Proof We have:

∫ u

0
Tm(v)dB(v) =

⎛
⎜⎜⎜⎜⎜⎜⎝

∫ u
0 dB(v)∫ u
0 vdB(v)

...∫ u
0 vmdB(v)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

B(u)

uB(u) − ∫ u
0 B(v)dv
...

umB(u) − ∫ u
0 mvm−1B(v)dv

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1
u
...

um

⎞
⎟⎟⎟⎠B(u) −

⎛
⎜⎜⎜⎝

0∫ u
0 B(v)dv

...∫ u
0 mvm−1B(v)dv

⎞
⎟⎟⎟⎠

:=(δ) = (δ0, δ1, . . . , δm)T ,
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where

δi = uiB(u) −
∫ u

0
ivi−1B(v)dv, i = 0, 1, . . . , m. (2.9)

Now, by approximating the integral in Eq. (2.9) in sense of trapezoidal rule for 0,
u

2
, u, with

h = u

2
one recovers

δi = uiB(u) −
(u

4

(
0 + 2i(

u

2
)i−1B(

u

2
) + iui−1B(u)

))
. (2.10)

Therefore:

δi =
[
(1 − i

4
)B(u) − i

2i
B(

u

2
)

]
ui , i = 0, 1, . . . , m. (2.11)

We approximate B(u) and B( u
2 ), 0 ≤ v ≤ 1, by B(0.5) and B(0.25), respectively. In other

words

∫ u

0
Tm (v)dB(v) 	

⎛
⎜⎜⎜⎜⎜⎜⎝

B(0.5) 0 . . . 0 0

0
3

4
B(0.5) − 1

2
B(0.25) . . . 0 0

.

.

.

0 0 . . . 0 (1 − m

4
)B(0.5) − m

2m B(0.25)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1
u
.
.
.

um

⎞
⎟⎟⎟⎠

:=ETm (u).

(2.12)

By using Eq. (1.13) we can write∫ u

0
B(v)dB(v) = A

∫ u

0
T (v)dB(v). (2.13)

Furthermore, by inserting Eq. (2.12) into Eq. (2.13) it results:∫ u

0
B(v)dB(v) = AETm(u) = AE A−1

B(u):=QB(u). (2.14)


�
To obtain B(0.5) and B(0.25), in Eq. (2.12) we apply the Definition (1.1), where B(t) has
normal distribution such that:

B(t) − B(t0) 	 √
t − t0N (0, 1), t < t0. (2.15)

Now, assume that δt = T
L , for some L ∈ Z

+ and write Bk for denoting B(tk) with tk = kδt .
Remark (1.2) says that B(0) = 0 and Definition (1.1) states

Bk = Bk−1 + dBk, k = 0, 1, . . . , L, (2.16)

so that dBk; k = 0, 1, . . . , L are independent random variable of the form
√

δt N (0, 1) [20].

Theorem 2.4 The stochastic operational matrix of integration based of integer order on the
2-D OBP vector defined in Eq. (1.11) is as follows:∫ u

0

∫ v

0
B(s, t)dB(s)dB(t) = Q̂B(u, v), (2.17)

where Q̂ = Q ⊗ Q.
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Proof From Eq. (2.14) we have

∫ u

0

∫ v

0
B(s, t)dB(s)dB(t) =

∫ u

0

∫ v

0
(B(s) ⊗ B(t)) dB(s)dB(t)

=
(∫ u

0
B(s)dB(s)

)
⊗

(∫ v

0
B(t)dB(t)

)

= (QB(u)) ⊗ (QB(v))

= (Q ⊗ Q) (B(u) ⊗ B(v))

= Q̂B(u, v).


�

Theorem 2.5 Assume now that C(m+1)2×1 is an arbitrary vector. The operational matrix of
product Ĉ(m+1)2×(m+1)2 using 2-D OBP can be given as follows:

B(u, v)B(u, v)T C 	 ĈB(u, v). (2.18)

Proof For the first one, from Eq. (1.17) it follows

B(u, v)B(u, v)T C = ÂTm(u, v)B(u, v)T C

= Â(

m∑
i=0

m∑
j=0

ci j Bi j (u, v),

m∑
i=0

m∑
j=0

ci jvBi j (u, v), . . . ,

m∑
i=0

m∑
j=0

ci jv
m Bi j (u, v), . . . ,

m∑
i=0

m∑
j=0

ci j u
m Bi j (u, v),

m∑
i=0

m∑
j=0

ci j u
mvBi j (u, v), . . . ,

m∑
i=0

m∑
j=0

ci j u
mvm Bi j (u, v))T .

(2.19)

Now, we approximate all functions ukvt Bi j (u, v) for k, t = 0, 1, . . . , m by 2-D OBP:

ukvt Bi j (u, v) =
m∑

p=0

m∑
q=0

skt,i j
pq Bpq(u, v) = ST

kt,i jB(u, v), (2.20)

where

Skt,i j = [skt,i j
00 , skt,i j

01 , . . . , skt,i j
0m , skt,i j

10 , skt,i j
11 , . . . , skt,i j

1m , . . . , skt,i j
m0 , skt,i j

m1 , . . . , skt,i j
mm ]T .

(2.21)

Furthermore, for p, q = 0, 1, . . . , m and k, t, i, j = 0, 1, . . . , m we deduce that

skt,i j
pq =

∫ 1

0

∫ 1

0
ukvt Bi j (u, v)Bpq(u, v)dudv. (2.22)
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Therefore:
m∑

i=0

m∑
j=0

ci j u
kvt Bi j (u, v) =

m∑
i=0

m∑
j=0

ci j (

m∑
p=0

m∑
q=0

skt,i j
pq Bpq(u, v))

=
m∑

p=0

m∑
q=0

Bpq(u, v)(

m∑
i=0

m∑
j=0

ci j s
kt,i j
pq )

= B(u, v)T Ŝkt C,

(2.23)

where Ŝkt is an (m + 1)2 × (m + 1)2 matrix, which is as follows:

Ŝkt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

skt,00
00 skt,01

00 . . . skt,0m
00 , . . . skt,m0

00 skt,m1
00 . . . skt,mm

00

skt,00
01 skt,01

01 . . . skt,0m
01 , . . . skt,m0

01 skt,m1
01 . . . skt,mm

01

...
...

. . .
...

...
...

...
. . .

...

skt,00
0m skt,01

0m . . . skt,0m
0m , . . . skt,m0

0m skt,m1
0m . . . skt,mm

0m

...
...

. . .
...

...
...

...
. . .

...

skt,00
m0 skt,01

m0 . . . skt,0m
m0 , . . . skt,m0

m0 skt,m1
m0 . . . skt,mm

m0

skt,00
m1 skt,01

m1 . . . skt,0m
m1 , . . . skt,m0

m1 skt,m1
m1 . . . skt,mm

m1

...
...

. . .
...

...
...

...
. . .

...

skt,00
mm skt,01

mm . . . skt,0m
mm , . . . skt,m0

mm skt,m1
mm . . . skt,mm

mm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.24)

Now, we define Ekt = Ŝkt C where:

Ekt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑m
i=0

∑m
j=0 ci j s

kt,i j
00∑m

i=0
∑m

j=0 ci j s
kt,i j
01

...

∑m
i=0

∑m
j=0 ci j s

kt,i j
0m

...

∑m
i=0

∑m
j=0 ci j s

kt,i j
m0∑m

i=0
∑m

j=0 ci j s
kt,i j
m1

...

∑m
i=0

∑m
j=0 ci j s

kt,i j
mm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.25)

Consequently, by defining Ê = [E00, E01, . . . , E0m, E10, E11, . . . , E1m, . . . , Em0,

Em1, . . . , Emm], we elicit
B(u, v)B(u, v)T C = ÂÊB(u, v):=ĈB(u, v). (2.26)


�
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Method of Solution

Hereunder, we employ the operational matrix method based on 2-D OBP for solving Eq.
(1.1). For this purpose we expand z(u, v), g(v, u) and ki (u, v) for i = 1, 2, 3 with 2-D OBP
so that:

z(u, v) 	 zm(u, v) = Z T
B(u, v), (3.1)

g(u, v) 	 gm(u, v) = GT
B(u, v), (3.2)

ki (u, v, e, w) 	 B
T (u, v)KiB(e, w), i = 1, 2, 3, (3.3)

with Z , G, B(u, v), K1 , K2 and K3 as defined in the previous section. We will now examine
the integrals in Eq. (1.1), respectively. In this way we will have:

∫ 1

0

∫ 1

0
k1(u, v, e, w)z(e, w)dwde =

∫ 1

0

∫ 1

0
B

T (u, v)K1B(e, w)BT (e, w)Zdwde

= B
T (u, v)K1

∫ 1

0

∫ 1

0
B(e, w)BT (e, w)dwdeZ

= B
T (u, v)K1 Î Z . (3.4)

For the second integral in Eq. (1.1) we have:
∫ u

0

∫ v

0
k2(u, v, e, w)z(e, w)dwde =

∫ u

0

∫ v

0
B

T (u, v)K2B(e, w)BT (e, w)Zdwde

= B
T (u, v)K2

∫ u

0

∫ v

0
B(e, w)BT (e, w)Zdwde

= B
T (u, v)K2

∫ u

0

∫ v

0
ẐB(e, w)dwde

= B
T (u, v)K2 Ẑ

∫ u

0

∫ v

0
B(e, w)dwde

= B
T (u, v)K2 Ẑ P̂B(u, v).

(3.5)

Similarly:
∫ u

0

∫ v

0
k3(u, v, e, w)z(e, w)dB(w)dB(e)

=
∫ u

0

∫ v

0
B

T (u, v)K3B(e, w)BT (e, w)ZdB(w)dB(e)

= B
T (u, v)K3

∫ u

0

∫ v

0
B(e, w)BT (e, w)ZdB(w)dB(e)

= B
T (u, v)K3

∫ u

0

∫ v

0
ẐB(e, w)dB(w)dB(e)

= B
T (u, v)K3 Ẑ

∫ u

0

∫ v

0
B(e, w)dB(w)dB(e)

= B
T (u, v)K3 Ẑ Q̂B(u, v).

(3.6)

By placing Eq. (3.1) to Eq. (3.6) in Eq. (1.1), we have:

B
T (u, v)Z = B

T (u, v)G + B
T (u, v)K1 Î Z + B

T (u, v)K2 Ẑ P̂B(u, v)

+B
T (u, v)K3 Ẑ Q̂B(u, v). (3.7)
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To calculate the unknown coefficients Z from the above equation, we use suitable col-
location points. Thus Eq. (3.7) becomes a linear system with (m + 1)2 equations and
(m + 1)2 unknowns. After calculating the unknown coefficients with the help of Equation
z(u, v) = B

T (u, v)Z , we can get the approximate answer of the equation.

Some Results and Convergence Analysis

Theorem 4.1 Suppose that zm(u) = Z T
B(u) where Z = [z0, z1, . . . , zm]T , is an approxi-

mation of a continuous function z(u) on [0, 1] by the 1-D OBP. Then, the coefficients zr for
r = 0, 1, .., m are bounded as follows:

| zr |≤ �r , (4.1)

where

�r = ρ
√
2r + 1

r∑
l=0

(
r

l

)(
2r − l

r − l

)
, (4.2)

and ρ is an arbitrary constant such that | z(u) |≤ ρ.

Proof Using the OBP, z(u) can be approximated as

z(u) = zm(u) =
m∑

r=0

zr Br (u),

where zr can be determined by

zr =
∫ 1

0
z(u)Br (u)du =

∫ 1

0
z(u)

√
2r + 1

r∑
l=0

(−1)l
(

r

l

)(
2r − l

r − l

)
ur−ldu

= √
2r + 1

r∑
l=0

(−1)l
(

r

l

)(
2r − l

r − l

) ∫ 1

0
z(u)ur−ldu.

(4.3)

Since the function z(u) is continuous on [0, 1], then
∃ρ > 0, ∀u ∈ [0, 1], | z(u) |< ρ.

Thus, we will have:

| zr |≤ ρ
√
2r + 1

r∑
l=0

(−1)l
(

r

l

)(
2r − l

r − l

)
. (4.4)


�
Theorem 4.2 Suppose that zm(u) = Z T

B(u) is an approximation of a continuous function
z(u) on [0, 1] by the 1-D OBP. Then, the error bound is as follows:

‖ z(u) − zm(u) ‖2≤
( ∞∑

i=m+1

�2
i

)1

2
, (4.5)

which � is presented in Eq. (4.2).
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Proof Suppose that z(u) = ∑∞
i=0 zi Bi (u) and zm(u) = ∑m

i=0 zi Bi (u). Therefore:

z(u) − zm(u) =
∞∑

i=m+1

zi Bi (u). (4.6)

Since
∫ 1
0 Bi (u)B j (u)du = δi j , then:

‖ z(u) − zm(u) ‖22 =
∫ 1

0
|z(u) − zm(u)|2du

=
∫ 1

0
|

∞∑
i=m+1

zi Bi (u)|2du

=
∞∑

i=m+1

z2i

≤
∞∑

i=m+1

�2
i .

(4.7)


�
Theorem 4.3 Suppose fm(u, v) = Z T

B(u, v) is the best approximation for the function
f (u, v) by the 2-D OBP. In this case, we have

‖ f (u, v) − fm(u, v) ‖2= O(
1

(m + 1)!22m+1 ), (4.8)

which means that if m −→ ∞, then fm(u, v) −→ f (u, v). Here, O is a big-O notation.

Proof See [21]. 
�
Note 4.4 By an argument similar to Theorem (4.3) , we have:

‖ f (u, v) − fm(u, v) ‖2≤ ρ

(m + 1)!22m+1 . (4.9)

Theorem 4.5 Suppose u ∈ [0,∞). In this case, we have

P(M(v) ≥ u) = 2√
2π

∫ ∞
u√
v

e
−	2

2 d	 = 2

(
1 − 
(

u√
v
)

)
, (4.10)

where M(v) = sup0≤r<vB(r), P is a probability function and 
 is cumulative standard
normal distribution function.

Proof See [22]. 
�
Theorem 4.6 Let z(u, v) and zm(u, v) are the exact and 2-D OBP approximate solution of
Eq. (1.1). Also let gm(u, v) and ki,m(u, v, e, w) are the 2-D OBP of g(u, v) and ki (u, v, e, w)

for i = 1, 2, 3, respectively. Also assume that:

(i) ‖z‖2 ≤ α,

(ii) ‖kp‖2 ≤ βi for i = 1, 2, 3,
(iii) B(u, v) = supu∈[0,1]B(u)supv∈[0,1]B(v).
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Then, we have:

‖z − zm‖2

≤
ρ

(m + 1)!22m+1 (1 + 2α + αB(u, v))

1 −
(

(β1 + ρ

(m + 1)!22m+1 ) + (β2 + ρ

(m + 1)!22m+1 ) + B(u, v)(β3 + ρ

(m + 1)!22m+1 )

) .

(4.11)

Proof We have

z(u, v) = g(u, v) +
∫ 1

0

∫ 1

0
k1(u, v, e, w)z(e, w)dwde

+
∫ u

0

∫ v

0
k2(u, v, e, w)z(e, w)dwde

+
∫ u

0

∫ v

0
k3(u, v, e, w)z(e, w)dB(w)dB(e).

(4.12)

The approximate equation of Eq. (4.12) is:

zm(u, v) = gm(u, v) +
∫ 1

0

∫ 1

0
k1m(u, v, e, w)zm(e, w)dwde

+
∫ u

0

∫ v

0
k2m(u, v, e, w)zm(e, w)dwde

+
∫ u

0

∫ v

0
k3m(u, v, e, w)zm(e, w)dB(w)dB(e).

(4.13)

Therefore, from Eqs. (4.12) and (4.13) we have:

z(u, v) − zm(u, v) = g(u, v) − gm(u, v)

+
∫ 1

0

∫ 1

0
k1(u, v, e, w)z(e, w) − k1m(u, v, e, w)zm(e, w)dwde

+
∫ u

0

∫ v

0
k2(u, v, e, w)z(e, w) − k2m(u, v, e, w)zm(e, w)dwde

+
∫ u

0

∫ v

0
k3(u, v, e, w)z(e, w)

−k3m(u, v, e, w)zm(e, w)dB(w)dB(e). (4.14)

We now estimate Eq. (4.14) by 2D-integrals mean value theorem for every (u, v) ∈ [0, 1]2
and (u, v, e, w) ∈ [0, 1]4. Therefore:

‖z − zm‖2 = ‖g − gm‖2 + ‖k1z − k1m zm‖2 + uv‖k2z − k2m zm‖2
+ B(u)B(v)‖k3z − k3m zm‖2. (4.15)

On the other hand, for i = 1, 2, 3

‖ki z − kim zm‖2 ≤ ‖ki‖2‖z − zm‖2 + ‖ki − kim‖2 (‖z − zm‖2 + ‖z‖2) . (4.16)
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By assumptions (i) and (ii) for i = 1, 2, 3 and Note (4.4) we obtain:

‖ki z − kim zm‖2 ≤ ‖ki‖2‖z − zm‖2 + ‖ki − kim‖2 (‖z − zm‖2 + ‖z‖2)
≤ βi‖z − zm‖2 + ρ

(m + 1)!22m+1 (‖z − zm‖2 + α)

=
(

βi + ρ

(m + 1)!22m+1

)
‖z − zm‖2 + α.ρ

(m + 1)!22m+1 .

(4.17)

Substituting Eq. (4.17) in Eq. (4.15) and using Note (4.4) implies that:

‖z − zm‖2 ≤ ρ

(m + 1)!22m+1 +
[(

β1 + ρ

(m + 1)!22m+1

)
‖z − zm‖2 + α.ρ

(m + 1)!22m+1

]

+ uv

[(
β2 + ρ

(m + 1)!22m+1

)
‖z − zm‖2 + α.ρ

(m + 1)!22m+1

]

+ B(u)B(v)

[(
β3 + ρ

(m + 1)!22m+1

)
‖z − zm‖2 + α.ρ

(m + 1)!22m+1

]
.

(4.18)

Therefore, we deduce that

‖z − zm‖2 ≤ ρ

(m + 1)!22m+1

+
[(

β1 + ρ

(m + 1)!22m+1

)
supe≤u,w≤v‖z(e, w) − z(e, w)m‖2

+ α.ρ

(m + 1)!22m+1

]
+ 1 × 1 ×

[(
β2 + ρ

(m + 1)!22m+1

)
supe≤u,w≤v‖z(e, w)

−z(e, w)m‖2 + α.ρ

(m + 1)!22m+1

]

+ B(u, v)

[(
β3 + ρ

(m + 1)!22m+1

)
supe≤u,w≤v‖z(e, w) − z(e, w)m‖2

+ α.ρ

(m + 1)!22m+1

]
.

(4.19)

So:

‖z − zm‖2 ≤
ρ

(m + 1)!22m+1 (1 + 2α + αB(u, v))

1 −
(

(β1 + ρ

(m + 1)!22m+1
) + (β2 + ρ

(m + 1)!22m+1
) + B(u, v)(β3 + ρ

(m + 1)!22m+1
)

) .

(4.20)

Note 4.7 By an argument similar to Theorem (4.6), we have:

‖ z(u, v) − zm(u, v) ‖2= O(
1

(m + 1)!22m+1 ). (4.21)

Numerical Feedbacks

In this section, we show the efficiency and accuracy of the suggested method by giving three
examples. All the numerical calculations are performed on an Intel Core i7 laptop by running
some programming codes written in MATLAB R2016b.
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Table 1 Absolute error of
Example 5.1 for m = 2, and
m = 3

(u,v) m = 2 m = 3

(0,0) 4.3509 × 10−12 1.3028 × 10−13

(0.1,0.1) 1.0652 × 10−12 2.4236 × 10−13

(0.2,0.2) 3.7256 × 10−11 1.9625 × 10−11

(0.3,0.3) 2.5477 × 10−11 1.2239 × 10−12

(0.4,0.4) 2.2593 × 10−10 1.1144 × 10−11

(0.5,0.5) 3.3341 × 10−10 1.5870 × 10−12

(0.6,0.6) 1.4257 × 10−11 1.6791 × 10−13

(0.7,0.7) 2.3569 × 10−11 2.9614 × 10−12

(0.8,0.8) 2.2910 × 10−11 4.0209 × 10−12

(0.9,0.9) 1.8456 × 10−10 3.4962 × 10−12

(1,1) 1.2958 × 10−9 5.7024 × 10−10

Table 2 Comparing maximum absolute error of Example 5.1

Maximum error in (0.1, 0.2)
m [14] [13] Our method

2 0.0478382 0.117 × 10−11 0.2796 × 10−12

3 0.0072947 − 0.1285 × 10−13

4 0.0033901 0.222 × 10−14 0.5035 × 10−16

Maximum error in (0.3, 0.7)
m [14] [13] Our method

2 0.0351850 0.149 × 10−12 0.3902 × 10−13

3 0.0276713 − 0.6834 × 10−14

4 0.0123877 0.244 × 10−14 0.1295 × 10−16

Example 5.1 Assuming k1(u, v, e, w) = u, k2(u, v, e, w) = u, and k3(u, v, e, w) = u + v

in Eq. (1.1), consider the SVFIE that was studied by [13,14]:

z(u, v) = g(u, v) +
∫ 1

0

∫ 1

0
uz(e, w)dwde +

∫ u

0

∫ v

0
uz(e, w)dwde

+
∫ u

0

∫ v

0
(u + v)z(e, w)dB(w)dB(e).

(5.1)

In this case, assuming g(u, v) = 1 − u − u2v − (u + v)B(u)B(v), the exact solution of the
equation is z(u, v) = 1.

In Table 1, the values of absolute error at different points for m = 2 and m = 3 are reported
which indicates the accuracy of the suggested scheme. Table 2, provides a comparison of
maximum absolute error for different values of m in points (0.1, 0.2) and (0.3, 0.7) between
the presented scheme and previously published algorithms by Fallahpour et al. [14].

Also, absolute error for m = 2 and m = 3 are plotted in Figs. 1 and 2 , respectively. By
examining the absolute error presented in Figs. 1 and 2 for different values of m, we will find
that by increasing m, the error decreases substantially.
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Fig. 1 The absolute errors with m = 2 for Example 5.1
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Fig. 2 The absolute errors with m = 3 for Example 5.1

Example 5.2 Consider the SVFIE that was studied by [14]:

z(u, v) = g(u, v) +
∫ 1

0

∫ 1

0
(u + v + e + w)z(e, w)dwde

+
∫ u

0

∫ v

0
(u + v + e + w)z(e, w)dwde

+
∫ u

0

∫ v

0
(uvew)z(e, w)dB(w)dB(e),

(5.2)

where

g(u, v) = −7

6
− 1

6
uv

(
5u2 + 9uv + 5v2

)
− 2uv

(
u2B(u) − 2

∫ u

0
B(s)ds

) (
vB(v) −

∫ v

0
B(t)dt

)
.

(5.3)

The exact solution of (5.2) is z(u, v) = u + v.

In Table 3, the values of absolute error at different points for m = 2 and m = 3 are reported
which indicates the accuracy of the suggested scheme. Table 4, provides a comparison of
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Table 3 Absolute error of
Example 5.2 for m = 2, and
m = 3

(u,v) m = 2 m = 3

(0,0) 3.2398 × 10−5 0.7164 × 10−9

(0.1,0.1) 1.6148 × 10−5 3.6453 × 10−8

(0.2,0.2) 2.4195 × 10−4 1.9021 × 10−8

(0.3,0.3) 2.936 × 10−5 1.2293 × 10−7

(0.4,0.4) 1.2864 × 10−4 2.5051 × 10−8

(0.5,0.5) 2.3285 × 10−4 2.7438 × 10−7

(0.6,0.6) 1.7705 × 10−4 2.6781 × 10−7

(0.7,0.7) 3.2308 × 10−4 2.9154 × 10−8

(0.8,0.8) 6.1029 × 10−5 4.9020 × 10−8

(0.9,0.9) 4.6548 × 10−5 4.4286 × 10−8

(1,1) 4.5927 × 10−4 5.3481 × 10−7

Table 4 Comparing maximum
absolute error of Example 5.2

m Maximum error in (0.1, 0.2)
[14] Our method

2 0.1737880 1.5267 × 10−4

3 0.0105896 2.9784 × 10−7

4 0.0665286 3.7765 × 10−9

m Maximum error in (0, 0.6)
[14] Our method

2 0.3847700 3.4368 × 10−4

3 0.0566236 5.9157 × 10−8

4 0.1313150 2.0371 × 10−8

maximum absolute error for different values of m in points (0.1, 0.2) and (0, 0.6) between
the presented scheme and previously published algorithms by Fallahpour et al. [14].

Also, absolute error for m = 2 and m = 3 are plotted in Figs. 3 and 4, respectively.
Three dimensional graphs of the exact and approximation solution is shown in Fig. 5. It can
easily be seen from the figures that as the number of m increases the approximate solution
converges towards the exact solution. Figure 6 shows the approximate solution and the exact
solution at the top and the absolute error at the bottom, for v = 0.5 and m = 3.

Example 5.3 Consider the SVFIE that was studied by [14]:

z(u, v) = g(u, v) +
∫ 1

0

∫ 1

0
(ue)sin(w + v)z(e, w)dwde +

∫ u

0

∫ v

0
(ue)sin(w + v)z(e, w)dwde

+
∫ u

0

∫ v

0
(e + w)cos(uv)z(e, w)dB(w)dB(e), (5.4)
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Fig. 3 The absolute errors with m = 2 for Example 5.2
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Fig. 6 The approximate solution and the exact solution and absolute errors of Example 5.2 for v = 0.5 and
m = 3

where

g(u, v) = uv + 1

3
u (cos(1 + v) + sin(v) − sin(1 + v))

+ 1

3
u4 (vcos(2v) + sin(v) − sin(2v))

− cos(uv)

(
u2B(u) − 2

∫ u

0
eB(e)de

) (
vB(v) −

∫ v

0
B(e)de

)

− cos(uv)

(
v2B(v) − 2

∫ v

0
eB(e)de

) (
uB(u) −

∫ u

0
B(e)de

)
.

(5.5)

The exact solution of (5.4) is z(u, v) = uv.

In Table 5, the values of absolute error at different points form = 2 andm = 3 are reported
which indicates the accuracy of the suggested scheme. Table 6, provides a comparison of
maximum absolute error for different values of m in points (0.6, 0.8) and (0.4, 0.9) between
the presented scheme and previously published algorithms in [13,14].

123



31 Page 20 of 24 Int. J. Appl. Comput. Math (2022) 8 :31

Table 5 Absolute error of
Example 5.3 for m = 2, and
m = 3

(u,v) m = 2 m = 3

(0,0) 1.294 × 10−5 0.617 × 10−7

(0.1,0.1) 1.469 × 10−4 4.806 × 10−6

(0.2,0.2) 6.635 × 10−4 1.436 × 10−6

(0.3,0.3) 9.891 × 10−4 1.292 × 10−6

(0.4,0.4) 1.918 × 10−3 2.970 × 10−6

(0.5,0.5) 2.056 × 10−3 9.892 × 10−6

(0.6,0.6) 2.870 × 10−3 1.523 × 10−5

(0.7,0.7) 2.106 × 10−3 1.119 × 10−5

(0.8,0.8) 1.875 × 10−3 5.973 × 10−6

(0.9,0.9) 3.042 × 10−5 2.807 × 10−6

(1,1) 1.597 × 10−3 4.742 × 10−6

Table 6 Comparing maximum
absolute error of Example 5.3

m Maximum error in (0.6, 0.8)
[14] Our method

2 0.7683170 6.537 × 10−5

4 0.156307 5.668 × 10−8

m Maximum error in (0.4, 0.9)
[14] Our method

2 0.303459 8.723 × 10−5

4 0.179375 7.132 × 10−8
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Fig. 7 The absolute errors with m = 2 for Example 5.3
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Fig. 8 The absolute errors with m = 3 for Example 5.3
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Fig. 9 The absolute errors with m = 4 for Example 5.3

Also, absolute error for m = 2, m = 3 and m = 4 are plotted in Figs. 7, 8 and 9,
respectively. Figure 10 shows the approximate solution and the exact solution for v = 0.5
and m = 3 at the top and the 3-D graphs of the approximation solution at the bottom.

Conclusion

Obtaining approximate answers for Itô integral with their applications to modelling in sci-
ence and engineering is very important offers. Also it is a comprehensive examination to the
most important issues of stochastic differential equations. Due to computational complexity,
in this study, we develop a new matrix approach based on 2D-OBP to solve two dimensional
stochastic Volterra–Fredholm integral equations with the given boundary conditions. Based
on this, 2-D operational matrix of integration and 2-D stochastic operational matrix of inte-
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Fig. 10 The approximate solution and the exact solution for v = 0.5 and m = 3 and 3-D approximate solution
of Example 5.3

gration is obtained, which leads to the converting the problem into a linear system. Some
results and convergence analysis are also presented. Finally, by presenting three examples
and reviewing the results and numerical comparisons, we showed that the proposed method
has an excellent performance. In other words, numerical examples show that the suggested
method is very accurate, simple and powerful tool to solve various problems. Another con-
siderable advantage of this method in case of linear problems is that the exact solution can be
obtained from mth-order approximation when the solution is a polynomial of degree equal
to or less than m.
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