RESEARCH ARTICLE

OPEN ACCESS Check for updates

Tavlor & Francis

Taylor & Francis Group

Species clarification of fairy inkcap ("Coprinellus disseminatus") in China

Liyang Zhu (D^{a,b} and Tolgor Bau (D^{a,b}

^aEngineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China; ^bKey Laboratory of Edible Fungi Resources and Utilization (North), Ministry of Agriculture, Changchun, China

ABSTRACT

Coprinellus disseminatus and other morphologically similar species are widely dispersed worldwide and are commonly referred to as "fairy inkcap". Based on the molecular phylogenetic study and morphological observation, a thorough investigation was carried out utilising 74 collections of related species that were gathered from seventeen provinces and five Chinese fungaria between 1998 and 2023 and revealed 11 lineages of "fairy inkcap", nine of which were found in China, and which belonged to the two genera *Coprinellus* and *Tulosesus*. In sect. *Disseminati*, genetic diversities (π), and fixation index (Fst) amongst lineages were computed, and a haplotype-based network was established to ascertain the relationships amongst each clade. A new section of *Coprinellus*, sect. *Aureodisseminati*, were discovered. In addition, four new species (*C. aureodisseminatus*, *C. austrodisseminatus*, *C. parcus*, and *C. velutipes*), a new subspecies of *C. disseminatus*, a new combination (*Tulosesus pseudodisseminatus*), the first discovery of epigamous type of *C. magnoliae* and a new record to China (*T. subdisseminatus*) were also identified and thoroughly described with accompanying illustrations. Their differences in macro- and micro-features, as well as their character sequence, were discussed.

ARTICLE HISTORY

Received 31 August 2023 Accepted 20 January 2024

KEYWORDS

Taxonomy; phylogeny; species recognition; population genetics; biogeography; DNA barcoding

1. Introduction

The genus Coprinellus P. Karst, a notable member coprinoid fungi, classified of is under the family Psathyrellaceae of the order Agaricales (Basidiomycota). Wächter and Melzer (2020) divided Coprinellus into nine sections, with one of them being named sect. Disseminati, containing species with charming names such as "fairy inkcap" or "fairies bonnets". Currently, three legitimate species have been identified (C. disseminatus, C. disseminatus-similis, and C. magnoliae), along with more than five phylospecies confirmed through recent studies, as do not cluster with any known species (Hussain et al. 2018; Wächter and Melzer 2020; de Silva et al. 2021). Species in this section exhibit tiny to small, pale basidiomata and stand out from other coprinoid fungi due to their non-deliguescent lamellae (Wächter and Melzer 2020). They are typically found in large groups on living trees, stumps, rotten wood, and surrounding soil. While they predominantly exist as saprophytes, they also form mycorrhiza associations with orchid plants (e.g. Cremastra appendiculata) and aid in their seed germination (Yagame et al. 2008; Gao et al. 2022).

As the type and representative species of this section, Coprinellus disseminatus (Per.) J.E. Lange was initially recorded by Schaeffer (1774) (as Agaricus pallescens or Agaricus digitaliformis). Schaffer described this species as having small basidiomata, conical greyish-brown pileus with radial stripes, slender white stipes, without rings, and growing in large clusters. Bulliard (1790–1798) illustrated the macroscopic morphology of this species (as Agaricus digitaliformis), showing a light brownish-yellow pileus. Based on Schaffer's description, Persoon (1801) formally named it Agaricus disseminatus (dis-, as in all directions, and -seminare, meaning to propagate) due to its prolific nature. In 1821, Gray further categorised it within Coprinus. However, this species was chosen as the lectotype for Psathyrella (Clements and Shear 1931) and was also thought to belong to the genus Psathyrella due to its non-deliguescent traits (Quélet 1872). By dividing the non-autolysed species of Coprinus, Kühner (1928) established Pseudocoprinus, and this species was selected as the type of this new genus. For its small-sized basidiomata, Lange (1938) originally ascribed it to Coprinellus; however, he

This article has been corrected with minor changes. These changes do not impact the academic content of the article. Supplemental data for this article can be accessed online at https://doi.org/10.1080/21501203.2024.2309901

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

CONTACT Tolgor Bau in turns and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China

subsequently concurred with Kühner's assessment (Lange 1939). Given that their pseudoparaphyses are not as inflated as those of other coprinoid fungi, he thought that this species represented a transitional group between *Psathyrella* and *Coprinus*. In 1978, Kühner and Romagnesi classified it under the *Coprinus* sect. *Setulosi* according to the presence of both pileocystidia and caulocystidia; Uljé et al. (2005) also accepted this categorisation.

Based on the phylogenetic results obtained by Hopple et al. in 1994 and 1999, Redhead et al. (2001) confirmed the taxonomic status of the genus Coprinellus, which includes C. disseminatus and C. micaceus (Bulliard) Vilgalys, Hopple & Jacg. Johnson. These species share common characteristics such as the presence of veils (mostly composed of globose elements) and/or lageniform cystidia on the pileus. Nagy et al. (2012) confirmed the polyphyletic nature of haired coprinoid fungi through phylogenetic analysis and demonstrated the close relationship between C. disseminatus and C. micaceus, suggesting removing C. disseminatus from sect. Setulosi and placing it into sect. Micacei, which has a veil in the form of glistening mica-like granules (composed of globose cells microscopically) introduced by Schafer (2010). These findings were further validated by phylogenetic studies conducted by Hussain et al. (2018), who also discovered the second "fairy inkcap", C. disseminatussimilis, which is currently only found in Pakistan. Recently, Wächter and Melzer (2020) established sect. Disseminati due to distinctive morphological differences and long divergence in phylogenetic frameworks between this section and other species in sect. Micacei. They proposed that this section could be characterised by a veil composed of chains of pigmented thick-walled subcylindrical or globose cells, the absence of pleurocystidia, the presence of largesized pileocystidia and caulocystidia, and the absence of clamp connection.

Our team previously reported a widely distributed species in the Northern Hemisphere, *Coprinellus pseudodisseminatus* M. Huang & T. Bau, which is macroscopically almost indistinguishable from *C. disseminatus*, not only due to the similar size and colour of their basidiomata, but also due to the minute hairs on their pileus and stipes. This species is also common on living standing trees and rotten wood (Huang and Bau 2018). However, compared to *C. disseminatus*, it has a veil

composed of narrow, branched cells and presents clamp connections, contradicting the description of sect. Disseminati, indicating that the taxonomic attribution has yet to be resolved. In addition, the number of sect. Disseminati members present a challenging issue. Ko et al. (2001) noticed that "C. disseminatus" collected from Hawaii and East Asia involved at least three species using ITS sequences. James et al. (2006) found that Japanese homokaryons of "C. disseminatus" were unable to mate with any of them from Europe and North America, indicating potential differences in species. Additionally, we have encountered some undetermined specimens, though with obvious divergence from C. disseminatus collected from Europe, which were still treated as the latter, further suggesting potential species diversity within the so-called "C. disseminatus" in China (Hubregtse 2019; Wächter and Melzer 2020; Zhu et al. 2022).

Evolutionary divergences result in differentiation among populations, subspecies, species, and other higher classification units (Dobzhansky 1940). Population genetics studies the structure within and between lineages, while phylogenetics reconstructs relationships and evolution patterns. Taxonomy, on the other hand, classifies, nominates, and describes operational taxonomic units. Elucidating population structures, divisions, and relationships is crucial for understanding speciation and species delimitation (Wiens 2007). Such combined studies of taxonomy, phylogeny and population genetics have been extensively utilised in research on plants, animals and microorganisms (Huyse et al. 2005; Pinzón and Lajeunesse 2011; Medrano et al. 2014; Ikabanga et al. 2017; Winker 2018; Folt et al. 2019; Dvořák et al. 2023), while the integration of such approaches is rare in macro-basidiomycetes (Liang et al. 2009; Jargeat et al. 2010; Li et al. 2017; Wang et al. 2018). Species recognition in sect. Disseminati remains ambiguous, and a comprehensive study could enhance our understanding of the evolutionary histories of these lineages at the species level and below.

The objectives of this study were to 1) reconstruct a phylogenetic framework to verify the attribution of so-called "fairy inkcap"; 2) clarify the taxonomic status of lineages in sect. *Disseminati*; and 3) identify morphological, geographical, and other characteristics to distinguish species of "fairy inkcap" in China.

2. Materials and methods

2.1. Sampling and morphological characterization

A collection of "fairy inkcap" specimens from various regions in China was conducted over more than 25 years, from 1998 to 2023. The samples were gathered in Heilongjiang Province, Jilin Province, Inner Mongolia Autonomous Region, Shaanxi Province, Xizang Autonomous Region, Sichuan Province, Chongging City, Guizhou Province, Yunnan Province, Jiangsu Province, Shanghai City, Hunan Province, Zhejiang Province, Guangxi Zhuang Autonomous Region, Hainan Province, and Guangdong Province of China. During fieldwork, the specimens were photographed, tagged, and accompanied by ecological information. The photos were aimed to capture multiple basidiomata and provide comprehensive details such as habitat, pileus, lamellae, and stipes. Colour descriptions were based on the Methuen Handbook of Colour (Kornerup and Wanscher 1978). The Specimens were desiccated using silica gel for at least 12 h and stored in zip-lock bags. Voucher specimens were deposited in the Herbarium of Mycology of Jilin Agricultural University (HMJAU).

The detailed characteristics of the specimens were observed under stereoscope (Stemi 2000C, Zeiss Co. Ltd., Jena, Germany), including examining several large and small lamellae and the base of the stipe. Handsectioned slices were studied under a light microscope (BX53, Olympus Co. Ltd., Tokyo, Japan). Water and 5% aqueous KOH were used to prepare slides, with additional staining applied if necessary using 1% Congo Red solution or 1% phloxine B stain. Microscopic features, including the size, shape, and colour of basidiospores, basidia, pseudoparaphyses, cheilocystidia, pleurocystidia, pileocystidia, caulocystidia, pileipellis, stipipellis, gill trama, stipe trama, and hyphae of mycelial rhizomorphs, were measured. At least 40 structures for new species and 20 for known species were examined, and the presence of clamp connection was observed in each sample. Free mature basidiospores collected from the surface of the pileus or stipes were selected for observation in front view and/or side view using 1,000× magnification and measured with software EP viewer (Olympus Co. Ltd., Japan) with a precision of $0.01\,\mu\text{m}$. The germ pore diameter was also measured and the length of spores were excluding the hilum under any circumstance. The results of the measurements were presented in the form of (a) b-c (d), where b-c represented the 90% confidence interval; (a) and (d) represented minimum and maximum values, respectively. Basidiospore sizes were presented as follows: Length range \times breadth range \times width range. The Q values were calculated as the ratio of length divided by width; when measuring breadth range, Q1 was calculated as the ratio of length divided by breadth range, and Q2 was calculated as the ratio of length divided by width (Ujlé and Bas 1991; Nagy et al. 2011). The shape terms corresponding to the Q value were described following Bas (1969). Terminology for descriptive terms followed Vellinga (1988) and Clémençon (2012). Other structures were measured and described using 400× magnification. For basidia, the length of sterigma was excluded from the measurement; the measured values of cystidia and veil elements included the amorphous incrustation on the surface; the value of the widest point was chosen as the widest length of cystidia and basidia. The mycelial rhizomorphs referred to thick-walled, red-brown, or yellow-brown mycelia at the base of stipes, which were previously studied by Buller (1924). Additionally, percurrent, thin-walled hyphae harbouring these mycelial rhizomorphs were also recorded if present. Pseudoclamp or short branches near septa resembling clamp connection, along with different types of elements of veil and caulopellis at the lower part of stipes, were first photographed and illustrated. Figure 1 provides a detailed view of these structures.

2.2. DNA extraction, PCR amplification, and DNA sequencing

DNA extraction, PCR amplification, and sequencing procedures followed established protocols by Bau and Yan (2021), Mou and Bau (2021), and references therein. The ITS and LSU regions were amplified using specific primers, namely ITS1F/ITS4 (White et al. 1990) and LROR/LR7 (Hopple and Vilgalys 1994), respectively. Sangon Biotech Co. Ltd. (Shanghai, China) conducted the DNA sequencing, and all newly generated sequences were deposited in GenBank (www.ncbi. nlm.nih.gov/genbank) (Table 1).

2.3. Alignment and phylogenetic analyses

Newly generated sequences were edited using Sequencher 4.1.4 (Gene Codes, Ann Arbor, MI, USA), and haplotypes of heterozygotes were resolved based

Figure 1. Illustration of part morphological features covered in this study. (A) Basidiomata (represented by *Coprinellus parcus* HMJAU67155); (B) Veil elements: (B1) Smooth colorless globose cells; (B2) Encrusted colorless globose cells; (B3) Chains of brown (sub)globose cells; (B4) Chains of brown cylindrical cells. (C) Vaulopellis of middle-upper part of stipes. (D) Caulopellis of lower part of stipes: (D1) Only with (sub)globose or utriform terminal elements; (D2) Narrow cylindrical terminal elements with short branches; (D3) Mixed with utriform and short-branched cylindrical elements; (D4) Mostly with long-branched terminal cells. (E) Pseudoclamps or short branches near septa which resembling clamp connections: (E1) pseudoclamp; (E2) short branch resembling clamp connections; (E3) verticillate short branches resembling clamp connections. Bars: A = 1 cm; B1–B4, C, D1–D4 = 20 µm; E1–E3 = 10 µm.

on Hughes et al. (2013). Missing or ambiguous loci were denoted as "N". Additional sequences for phylogenetic analyses were retrieved from GenBank following Thorn et al. (1996), Keirle et al. (2004), Lygis et al. (2005), Larsson and Örstadius (2008), Arhipova et al. (2011), Bakys et al. (2011), Nagy et al. (2010, 2011, 2012), Tóth et al. (2013),

Örstadius et al. (2015), Desjardin and Perry (2016), Huang and Bau (2018), Hussain et al. (2018), Yan and Bau (2018), Wächter and Melzer (2020), Bau and Yan (2021), de Silva et al. (2021), Schafer et al. (2022), Wang et al. (2022), and Zhu et al. (2022) (Table 1). The combined dataset was aligned with MAFFT v.7.245 (Katoh and Standley 2016)

lable 1. rungal species and seque	ences used in phylogenetic analyse				
Species	SeqID	Location	ITS	LSU	Reference
Britzelmayria multipedata	LÖ237-04	Sweden	KC992888	KC992888	Örstadius et al. 2015
B. supernula	LÖ250-04	Sweden	KC992867	KC992867	Örstadius et al. 2015
Candolleomyces candolleanus	LÖ38-00	Sweden	DQ389720	DQ389720	Larsson and Örstadius 2008
Candolleomyces luteopallida	Sharp20863 (type)	Sweden	KC992884	KC992884	Örstadius et al. 2015
Candolleomyces subsingeri	HMJAU37811	China	MG734715	I	Yan and Bau 2018
Coprinellus aureodisseminatus	HMJAU67119 (CJM43)	China-Shanghai	OR436416	OR436373	This study
	HMJAU67120 (ZJQY1)	China-Zhejiang	OR436414	OR436374	This study
	HMJAU67121 (YH076)	China-Yunnan	OR436415	OR436375	This study
	E14512I	Ecuador	KM265563	I	Wächter and Melzer 2020
C. aureodisseminatus	PERTH:E8297	USA	MK077862	I	I
	NLB 1363	Australia	MT537065	I	I
	E8297	Australia	MT537045	I	I
	420526MF0012	China-Jiangsu	MG719770	I	I
	RF21	China-Guizhou	OP902415	I	I
	9Y-G71	China-Guizhou	MT138591	I	I
C. aureogranulatus	CBS973.95	The Netherlands	GQ249274	GQ249283	Nagy et al. 2011
C. aureogranulatus	HMJAU67111	China-Guangdong	OR436413	OR436376	This study
C. austrodisseminatus	HMJAU25112	China-Hunan	OR436394	OR436377	This study
	HMJAU67134	China-Guangdong	OR436393	OR436378	This study
C. curtoides	SFSU DEH630	Hawaii (USA)	AY461834	I	Keirle et al. 2004
C. curtus	SZMC-NL-1490	Hungary	JN159569	JN1 59589	Nagy et al. 2011
C. deminutus	SZMC-NL-0761	Hungary	JN159572	JN159592	Nagy et al. 2011
C. disseminatus	LE-BIN 2127	Russia	MG722732	I	Wächter and Melzer 2020
	SZMC-NL-0786	Hungary	JN159560	I	Nagy et al. 2011
	863	Lithuania	GU934607	I	Bakys et al. 2011
	1241	Latvia	GU062268	I	Arhipova et al. 2011
	olrim (SUAS)	Lithuania	AY787669	I	Lygis et al. 2005
	R1 75	Sweden	JN689938	I	Wächter and Melzer 2020
C. disseminatus subsp. orientalis	HMJAU22008	China-Jilin	OR436408	OR436379	This study
C. disseminatus subsp. orientalis	HMJAU67127	China-Shanxi	OR436412	I	This study
	HMJAU67128	China-Jiliin	OR436409	I	This study
	HMJAU67129	China-Jilin	OR436410	I	This study
	HMJAU67130	China-Jilin	OR436411	OR436380	This study
	KUC11047	China	KJ714005	I	Wächter and Melzer 2020
C. disseminatisimilis	SHCr3w (type)	Pakistan	MH753670	I	Hussain et al. 2018
	SWAT SH-Cr3-b	Pakistan	MH753669	I	Hussain et al. 2018
C. domesticus	SZMC-NL-1292	Hungary	FN396102	HQ847132	Nagy et al. 2011
C. flocculosus	SZMC-NL-1567	Hungary	FN430683	JN159593	Nagy et al. 2011

(Continued)

Table 1. (Continued).					
Species	SeqID	Location	ITS	LSU	Reference
C. heptemerus	X-22	USA	KC176321	KC176321	Thorn et al. 1996
C. magnoliae	MFLUCC 18-0942	Thailand	MW244022	I	de Silva- et al. 2021
	WZ-433	China-Jiangsu	OP163480	I	I
	HMJAU67122 (Z21062505)	China-Guangxi	OR436401	OR436383	This study
	HMJAU46307	China-Guangdong	OR436399	OR436381	This study
	HMJAU49305	China-Hainan	OR436400	OR436382	This study
	WkRe_2	China-Taiwan	KC416185	I	I
C. micaceus	SZMC-NL-3656	Hungary	JN159567	JN1 59588	Nagy et al. 2011
C. parcus	HMJAU46315	China-Guangdong	OR436404	OR436384	This study
	HMJAU46320	China-Guangxi	OR436402	OR436385	This study
	HMJAU46323	China-Guangxi	OR436403	OR436386	This study
	HMJAU67132	China-Guangdong	OR436406	OR436387	This study
	HMJAU67133	China-Guangdong	OR436405	I	This study
C. radians	SZMC-NL-3986	Hungary	JN943117	JN159594	Nagy et al. 2011
C. silvaticus	SZMC-NL-3035	Hungary	HQ846986	HQ847072	Nagy et al. 2011
C. sp.	2Di102-1	USA	KC514901	I	Wächter and Melzer 2020
C. sp.	BAB-3624	India	KU504290	I	Wächter and Melzer 2020
C. sp.	BLBS 107	Brazil	MK843955	I	Wächter and Melzer 2020
C. sp. (as "C. <i>disseminatus</i> ")	DWM51	China-Yunnan	KM357334	I	Wächter and Melzer 2020
C. truncorum	SZMC-NL-1101	Hungary	JN159562	FM876262	Nagy et al. 2010
C. velutipes	HMJAU67123	China-Zhejiang	OR436398	I	This study
C. velutipes	HMJAU67124	China-Jiangsu	OR436396	I	This study
	HMJAU67125	China-Hunan	OR436397	OR436388	This study
	HMJAU67126	China-Hunan	OR436395	OR436389	This study
C. verrucispermus	SZMC-NL-2146	Hungary	JN159577	I	Nagy et al. 2011
Coprinopsis afronivea	SFSU BAP 619 (type)	Sao Tome and Principe	NR_148105	I	Desjardin and Perry 2016
Coprinopsis sclerotiorum	SZMC-NL-0564	Hungary	HQ847039	HQ847124	Nagy et al. 2011
Coprinopsis strossmayeri	SZMC-NL-0774A	Hungary	HQ847048	HQ847129	Nagy et al. 2012
Cystoagaricus hirtosquamulosus	Ramsholm800927	Sweden	KC992945	KC992945	Örstadius et al. 2015
Hausknechtia floriformis	WU22833	Vanuatu	JX968254	JX968371	Wächter and Melzer 2020
Heteropsathyrella macrocystidia	HMJAU37802 (type)	China	MW405102	MW413359	Bau and Yan 2021
lugisporipsathyra reticulopilea	HFJAU1352 (type)	China	ON207138	ON207137	Wang et al. 2022
Kauffmania larga	LÖ223-90	Sweden	DQ389694	DQ389694	Larsson and Örstadius 2008
Narcissea cordispora	HMJAU67114	China-Zhejiang	OR436423	I	This study
	HMJAU67113	China-Zhejiang	OR436424	I	This study
	HMJAU67112	China-Jilin	OR436425	I	This study
N. ephemerioides	HMJAU46343	China	MW832859	0L375252	Zhu et al. 2022
N. patouillardii	HMJAU67115	China	OR436422	I	This study

⁽Continued)

Table 1. (Continued).					
Species	SeqID	Location	ITS	LSU	Reference
	HMJAU67116	China	OR436421	I	This study
Psathyrella amygdalinospora	HMJAU46343 (type)	China	MW405104	MW413361	Bau and Yan 2021
P. fagetophila	LÖ210-85 (type)	Sweden	KC992902	KC992902	Örstadius et al. 2015
P. fennoscandica	LÖ484-05 (type)	Sweden	KC992903	KC992903	Örstadius et al. 2015
P. noli-tangere	LÖ83-03 (neotype)	Sweden	DQ389713	DQ389713	Larsson and Örstadius 2008
P. seminuda	Smith34091 (type)	USA	KC992907	I	Örstadius et al. 2015
P. warrenensis	Smith70162 (type)	USA	KC992906	I	Örstadius et al. 2015
Punjabia pakistanica	LAH35323 (type)	Pakistan	MH366736	I	Hussain et al. 2018
Tulosesus amphithallus	L128	Hungary	HQ846978	HQ847065	Nagy et al. 2012
T. angulatus	SZMC-NL-1934	Hungary	HQ846994	HQ847082	Nagy et al. 2012
T. bisporiger	WU7403	Hungary	HQ846974	I	Nagy et al. 2012
T. aff. bisporiger	HMJAU67201	China	OR762027	I	This study
T. bisporus	SZMC-NL-2512	Hungary	FN396107	I	Nagy et al. 2011
T. brevisetulosus	SZMC-NL-1956	Hungary	GU227709	FN396154	Nagy et al. 2011
T. aff. brevisetulosus	HMJAU67202	China	OR762034	OR762002	This study
	HMJAU67204	China	OR762035	OR7 62003	This study
	HMJAU67205	China	OR762036	OR762004	This study
T. callinus	SZMC-NL-1931	Hungary	FN396105	FN396158	Nagy et al. 2011
	HMJAU67198	China	OR762022	OR761997	This study
T. canistri	OT1-232	Portugal	KT804062	I	I
	Walleyn 877	Hungary	HQ846985	I	Nagy et al. 2012
T. christianopolitanus	LÖ141-08 (type)	Sweden	KC992944	KC992944	Örstadius et al; Nagy et al. 2012
T. cinereopallidus	SZMC-NL-0177 (type)	Hungary	HQ847001	HQ847090	Nagy et al. 2012
	HMJAU67178	China	OR762044	OR762011	This study
T. congregatus	SZMC-NL-0588	Hungary	JN943129	JQ045866	Nagy et al. 2012
T. doverii	SZMC-NL-1035	Hungary	HQ846983	HQ847070	Nagy et al. 2012
T. fuscocystidiatus	HMJAU67196	China	OR762019	I	This study
	HMJAU67194	China	OR762015	OR761994	This study
	SZMC-NL-2720 (type)	Hungary	HQ846977	HQ847064	Nagy et al. 2012
T. heterosetulosus	SZMC-NL-1059	Hungary	GU227708	HQ847075	Nagy et al. 2012
T. heterothrix	Ulje 1063	The Netherlands	HQ847000	HQ847088	Nagy et al. 2012
T. hiascens	SZMC-NL-2536	Hungary	FM878018	FM876275	Nagy et al. 2012
T. impatiens	SZMC-NL-0968	Hungary	JN943132	JQ045876	Wächter and Melzer 2020
T. limicola	Ulje 1009b (type)	The Netherlands	HQ847003	HQ847092	Nagy et al. 2012
T. marculentus	SZMC-NL-1167	Hungary	GU227706	HQ847089	Nagy et al. 2012
	HMJAU67189	China	OR7 62040	I	This study
	HMJAU67191	China	OR7 62030	I	This study
T. maritimus	ML21131CM (type)	Cyprus	MG857119	MG857116	Schafer et al. 2022
T. mitrinodulisporum	type	ltaly	HQ180171	I	Doveri et al. 2010
					(Continued)

Species Sc.0 Location TS SU SU Perfectors 7. Relaction SXXC-WL-364 Hungary CVR-3715 RM3730 Negret AL 7. Relaction SXXC-WL-1645 Hungary CVR-3715 RM9743 Negret AL 7. Relaction SXXC-WL-1645 Hungary NEGRED RM97443 Negret AL 7. Relaction UNC SXXC-WL-1645 Hungary NEGRED Negret AL 7. Relaction UNC SXXC-WL-1645 Hungary Negret AL Negret AL 7. Relaction UNC SXXC-WL-1645 Hungary Negret AL Negret AL 7. Relaction UNC SXXC-WL-1645 Hungary Negret AL Negret AL 7. Relaction UNC HUNAH4301 Chre-clampdrop Negret AL Negret AL 7. Relaction UNC SXXC-WL-1645 HUNAH4301 Negret AL Negret AL 7. Relaction UNC Negret AL Negret AL Negret AL Negret AL 7. Relaction UNC							
7 Fundation 61/27/15 Hungary 61/27/15 Hungary 61/27/15 Hungary 10/27/15 Hungary	Species	SeqID	Location	ITS	LSU	Reference	
T. pellocidis MAMJ07206 Chia OP76301 OP76301 OP76309 Nis study study 7. folgipporus S2MCALI-1365 Hungary Ni93512 Nigs et al. 2012 7. folgipporus S2MCALI-1365 Hungary Ni93512 Nigs et al. 2012 7. preudomythichulas Ulje 1286 Hungary Ni93512 Nigs et al. 2013 7. preudomythichulas Ulje 1286 China Guangdong Ni137314 OP752008 Nigs et al. 2013 7. preudodisemintus MMJU46321 China Guangdong Ni1373151 OP852017 Nigs et al. 2013 7. preudodisemintus MMJU4631 China Guangdong Ni1373151 O Nigs et al. 2013 7. preudodisemintus MMJU4631 China Guangdong Ni1373151 O Nigs et al. 2013 7. preudodisemintus MMJU4631 China Guangdong Ni1373151 O Nigs et al. 2012 7. preudodisemintus MMJU4631 China Guangdong Ni1373151 O Nigs et al. 2012 7. preudodisemintus MMJU4631 China Guangdong Ni1373151 O	T. pellucidus	SZMC-NL-2344	Hungary	GU227715	FM876280	Nagy et al. 2010	
T. Polgoporis ZMC-NL-1365 Hungary Hongary Hungary Hongary Hungary	T. pellucidus	HMJAU67206	China	OR7 62031	OR761999	This study	
EXAC (k-1' 06) Hungay N15571 New N15572 New New N12 T, paudkomphtholus Up (128) The Nerthends Up (128) The Nerthends Up (128) New yet al. 2013 T, paudkoffsterminatus HMU4/631 Chine-Guangdong M337914 - Huang and Bau 2018 T, paudkoffsterminatus HMU4/631 Chine-Guangdong M337914 - Huang and Bau 2018 T, paudkoffsterminatus HMU4/6313 Chine-Guangdong M337914 - Huang and Bau 2018 T, paudkoffsterminatus HMU4/6313 Chine-Guangdong M3379151 - Huang and Bau 2018 T, cardicellas ZXMC-kL-3168 Chine-Guangdong 0433541 0433532 This study T, cardicellas ZXMC-kL-3168 Hungay N155559 - Huang and Bau 2018 T, cardicellas ZXMC-kL-3168 Hungay N155559 - Huang and Bau 2018 T, cardicellas ZXMC-kL-3168 Hungay N155559 - N155520 - N155520 T, cardicell	T. plagioporus	SZMC-NL-1365	Hungary	HQ846981	HQ847068	Nagy et al. 2012	
WIMJ0717 Othols 717 Othols 717 Othols 717 Othols 715 Miss ruly 7. periodorsimitus WMJA4236 (type) The Netherlands Ug84657 Way et al. 2018 7. periodorsimitus WMJA4236 (type) The Netherlands Ug84657 Way et al. 2018 7. periodorsimitus WMJA4236 (type) The Netherlands MH379147 - Huong and Bu 2018 7. periodorsimitus HMJA4631 China-Guangdong MH379147 - Huong and Bu 2018 7. periodorsimitus HMJA4631 China-Guangdong MH379147 - Huong and Bu 2018 7. periodorsimitus HMJA4631 China-Guangdong MH379147 - Huong and Bu 2018 7. periodorsimitus HMJA4631 China-Guangdong MH379147 - Huong and Bu 2018 7. adriet/lis Status China-Guangdong MH379147 - Huong and Bu 2018 7. adriet/lis Status China-Guangdong MH379147 - Huong and Bu 2018 7. adriet/lis Status Status Status - Huongane		SZMC-NL-1086	Hungary	JN159512		Nagy et al. 2012	
T pseudorrephinduls Ull 238 (type) The fether lends H034933 H034933 H034933 H039147 - Huang and Bau 2018 T pseudorisceminats HMJU4630 China-Jilin HMJU4631 China-Jilin HMJU4631 - Huang and Bau 2018 HMJU4630 China-Jilin HMJU4631 China-Jilin HMJU4631 - Huang and Bau 2018 HMJU4631 China-Jilin HMJU4631 China-Jilin HMJU4631 - Huang and Bau 2018 HMJU4631 China-Jilin HMJU4631 China-Jilin HMJU4631 - Huang and Bau 2018 HMJU4631 China-Guangdong M433419 OR43439 This study T coldrellus ZMCAL-2016 Hungay OR43439 This study T coldrellus ZMCAL-306 Hungay OR43439 OR43439 This study T coldrellus ZMCAL-306 Hungay M135719 OR43639 This study T coldrellus ZMCAL-306 Hungay M135719 OR43639 This study T coldreniutots		HMJAU67177	China	OR762041	OR7 62008	This study	
T. pearodissemination HMUU4650 (type) Chine-Guangdong MH37914 - Huang and Bau 2018 T. pearodisseminatus HMUU4630 Chine-Guangdong MH37914 - Huang and Bau 2018 T. pearodisseminatus HMUU4631 Chine-Guangdong MH37914 - Huang and Bau 2018 T. pearodisseminatus HMUU4631 Chine-Guangdong 0H34511 04336392 This study T. adricellus SZMC-NL-3168 (type) Chine-Guangdong 0H34519 04336392 This study T. adricellus SZMC-NL-3168 (type) Chine-Guangdong 0H34519 04336392 This study T. adricellus SZMC-NL-3168 (type) Swelen GU1227719 04345395 This study T. adricellus SZMC-NL-1368 Hungary UN19555 OR363692 This study T. adritellus SZMC-NL-1368 Hungary UN19555 OR36961 Nagy et al. 2012 T. adritellus SZMC-NL-1368 Hungary UN19555 OR36961 Nagy et al. 2012 T. adritellus SZMC-NL-1368 Hungary	T. pseudoamphithallus	Ulje 1288 (type)	The Netherlands	HQ846973	HQ847059	Nagy et al. 2012	
HMU44601 Chns-Jiln MM37915 - Hang and Ba. 2018 T, pseudodiseminatus HMU44621 China-Guangdong M33541 0.433532 This study T, pseudodiseminatus HMU44621 China-Guangdong 0.433541 0.433532 This study T, adolicica ZXIC-NL-3168 (type) China-Guangdong 0.433541 0.433539 This study T, adolicica ZXIC-NL-3168 (type) China-Guangdong 0.433541 0.433539 This study T, adolicica ZXIC-NL-3168 (type) China-Guangdong 0.433541 0.433539 This study T, adolicica ZXIC-NL-3168 (type) Hungary U1327719 0.433547 May et al. 2012 T, stoluticica ZXIC-NL-1955 Hungary N135559 0.752039 Nigs et al. 2012 T, stoluticica ZXIC-NL-1955 Hungary N135554 - Nagr et al. 2012 T, stoluticica ZXIC-NL-1955 Hungary N135554 - Nagr et al. 2012 T, stoluticica ZXIC-NL-1955 Hungary N135555 - <td< td=""><td>T. pseudodisseminatus</td><td>HMJAU46298 (type)</td><td>China-Guangdong</td><td>MH379147</td><td>I</td><td>Huang and Bau 2018</td><td></td></td<>	T. pseudodisseminatus	HMJAU46298 (type)	China-Guangdong	MH379147	I	Huang and Bau 2018	
Type HMJ44533 Chine-Guangdong MH37151 - Hung and Bau 2018 T, peadodisseminetus HMJ44531 Chine-Guangdong MH3711 OH13641 OH13641 OH13641 OH13641 OH13641 OH136321 Thine-Guangdong OH1361 OH1365 Chine-Guangdong OH1361 OH1365 Chine-Guangdong OH1361 OH1365 Chine-Guangdong OH1361 OH136530 This study T, cadreclus SZNC-NL-1965 Hungary DN139559 OH136530 This study OH36410 OH1365 This study OH1366 OH1365 This study OH1365 This study OH1365 This study OH1365 This study OH1366 OH13666 This study OH13666 OH1366 OH13666 OH13666 OH13666 OH136666 OH13666 OH136		HMJAU46301	China-Jilin	MH379149	I	Huang and Bau 2018	
T. peardoffseminats HMJNU46312 Chine-Guangdin 0R436413 0R436413 0R436433 This study HMJNU46312 Chine-Guangdi 0R434419 0R436390 This study HMJNU6732 Chine-Guangdi 0R434419 0R436390 This study T. radice/lus SZMC-NL-3168 (type) Sweden 0R434419 0R436390 This study T. sabulicola Xasoli HMJNU67200 China 0R436419 0R436470 Nags et al. 2012 T. sabulicola Xasoli HMJNU67200 Hungary HMJ36750 This study T. satisit MMJUNE7200 China 0R436491 PR430670 This study T. satisit MMJUNE7200 China 0R752036 Nags et al. 2012 PR449617 T. satisit MMJUNE7200 China N195610 Nags et al. 2012 PR449617 PR449707 PR449707 PR449707 PR449707 PR449707 PR449707 PR449707 PR4497012 PR34708 PR347012 PR347012 PR347012 PR347012 PR347012 PR347012		HMJAU46303	China-Guangdong	MH379151	I	Huang and Bau 2018	
HMAU46321 China-Guangti OR436418 OR43639 This study Tradfeclus XXMC-NL-3166 (type) China-Guangti OR436419 OR436439 This study Tradfeclus XXMC-NL-3166 (type) China-Guangti OR436419 OR436330 This study Tradfeclus XXMC-NL-3166 (type) Hungary U159539 - Nagy et al. 2012 T stobulcolo XXMC-NL-3166 (type) Hungary N1359539 - Nagy et al. 2012 T stobulcolo XXMC-NL-1056 Hungary N1359539 - Nagy et al. 2012 T stobulcolo XXMC-NL-1056 Hungary N159513 O8752039 O8752037 Nagy et al. 2012 T sp. 1 XXMC-NL-1363 Hungary H0484991 H0247079 Nagy et al. 2012 T sp. 1 XXMC-NL-1363 Hungary N159514 - Nagy et al. 2012 T sp. 2 XXC-NL-1363 Hungary N1594593 H0347037 Nagy et al. 2012 T sp. 2 XXC-NL-1363 Hungary N1594593 H0347037 Nagy et al. 2012	T. pseudodisseminatus	HMJAU46312	China-Guangdong	OR436417	OR436392	This study	
HMAI057136 China-Guangi OR436419 OR436439 OR436330 This study T. radicellus SZMC-NL-3066 Hungary UR72779 H084/077 Nagy et al. 2012 T. solutiocla SZMC-NL-3066 Hungary N132579 - Nagy et al. 2012 T. solutiocla SZMC-NL-3065 Hungary N1396155 Nagy et al. 2011 T. solutiocla SZMC-NL-1055 Hungary N1396101 F1396101 F1396102 T. solutiocla SZMC-NL-1055 Hungary N139514 - Nagy et al. 2012 T. solutiocla SZMC-NL-1349 Hungary H13946991 H0347097 Nagy et al. 2012 T. sp. 1 SZMC-NL-1349 Hungary H139514 - Nagy et al. 2012 T. sp. 2 SZMC-NL-1349 Hungary H139514 - Nagy et al. 2012 T. sp. 2 SZMC-NL-1349 Hungary H139514 - Nagy et al. 2012 T. sp. 2 SZMC-NL-1349 Hungary H139514 - Nagy et al. 2012 T. sp. 2 SZMC-N		HMJAU46321	China-Guangxi	OR436418	OR43639	This study	
T. radicelus SZMC-NL-3168 (type) Swelen GU227719 H0847077 Nagy et al. 2012 T. sobulicola SZMC-NL-306 Hungary UN15559 - Nagy et al. 2012 T. subulicola SZMC-NL-306 Hungary N155539 - Nagy et al. 2012 T. subulicola SZMC-NL-1956 Hungary R1396101 F1836155 Nagy et al. 2011 T. stasti SZMC-NL-1018 Hungary N159519 - Nagy et al. 2012 T. stasti SZMC-NL-1018 Hungary N159519 - Nagy et al. 2012 T. sp. 1 SZMC-NL-1384 Hungary N159514 - Nagy et al. 2012 T. sp. 1 SZMC-NL-1384 Hungary N159574 - Nagy et al. 2012 T. sp. 2 SZMC-NL-1384 Hungary N159575 - Nagy et al. 2012 T. sp. 2 SZMC-NL-1384 Hungary N159575 - Nagy et al. 2012 T. sp. 2 SZMC-NL-1382 Hungary N159575 - Nagy et al. 2012 T. sp. 2 <t< td=""><td></td><td>HMJAU67136</td><td>China-Guangxi</td><td>OR436419</td><td>OR436390</td><td>This study</td><td></td></t<>		HMJAU67136	China-Guangxi	OR436419	OR436390	This study	
T. sublicata SZMC-NL-2906 Hungary N153559 - Nagy et al. 2012 T. sublicata SZMC-NL-1495 Hungary N155039 08752007 This study T. sosif MAUA0776 China 08752039 08762005 This study T. sosif MAUA0770 China 08762039 08762005 This study T. sole May et al. 2012 Hungary Hungary Hungary Hungary Hungary T. sp. 1 SZMC-NL-1035 Hungary Hungary Hungary Hungary Hungary Hungary T. sp. 2 SZMC-NL-1349 Hungary H	T. radicellus	SZMC-NL-3168 (type)	Sweden	GU227719	HQ847077	Nagy et al. 2012	
HMJAU6716 China OR762037 This study 7. sossif 5ZMc-NL-1955 Hungary FN396101 FN396155 Nagy et al. 2001 7. sossif HUJAU67700 China OR762038 OR762006 This study 7. sp. 1 HUJAU6770 China OR762038 OR762006 This study 7. sp. 1 SZMc-NL-1018 Hungary HUngary H0847099 H0847079 Nagy et al. 2001 7. sp. 1 SZMc-NL-1349 Hungary JN159514 - Nagy et al. 2002 7. sp. 2 SZMc-NL-1349 Hungary JN159514 - Nagy et al. 2002 7. sp. 3 SZMc-NL-3887 Hungary JN15952 - Nagy et al. 2002 7. sp. 4 SZMc-NL-3887 Hungary H0844999 H0847073 Nagy et al. 2012 7. sp. 5 SZMc-NL-2617 Hungary H0844999 H0847073 Nagy et al. 2012 7. sp. 7 SZMc-NL-3887 Hungary H0844999 H0847073 Nagy et al. 2012 7. sp. 7 SZMc-NL-1482	T. sabulicola	SZMC-NL-2906	Hungary	JN159559	I	Nagy et al. 2012	
T. sasif T. sasif FN396101 FN396155 Nagy et al. 2011 T. static HMJ407200 China 0R762006 This study T. static HMJ407700 China 0R762016 This study T. static SZMC-NL-1018 Hungary 0R762016 This study T. sp. 1 ZZMC-NL-1018 Hungary N159514 - Nagy et al. 2012 T. sp. 2 ZZMC-NL-138-3 Hungary N159514 - Nagy et al. 2012 T. sp. 3 ZZMC-NL-1349 Hungary N159525 - Nagy et al. 2012 T. sp. 3 ZZMC-NL-1349 Hungary HO846997 HQ847093 Nagy et al. 2012 T. sp. 4 ZZMC-NL-1349 Hungary HUngary HQ847044 HQ847093 Nagy et al. 2012 T. sp. 4 ZZMC-NL-1482 Hungary HO846997 HQ847093 Nagy et al. 2012 T. sp. 7 SzMC-NL-1482 Hungary HO846996 HQ847093 Nagy et al. 2012 T. sp. 7 SzMC-NL-2817 Hungary HUngary HQ846996 HQ847093 Nagy et al. 2012 T. sp. 7 SzMC		HMJAU67176	China	OR7 62039	OR762007	This study	
HMJAU67200 China OR762038 OR762006 This study T. sclerocystrifosus SZMC-NL-1018 Hungary Hungary H0346971 H0347079 Nagy et al. 2012 7. sp. 1 SZMC-NL-1018 Hungary Hungary Hungary H0346991 H0347079 Nagy et al. 2012 7. sp. 1 SZMC-NL-1349 Hungary Hungary Hungary N159553 - Nagy et al. 2012 7. sp. 3 SZMC-NL-1349 Hungary Hungary Hungary N159553 - Nagy et al. 2012 7. sp. 4 SZMC-NL-2887 Hungary Hungary H0347093 Nagy et al. 2012 7. sp. 5 SZMC-NL-2887 Hungary H0344996 H0347073 Nagy et al. 2012 7. sp. 7 SzMC-NL-2817 Hungary H0344996 H0347073 Nagy et al. 2012 7. sp. 7 SZMC-NL-1822 Hungary H0344996 H0347073 Nagy et al. 2012 7. sp. 7 SZMC-NL-1822 Hungary H0344996 H0347067 Nagy et al. 2012 7. sp. 7 SZ	T. sassii	SZMC-NL-1495	Hungary	FN396101	FN396155	Nagy et al. 2011	
T. sclerocystidiosus SZMC-NL-1018 Hungary Hungary Hungary H084691 HQ84691 HQ847079 Nagy et al. 2012 T. sp. 1 SZMC-NL-0636 Hungary JN159514 - Nagy et al. 2012 T. sp. 2 SZMC-NL-1349 Hungary JN159525 - Nagy et al. 2012 T. sp. 3 SZMC-NL-1349 Hungary Hungary JN159525 - Nagy et al. 2012 T. sp. 3 SZMC-NL-1349 Hungary Hungary H0845091 HQ847073 Nagy et al. 2012 T. sp. 3 SZMC-NL-1349 Hungary Hungary HQ845096 HQ847073 Nagy et al. 2012 T. sp. 5 SZMC-NL-1482 Hungary HQ845096 HQ847073 Nagy et al. 2012 T. sp. 7 SzMC-NL-1482 Hungary HQ845096 HQ847069 Nagy et al. 2012 T. subdisseminatus SZMC-NL-1482 Hungary Hungary Hungary HQ847069 Nagy et al. 2012 T. subdisseminatus SZMC-NL-1482 Hungary HO846966 HQ847069 Nagy et al. 2012 T. subdisseminatus SZMC-NL-1482 Hungary Hungary		HMJAU67200	China	OR7 62038	OR762006	This study	
T. sp. 1 SZMC-NL-0636 Hungary JN15514 - Nagy et al. 2012 T. sp. 2 SZMC-NL-3854 Hungary H084699 HQ847087 Nagy et al. 2012 T. sp. 2 SZMC-NL-3854 Hungary H07499 HQ84699 HQ847087 Nagy et al. 2012 T. sp. 3 SZMC-NL-3857 Hungary H074987 H0847033 Nagy et al. 2012 T. sp. 4 SZMC-NL-1070 Hungary H084699 HQ847093 Nagy et al. 2012 T. sp. 5 Hungary Hungary H0847094 H0847093 Nagy et al. 2012 T. sp. 5 Hungary Hungary H0847096 HQ847094 Nagy et al. 2012 T. sp. 6 Hungary Hungary H0847095 H0847094 Nagy et al. 2012 T. sp. 6 Hungary Hungary H0847095 H0847094 Nagy et al. 2012 T. sp. 6 Hungary Hungary H0847095 H0847094 Nagy et al. 2012 T. subinpatiens SZMC-NL-1482 Hungary H0847095 H0847094 Nagy et al. 2012 T. subinpatiens SZMC-NL-162 Hungary H0846905 H08	T. sclerocystidiosus	SZMC-NL-1018	Hungary	HQ846991	HQ847079	Nagy et al. 2012	
T. Sp. 2 SZMC-NL-3854 Hungary Hungary Hungary Hungary Hungary Nagy et al. 2012 T. Sp. 3 SZMC-NL-1349 Hungary Hungary JN159525 - Nagy et al. 2012 T. Sp. 4 SZMC-NL-1349 Hungary Hungary JN159525 - Nagy et al. 2012 T. Sp. 4 SZMC-NL-1070 Hungary Hungary HQ846990 HQ847093 Nagy et al. 2012 T. Sp. 5 SZMC-NL-2887 Hungary Hungary HQ846990 HQ847093 Nagy et al. 2012 T. Sp. 6 HORATOR Hungary Hungary Hungary Hungary HQ846990 HQ847093 Nagy et al. 2012 T. sp. 7 SZMC-NL-1482 Hungary Hungary HQ846996 HQ847094 Nagy et al. 2012 T. subdisseminatus SZMC-NL-1482 Hungary Hungary Hungary HQ846996 HQ847094 Nagy et al. 2012 T. subdisseminatus SZMC-NL-1482 Hungary HQ846996 HQ847094 Nagy et al. 2012 T. subdisseminatus SZMC-NL-1482 Hungary MA87042 HA847094 Nagy et al. 2012	<i>T</i> . sp. 1	SZMC-NL-0636	Hungary	JN159514	I	Nagy et al. 2012	
T. sp. 3 SZMC-NL-1349 Hungary JN159525 - Nagy et al. 2012 T. sp. 4 SZMC-NL-1070 Hungary H0847073 Nagy et al. 2012 T. sp. 4 SZMC-NL-1070 Hungary H0847004 H0847073 Nagy et al. 2012 T. sp. 5 SZMC-NL-2887 Hungary H0847004 H0847093 Nagy et al. 2012 T. sp. 6 Honjer 95067 Hungary Hungary H0846996 H0847093 Nagy et al. 2012 T. sp. 6 Honjer 95067 Hungary Hungary H0847005 H0847094 Nagy et al. 2012 T. sp. 7 SZMC-NL-1482 Hungary Hungary H284506 H0847005 H0847094 Nagy et al. 2012 T. subdisseminatus SZMC-NL-1482 Hungary Magatens M159420 - This study T. subimpatiens ML4182C5 China M159542 - Nagy et al. 2012 T. dis study T. subimpatiens ML4182C5 Cyprus M1594696 Nagy et al. 2012 T. dis study T. dis study M14182C5 Cyprus M1845922 - Stafer et al. 2012 <td< td=""><td><i>T</i>. sp. 2</td><td>SZMC-NL-3854</td><td>Hungary</td><td>HQ846999</td><td>HQ847087</td><td>Nagy et al. 2012</td><td></td></td<>	<i>T</i> . sp. 2	SZMC-NL-3854	Hungary	HQ846999	HQ847087	Nagy et al. 2012	
T. sp. 4 $SZMC-NL-1070$ Hungary HQ846957 HQ847073 Nagy et al. 2012 T. sp. 5 $SZMC-NL-287$ Hungary HQ847004 HQ847093 Nagy et al. 2012 T. sp. 6 Hungary HQ847004 HQ847093 Nagy et al. 2012 T. sp. 6 Hungary HQ847004 HQ847094 Nagy et al. 2012 T. sp. 7 SZMC-NL-2617 Hungary HQ847005 HQ847094 Nagy et al. 2012 T. sp. 7 SZMC-NL-1482 Hungary HQ847005 HQ847094 Nagy et al. 2012 T. subdisseminatus SZMC-NL-1482 Hungary OR436420 - This study T. subimpatiens ML15555 Hungary OR436420 - Schafer et al. 2012 T. disteriments SZMC-NL-0162 Hungary NI155542 - This study T. disteriments ML41582C5 Cyprus OL630113 - Schafer et al. 2012 T. disteriments ML41582C5 Hungary NI155542 - Nagy et al. 2012a T. disteriments ML41582C5 Hungary NI155542 - Schafer et al. 2012a	<i>T</i> . sp. 3	SZMC-NL-1349	Hungary	JN159525	I	Nagy et al. 2012	
T. sp. 5 SZMC-NL-2887 Hungary H0847004 H0847093 Nagy et al. 2012 T. sp. 6 Hoijer 95067 Hungary H0846990 H0847078 Nagy et al. 2012 T. sp. 7 SZMC-NL-2617 Hungary H0846996 H0847078 Nagy et al. 2012 T. sp. 7 SZMC-NL-1482 Hungary H0846996 H0847094 Nagy et al. 2012 T. sp. 7 SZMC-NL-1482 Hungary H0847005 H0847094 Nagy et al. 2012 T. subimpatiens SZMC-NL-1482 Hungary OR436420 - This study T. subimpatiens SZMC-NL-0162 Hungary N155542 - Nagy et al. 2012 T. subimpatiens SZMC-NL-0162 Hungary UR356420 - Schafer et al. 2022 T. d. subimpatiens ML41582C5 Cyprus OL630113 - Schafer et al. 2012a T. di subimpatiens ML41582C5 Hungary UR346982 H0847069 Nagy et al. 2012a T. distortunatus ML41582C5 Hungary UR346982 H0847069 Nagy et al. 2012a T. u/je SZMC-NL-0157 Hungary H0846982	<i>T</i> . sp. 4	SZMC-NL-1070	Hungary	HQ846987	HQ847073	Nagy et al. 2012	
T. sp. 6 Hoijer 95067 Hungary H084690 H0847078 Nagy et al. 2012 T. sp. 7 SZMC-NL-2617 Hungary H084696 H0847084 Nagy et al. 2012 T. sp. 7 SZMC-NL-2617 Hungary H084696 H0847094 Nagy et al. 2012 T. subdisseminatus SZMC-NL-1482 Hungary H0847005 H0847094 Nagy et al. 2012 T. subdisseminatus SZMC-NL-1482 Hungary China OR436420 - This study T. subimpatiens MLA1582C5 Uhngary Unsary UL53542 - Nagy et al. 2012a T. d. subimpatiens ML41582C5 Cyprus UL630113 - Schafer et al. 2022 T. d. subimpatiens ML41582C5 Cyprus UL630113 - Schafer et al. 2012a T. di subimpatiens ML41582C5 Cyprus UL630113 - Schafer et al. 2012a T. di subimpatiens ML41582C5 Hungary Hungary H0846982 H0847069 Nagy et al. 2012a T. u/je M330 Hungary Hungary OR52033 OR52001 This study Huldor	T. sp. 5	SZMC-NL-2887	Hungary	HQ847004	HQ847093	Nagy et al. 2012	
T. sp. 7 5ZMC-NL-2617 Hungary HQ84696 HQ847084 Nagy et al. 2012 T. subdisseminatus 5ZMC-NL-1482 Hungary HQ847005 HQ847094 Nagy et al. 2012 T. subdisseminatus 5ZMC-NL-1482 Hungary Hungary HQ847005 HQ847094 Nagy et al. 2012 T. subinpatiens 5ZMC-NL-0162 Hungary OR436420 - This study T. subinpatiens 5ZMC-NL-0162 Hungary Un159542 - Nagy et al. 2012a T. subinpatiens ML41582C5 Cyprus UG30113 - Schafer et al. 2022 T. di subinpatiens ML41582C5 Cyprus UL630113 - Schafer et al. 2012a T. di subinpatiens ML41582C5 Cyprus UL630113 - Schafer et al. 2012a T. di subinpatiens ML41582C5 Cyprus UL630113 - Schafer et al. 2012a T. distrudy Nagy et al. 2012a UR646982 HQ847091 Nagy et al. 2012a T. velatopruinatus M30 Hungary OR52033 OR52001 This study MAULETAR MAULETAR China OR76001 </td <td><i>T</i>. sp. 6</td> <td>Hoijer 95067</td> <td>Hungary</td> <td>HQ846990</td> <td>HQ847078</td> <td>Nagy et al. 2012</td> <td></td>	<i>T</i> . sp. 6	Hoijer 95067	Hungary	HQ846990	HQ847078	Nagy et al. 2012	
T. subdisseminatus SZMC-NL-1482 Hungary H0847005 HQ847094 Nagy et al. 2012 T. subdisseminatus HMJAU67117 China OR436420 - This study T. subimpatiens SZMC-NL-0162 Hungary OR436420 - This study T. subimpatiens SZMC-NL-0162 Hungary JN159542 - Nagy et al. 2012a T. subimpatiens ML41582C5 Cyprus OL630113 - Schafer et al. 2022 T. dife ML41582C5 Hungary H084982 HQ847069 Nagy et al. 2012a T. uje M330 Hungary Hungary OR50013 - Schafer et al. 2012a T. velatopruinatus M330 Hungary H0847002 HQ847091 Nagy et al. 2012a T. velatopruinatus M330 Hungary OR72033 OR762001 This study Unitervise China Crisso Crisso OR762033 OR762001 This study	T. sp. 7	SZMC-NL-2617	Hungary	HQ846996	HQ847084	Nagy et al. 2012	
HMJAU67117 China OR436420 - This study T. subimpatiens SZMC-NL-0162 Hungary JN159542 - Nagy et al. 2012a T. di subimpatiens ML41582C5 Cyprus OL630113 - Schafer et al. 2012a T. di subimpatiens ML41582C5 Cyprus OL630113 - Schafer et al. 2012a T. di subimpatiens ML41582C5 Hungary Hugary HQ846982 HQ847069 Nagy et al. 2012a T. ulje M330 Hungary Hungary Hog47002 HQ847001 Nagy et al. 2012a T. ulje M310 China OL630113 - Schafer et al. 2012a T. ulje M310 Hungary Hog47002 HQ847001 Nagy et al. 2012a T. velatopruinatus M310 China OR762033 OR762010 This study MAMULTIN China China OL7002 OL7001 This study	T. subdisseminatus	SZMC-NL-1482	Hungary	HQ847005	HQ847094	Nagy et al. 2012	
T. subimpatiens SZMC-NL-0162 Hungary JN159542 – Nagy et al. 2012a T. d. subimpatiens ML41582C5 Cyprus OL630113 – Schafer et al. 2022 T. di subimpatiens ML41582C5 Hungary Hungary HQ846982 HQ847069 Nagy et al. 2012a T. ulje M330 Hungary Hungary HQ847002 HQ847091 Nagy et al. 2012a T. ulje M330 China OL63033 OR762033 OR762031 This study MM.MU67184 China OR762033 OR762033 OR762031 This study		HMJAU67117	China	OR436420	I	This study	
T. cf. subimpatiens ML41582C5 Cyprus OL630113 - Schafer et al. 2022 T. ufie SZMC-NL-0157 Hungary HQ846982 HQ847069 Nagy et al. 2012a T. ufie M330 Hungary Hungary HQ847002 HQ847091 Nagy et al. 2012a T. ufie M330 Hungary Hungary HQ847002 HQ847091 Nagy et al. 2012a T. velatopruinatus M340 China OR762033 OR762010 This study	T. subimpatiens	SZMC-NL-0162	Hungary	JN159542	I	Nagy et al. 2012a	
T. u/je SZMC-NL-0157 Hungary HQ846982 HQ847069 Nagy et al. 2012a T. velatopruinatus M330 Hungary Hungary HQ847002 HQ847091 Nagy et al. 2012a T. velatopruinatus M330 Hungary OR762033 OR762001 This study	T. cf. subimpatiens	ML41582C5	Cyprus	OL630113	I	Schafer et al. 2022	
T. velatopruinatus M330 Hungary HQ847002 HQ847091 Nagy et al. 2012a HMJAU67184 China OR762033 OR762001 This study HMMAU67185 China OR762033 OR762001 This study	T. ulje	SZMC-NL-0157	Hungary	HQ846982	HQ847069	Nagy et al. 2012a	
HMJAU67184 China OR762033 OR762001 This study	T. velatopruinatus	M330	Hungary	HQ847002	HQ847091	Nagy et al. 2012a	
HMI/II/167195 China OD763002 This ctudy		HMJAU67184	China	OR7 62033	OR762001	This study	
		HMJAU67185	China	OR7 62023	I	This study	

and manually adjusted in MEGA7 (Kumar et al. 2016). Sequences of *Coprinopsis afronivea* Desjardin & B.A. Perry, *Coprinopsis sclerotiorum* (P.D. Orton) Redhead, Vilgalys & Moncalvo, and *Coprinopsis strossmayeri* (Schulzer) Redhead, Vilgalys & Moncalvo were selected as outgroup taxa.

Phylogenetic analyses were performed using maximum likelihood (ML) and Bayesian inference (BI) methods on the combined and individual ITS and LSU datasets. ML analyses employed the GTRGAMMAI substitution model with 1,000 bootstrap resamples by RAxML-HPC BlackBox on Cipres or raxmlGUI2.0 (Miller et al. 2010; Stamatakis 2014). The best-fit models for BI analyses were determined by MrMoedeltest v.2.3 (Nylander 2004). MrBayes v.3.2.6 (Ronguist et al. 2012) conducted the BI analysis, running four Markov chains for 3,000,000 generations, sampling every 100 generations until the split deviation frequency value was less than 0.01 (Ronguist and Huelsenbeck 2003). Statistical support thresholds were defined as Bootstrap support (BS) > 70% for ML analyses and Bayesian posterior probabilities (BPP) > 0.95 for BI analyses (Huelsenbeck and Hillis 1993; Leaché et al. 2002).

2.4. Population genetics structure in sect. Disseminati

To assess population genetics structure in sect. Disseminati, molecular variation estimates were obtained from the constructed haplotype dataset of the ITS region, including homozygous sequences and disassembled heterozygous sequences with or without cloning. DNASP 6.12.03 (Rozas et al. 2017) was employed to calculate population diversity parameters such as number of segregating sites (S), number of polymorphic sites, number of haplotypes (h), haplotype diversity (Hd), nucleotide diversity (π), average number of nucleotide differences (k), average number of nucleotide differences between populations (K%), average number of nucleotide substitutions per site within and between populations (Dxy), and fixation index (Fst). The Fst value indicates the degree of genetic differentiation between populations: (1) 0–0.05 indicates that the genetic differentiation between populations is small and can be ignored; (2) 0.05-0.15 refers to a moderate differentiation; (3) 0.15-0.25 represents a clear differentiation; (4) >0.25 means a significant genetic differentiation; and >0.30 means different species (Hartl and Clark 1997; Frankham et al. 2002, 2010). A median-joining

haplotype network was created using NETWORK 4.6.1.6 (Fluxus Technology Ltd., Colchester, UK).

3. Results

3.1. Molecular phylogenies

In the concatenated dataset of ITS-LSU, a total of 128 sequences (86 for ITS and 42 for LSU) from 86 collections were included. Among these, 77 sequences (47 for ITS and 30 for LSU) were newly generated in this study. The alignment length of the dataset was 2,086 characters, including gaps (799 characters for ITS and 1,287 characters for LSU). The variable characters of the phylogenetic clade in sect. *Disseminati* in the ITS region are listed in Table 2. The best models for BI analysis of both the concatenated dataset and single locus dataset were determined as GTR + F + I + G4. Similar topologies to the BI framework (shown in Figures 2 and 3) were also obtained from ML analysis.

In China, the species commonly known as "fairy inkcap" is not monophyletic and could be classified into four main clades belonging to the genera *Coprinellus* and *Tulosesus*. *T. subdisseminatus*, a new record for China, forms a strong cluster with materials from Europe (SZMC-NL-1482) without significant divergence (BPP/ML = 1.00/100). The species previously referred to as "*Coprinellus pseudodisseminatus*" is nested within *Tulosesus* and is closely related to *T. velatopruinatus* with robust evidence (BPP/ML = 1.00/100). Therefore, it is considered as a new combination within *Tulosesus*.

In *Coprinellus*, the species identified as *"Coprinellus disseminatus"* in China belongs to two sections. *Coprinellus aureodisseminatus*, a novel species discovered in this study, forms a distinct clade within this genus, which may share a common ancestor with sect. *Aureogranulati*, although statistical support is lacking. Due to significant morphological differences and substantial phylogenetic divergence, it is classified as a new section, sect. *Aureodisseminati*.

The specimens collected in China cluster within sect. *Disseminati* with robust evidence (BPP/ML = 1.00/100), and along with downloaded sequences, form eight clades, and four of which do not match any known species. Therefore, three novel species are identified: *C. austrodisseminatus*, *C. parcus*, and *C. velutipes* based on phylogenetic and morphological evidence. Additionally, sequences obtained from several specimens collected in south and

Table 2. Alignment including variable sites appearing in ITS region.

	117	Т	H	⊢	U	H	F	H	T		162	I	I	I	T	C	C	C	U
	115	С	C	U	C	C	H	H	C		161	I	I	I	T	T	IJ	IJ	I
	108	С	A	¥	A	A	A	A	A		160	I	I	I	L	T	U	U	I
	107	G	μ	IJ	Ċ	U	U	U	U		159	Т	H	I	T	H	H	H	H
	100	A	I	I	I	I	I	I	I		158	Т	H	I	I	H	H	⊢	H
	93	Т	J	⊢	F	H	F	H	F		157	G	I	I	I	U	IJ	IJ	Ċ
	92	Т	A	×	V	۷	۷	۲	۷		156	T	I	I	I	T	I	H	I
	89	A	J	U	C	C	C	C	C		155	I	I	I	I	T		IJ	I
	87	A	C	¥	۷	۷	۷	۲	۷		154	I	I	I	I	T		C	U
	84	A	J	⊢	F	H	F	H	H		153	I	I	I	I	I		IJ	I
	79	С	H	V	۷	A	٨	A	۷		152	I	I	I	I	I		H	I
	71	C	A	۷	۷	A	A	A	۷		151	I	I	I	I	I	U	U	A
	70	C	H	H	F	H	F	H	H		150	I	I	I	I	I	IJ	V	Ċ
	89	A	μ	H	F	H	F	F	F		149	I	I	I	I	I	U	U	U
	65	Т	A	V	۷	A	٨	A	۷		148	G	I	I	I	I	IJ	IJ	I
	62	G	J	IJ	IJ	IJ	IJ	IJ	IJ		147	A	I	I	I	I	V	V	I
[TS1	09	Т	C	C	C	U	C	C	C	TS1	146	I	I	I	I	H	H	⊢	I
[58	A	G	Ð	IJ	IJ	IJ	IJ	IJ		145	I	I	I	L	G	Ð	IJ	Ċ
	53	C	A	⊢	H	H	F	H	F		144	I	I	I	I	C	U	C	U
	51	G	G	¥	C	H	U	C	C		143	I	I	I	I	I	IJ	IJ	Ċ
	43	С	U	U	C	C	C	C	C		142	I	I	I	I	H	I	H	H
	39	I	I	I	I	С	T	T	I		141	G	I	I	I	I	I	IJ	Ű
	30	С	H	H	F	H	F	H	F		140	Т	H	I	I	H	H	H	H
	28	G	H	H	F	F	F	H	T		139	G	IJ	I	T	IJ	IJ	¥	IJ
	27	Т	H	H	F	F	F	C	H		138	I	C	C	I.	C	U	U	U
	22	G	A	U	C	C	C	C	U		137	I	IJ	IJ	I	IJ	IJ	IJ	IJ
	14	T	I	I	T	H	I.	T	T		136	I	H	H	H	H	H	H	H
	12	G	J	U	C	C	I.	C	C		135	I	H	H	H	H	H	H	H
	11	Т	A	¥	V	A	1	A	V		133	¥	IJ	IJ	IJ	IJ	IJ	IJ	ŋ
	6	G	I	I	T	H	I.	I.	T		127	G	H	H	H	H	H	H	H
	٢	I	T	I	I	T		T	Ċ		124	H	IJ	IJ	U	U	IJ	U	Ű
	5	I	I	I	I	I		I	Ċ		119	H	H	C	J	J	U	H	U
	2	C	H	U	C	C		C	C		118	H	H	H	⊢	J	U	C	U
		А	В	U	D	ш	ц	IJ	Н			A	В	U	D	щ	ц	IJ	Н

(Continued)

l

Table 2. (Continued).

	264	I.	I.	I.	I.	V	1	T	I.		655	A	H	H	H	H	H	H	L
	240	F	H	H	H	H	H	U	H		653	C	A	A	A	A	A	A	A
	226	C	C	H	C	C	C	U	U		650	A	U	G	G	G	U	G	IJ
	224	C	C	U	U	C	C	C	V		649	Ð	H	H	H	H	H	H	H
	219	H	H	C	H	H	H	H	H		645	I.	I	I	H	T	H	F	T
	217	С	C	C	C	C	⊢	H	C		643	A	¥	¥	I	¥	×	۷	A
	212	С	C	IJ	C	C	C	C	H		631	U	¥	U U	J	U	U	U	C
	206	IJ	IJ	IJ	IJ	IJ	×	V	V		629	Г	H	¥	H	H	H	H	H
	191	I.	1	C	1	I.		I.	I.		610	I	I	I	I	H	I.	I	H
	190	I.	T	I.		V	V	V	i.		609	Г	H	H	H	H	H	H	U
	189	F	H	H	H	F	1	F	H		598	U	H	G	IJ	G	IJ	IJ	IJ
	188	C	U	U	U	I.		C	U		595	G	A	Ð	Ð	Ð	Ð	Ð	IJ
	185	IJ	IJ	IJ	IJ	U	1	I	I		579	H	A	H	H	H	H	H	F
	184	C	C	U	C	C		I	I		578	U	A	G	IJ	IJ	IJ	IJ	IJ
	182	V	V	V	V	V	U	IJ	IJ	TS2	577	G	H	Ð	Ð	Ð	Ð	Ð	IJ
	181	IJ	IJ	IJ	۲	IJ	IJ	IJ	IJ	I	563	Ð	IJ	Ð	Ð	A	A	A	۷
TS1	180	C	C	C	U	H	U	C	C		558	I	I	I	I	A	A	A	A
Ι	179	IJ	IJ	IJ	IJ	IJ	¥	¥	A		557	L	I	I	I	A	1	A	- 1
	177	Ð	IJ	IJ	IJ	1	IJ	IJ	IJ		553	I	I	С	T	I	I	I	I
	176	C	C	I.	C	I.	C	C	U		540	C	C	С	C	H	Г	Н	H
	175	IJ	IJ	1	IJ	1	IJ	IJ	IJ		518	C	C	С	C	C	C	H	U
	174	С	C		1			÷	1		510	C	J	J	J	H	H	H	H
	173	I.	I.	I.	I.	T		H			509	F	H	H	H	U	U	U	C
	172	T	I.	I	I.	T		IJ	1		500	C	U	U	H	H	H	H	H
	171	I	I	I	I	I		C	I.		480	C	U	U	U	A	U	U	A
	170	T	I.	L	I.	T		G	1		479	C	J	J	H	I	J	J	Т
	169	T	I.	L	I.	T	H	H	H		473	C	U	U	U	U	Ċ	IJ	H
	168	I.	I.	L	I.	T	H	H	H		461	U	Ċ	U	Ċ	Ċ	U	U	A
	167	I	I	I	I	I	U	IJ	IJ		449	C	U	U	U	U	C	M	U
	166	T	I.	I	I.	I	C	C	I.	S									
	165	T	I.	I	I.	A	IJ	A	I.	5.8									
	164	T	I.	I	I.	C	U	U	C	31	267	C	C	U	C	A	A	A	A
	163	T	I.	I	I.	IJ	IJ	IJ	IJ	ITS	265	H	H	H	H	A	H	H	F
		A	в	C	D	ш	ц	IJ	Н			A	В	C	D	ш	ĹĹ,	IJ	Н

Figure 2. Phylogenetic framework inferred from BI with combined ITS and LSU datasets. Posterior probability values \geq 0.90 (left) and bootstrap values \geq 50 (right) are indicated at nodes. Taxa that should be treated as "fairy inkcap" are boxed out with deep blue dotted boxes. The proposed new section, new species, and new combination are indicated in red. New record species in China are in blue.

southwest China (HMJAU46307, HMJAU49305, and HMJAU67122) cluster with *C. magnoliae*, previously reported only as anamorphic species in Thailand; this finding represents the first record of the sexual stage of this species. Materials from north and northeast China show close relatedness to *C*.

disseminatus from Europe but exhibit divergences and variable sites in the ITS region (listed in Table 2), indicating 16 INDELs and 7 mutational sites. Considering the results of population genetics in section 3.2, this clade is treated as a subspecies of *C. disseminatus*.

Figure 3. Phylogenetic framework of *Tulosesus* inferred from BI with combined ITS and LSU datasets. Nodes with robust support (posterior probability values \geq 0.95 and/or bootstrap values \geq 75) are shown with bold lines. Taxa treated as "fairy inkcap" are shown in blue.

3.2. Identification of phylogenetic species in sect. Disseminati

According to the combined phylogenetic framework (Figure 2) and haplotype network of sect. *Disseminati* with the ITS region (Figure 4), eight phylogenetic groups were revealed. While three clades of them were previously recognised as independent species with legitimate names in former studies, most of them were formerly thought to be "Coprinellus disseminatus" due to their high morphological similarity. However,

our results indicate that, except for the clade of *C. disseminatus* subsp. *orientalis*, which showed connections with *C. disseminatus* through various haplotypes (Haplotype 16-17, Haplotype 16-18-20-17, and Haplotype 16-22-32-17), the remaining populations are distinct from each other and exhibit clear species boundaries. *C. disseminatus* subsp. *orientalis* is considered a subspecies of *C. disseminatus*, but there is a dominant population (Haplotype 17) within it that is independent of *C. disseminatus* from Europe (Haplotype

Figure 4. Network analyses of ITS region haplotypes of known species and collections from China in sect. *Disseminati*. Each colour-filled circle represents a haplotype, and the size of the circle is proportional to haplotype frequency. The little unfilled circle represents a presumed median vector, while the dominant haplotype in each population is located in the middle. The ligature indicates the genetic relationship. The different colours of circles represent clades, as follows: *C. austrodisseminatus* (purple), *C. disseminatus* (sky blue), *C. disseminatus* subsp. *orientalis* (blue), *C. disseminatismilis* (pink), *C. magnoliae* (deep pink), *C. parcus* (dark green), *C. velutipes* (deep yellow), and an unknown species found in Yunnan Province of China (haplotype 34) (lemon yellow).

16). In line with these results, the Fst value between *C*. *disseminatus* and *C*. *disseminatus* subsp. *orientalis* was less than 0.30 (Fst = 0.17526), indicating some genetic differentiation but still suggesting subspecific relationship. On the other hand, the Fst values between other populations were all greater than 0.7, suggesting significant intraspecific differentiation and interspecific divergence (refer to Table 4 for detailed Fst values).

3.3. Haplotype analyses and genetic diversity in sect. Disseminati

The haplotype dataset of ITS region isolated from materials of sect. *Disseminati* contained 60 sequences, encompassing 34 types of haplotypes and 48 polymorphic sites (as shown in Table 3). Nucleotide diversity (π) was employed to assess sequence variation

within and between clades (as indicated in Tables 3 and 4). Within each divergent clade (excluding *C*. sp. due to the use of only one sequence), the nucleotide diversity ranged from 0.00000 to 0.00607 (with an average π of 0.00316), which is considerably lower than the values between different clades, ranged from 0.00694 to 0.04596 (with an average π of 0.01804).

Table 3 also presents the number of haplotypes (h) and haplotype diversity (Hd), used as measures of gene diversity. Among all clades, *C. disseminatisimilis*, *C. disseminatus*, and *C. disseminatus* subsp. *orientalis* exhibits relatively high gene diversity.

3.4. Geographical distribution of "fairy inkcap" in China

Aside from the widespread occurrence of *T. pseudodisseminatus*, the distribution of other species in

	All	A	В	υ	D	ш	ц	U	т
No. of sequences	60	2	2	8	12	6	ø	18	1
S	48	-	0	-	7	c	8	14	0
ч	34	2	1	2	9	c	7	14	1
No. of polymorphic sites	48	9	0	4	14	17	18	14	0
Н	0.96230	1.00000	0.0000	0.57143	0.68182	0.55556	0.96429	0.93464	0.00000
П	0.01725	0.00249	0.0000	0.00142	0.00417	0.00303	0.00496	0.00607	0.00000
A: C. disseminatisimilis; B: C. austro	disseminatus; C: C. v€	elutipes; D: C. magno.	liae; E: C. parcus; F: C.	disseminatus; G: C. di	sseminatus subsp. ori	'entalis; H: C. sp.			

Table 3. Genetic diversities of the 8 divergent clades in sect. Disseminati based on ITS sequences.

	Number of polymorphic sites	Number of fixed differences	ц	Х	K%	Dxy	Fst
A-B	37	32	0.03896	24.000	34.500	0.05601	0.95238
A-C	33	25	0.01916	11.689	28.750	0.04713	0.89820
A-D	38	19	0.01468	9.187	25.750	0.04394	0.86699
A-E	52	30	0.02683	16.473	37.889	0.06171	0.91632
A-F	53	30	0.01818	11.092	38.750	0.06352	0.88930
A-G	30	15	0.01789	7.530	17.900	0.04252	0.89902
A-H	43	37	0.04596	27.667	40.000	0.04342	0.97143
B-C	25	23	0.01497	9.778	23.750	0.03637	0.93443
B-D	31	17	0.01306	7.769	20.167	0.03389	0.89756
B-E	45	30	0.02260	14.982	34.444	0.05196	0.94330
B-F	42	25	0.01518	9.379	30.750	0.04976	0.90598
B-G	27	13	0.01598	6.758	15.400	0.03641	0.91603
B-H	36	36	0.03744	24.000	36.000	0.05616	1.00000
C-D	23	4	0.00972	5.784	8.500	0.01429	0.71456
C-E	29	12	0.01695	11.000	17.139	0.02641	0.86029
C-F	31	12	0.01631	9.964	18.000	0.02946	0.83243
0-0	23	10	0.01778	7.379	12.300	0.02556	0.85714
C-H	20	16	0.01217	7.644	17.750	0.02605	0.95745
D-E	32	7	0.01317	7.781	11.833	0.02002	0.77942
D-F	38	7	0.01501	8.735	14.229	0.02445	0.77321
D-G	28	6	0.01630	6.701	10.717	0.02607	0.86951
D-H	26	12	0.01041	6.154	14.500	0.02453	0.92696
E-F	40	8	0.01687	10.527	17.160	0.02750	0.70520
E-G	30	7	0.01911	8.140	12.267	0.02879	0.71500
E-H	28	10	0.01529	9.891	15.889	0.02456	0.89423
E-G	23	0	0.00694	2.978	3.163	0.00737	0.17526
F-H	24	7	0.00799	4.850	9.563	0.01575	0.80977
G-H	21	5	0.01017	4.424	6.800	0.01563	0.82258
A: C. disseminatisim.	ilis; B: C. austrodisseminatus; C: C	C. velutipes; D: C. magnoliae; E: C. parcus; F: C. d	disseminatus; G: C. dissemir	latus subsp. orientalis; H: (C sp.		

Table 4. Statistical data calculated based on ITS region at the intergroup levels for clades in sect. Disseminati.

China appears to display certain regional characteristics. Specifically, *C. disseminatus* subsp. *orientalis* is mainly found in northeast and northern China, while *C. velutipes* is predominantly discovered in the eastern and central regions of the country. On the other hand, the remaining species, appear to favour tropical and subtropical regions (located south of the Yangtze River), with no clear geographical segregation among them.

3.5. Taxonomy

Coprinellus sect. Aureodisseminati sect. nov. T. Bau & L.Y. Zhu

MycoBank: MB 849760.

Type species: Coprinellus aureodisseminatus T. Bau & L.Y. Zhu.

Description: Basidiomata small-sized, lignicolous, or terrestrial, in groups or caespitose. Lamellae never deliquescent. Ozonium present at the base of the stipe. Pilei yellow-brown when young, white-grey at mature; pileipellis spherocystoderm at ridge, paraderm at groove; subpileipellis thin, without obvious context. Veil sparse, powdery, or scaly, most in globose cells at pilei and in hypha-like cells at stipe, brown, slightly thick-walled. Basidiospores medium-sized, ovoid in frontal view, amygdaliform with acute apex in side view, with a central germ pore. Basidia trimorphological, 4-spored. Cheilocystidia narrow lageniform. Pleurocystidia absent. Pileipellis in spherocystoderm at ridge part and in paraderm in groove part, consisting of subglobose cells. Clamps absent but pseudocystidia present and short side-branches of hyphae near septa which resemble clamp connections often observed.

Notes: Wächter and Melzer (2020) initially classified *C. aureodisseminatus* as an unidentified species within sect. *Micacei*. However, our results contradict this classification, as they indicate that sect. *Micacei* is polyphyletic. Moreover, our results suggest that *C. aureodisseminatus* is more closely related to species in sect. *Aureogranulati* and sect. *Disseminati*. It is also supported by our morphological observation, which indicates that this clade may represent a transitional position between these two sections. Given the substantial genetic divergence, we propose that it should be designated as a distinct section within *Coprinellus*. Currently, only the type species of this section has been discovered, the further discovery of additional species may enhance our

understanding of its phylogenetic position. In conjunction with existing literature and our observations, we compiled macro-morphological and micro-morphological features of known 10 sections of *Coprinellus*, including sect. *Aureodisseminati* in Tables 5 and 6, respectively (Lange and Smith 1953; Ujlé and Bas 1991; Enderle 2004; Nagy 2005; Nagy et al. 2012; Laessøe and Petersen 2019; Wächter and Melzer 2020).

Coprinellus aureodisseminatus T. Bau & L.Y. Zhu, sp. nov, Figures 5–7

MycoBank: MB 849759.

Etymology: The prefix "aureo" refers to the yellowbrown colour of its young basidiomata and veil which is similar to the species in sect. *Aureogranulati*, while "disseminatus" indicates that the species is morphologically close to *C. disseminatus*.

Diagnosis: Pileus yellow-brown when young and become whitish when mature with not obvious radial grooves; lamellae undeliquencing at age; stipe attached to a cream to rust-brown ozonium-state; basidiospores ovoid in frontal view, amygdaliform with the acute apex in side view; basidia trimorphological; cheilocystidia lageniform; pileipellis in spherocystoderm at ridge part and in paraderm in groove part; elements of the veil at pileus most in subglobose to globose and on stipe mostly consisted of the hyphae-like cell, slightly thick-walled, yellow-brown to dark brown; clamp connection absent.

Type: China: Shanghai City: Jiading District, Jiabei Country Park, on mud ground near rotten wood in artificial camphor forest, 9 April 2023, Jia-Ming Cai, HMJAU67119 (ITS: OR436416; LSU: OR436373).

Description: Basidiomata small-sized. Pileus 0.5 - 1.5 cm, first subglobose, ellipsoid or ovoid, obtuse conical when mature, sometimes with a rounded umbo; light yellow-brown (1B5) or deep yellow (4B5) when young covered with white (2A1) to cream (3A2), powdery or scaly veil, then become (sub)white (2A2, 3A2) at the margin and light yellow-brown (1B5) at the centre, finally become grey-white (1B1) at age, only with brown hue at centre and margin, pubescent; the radial grooves not obvious when young, and extended to the top 1/4 of the cap after maturation, without a clear line at the folding part. Context very thin, only present at the centre part, white (1A2) to cream (1A3). Lamellae narrow adnate, L = 18-24, I = 0 or 1, 0.1-0.2 cm in wide, first white (1A1) to cream (1A3), then brown-grey

-	-	5		-				
			Radial grooves on			Ring- or volva-like part at middle part	Yellow-brown mycelium at	
Section name	Basidiomata size	Pileus colour	pileus	Veil	Lamellae	or base of stipe	base of stipe	Habitat
Sect. <i>Deminuti</i>	Tiny- to small-sized	White to pale yellowish	Present	Minute yellow-brown granular	Distant, free with a distinct pseudocollar		Absent	Soil
Sect. <i>Hepthemeri</i>	Tiny-sized	Pale yellow to yellow- brown at centre, paler towards margin	Present	Minute pellucid yellow-brown granular	Rather distant, free; deliquescent	Absent	Absent	Dung
Sect. Curti	Tiny- to small-sized	Cream, yellow-brown at centre	Not obvious	Minute brown granule	Adnate or free, deliquescent or withering	Absent	Absent	Dung
Sect. Flocculoci	Medium- to large-sized	Pale dirty ochre, grey- ochre	Not obvious	Cream to light brown, woolly flocks	Free, deliquescent	Present	Absent	Wood chips, rotten grass, dung
Sect. Domestici	Medium-sized	Cream, pale ochre, yellow-brown, bright grey-ochre	Not obvious	Whitish, cream, yellow-brown, felty, woolly flocks, become small red- brown or dark brown scales at age	Adnate or almost free, deliquescent	Present	Present	Rotten wood, humus layer of broad-leaved forest
Sect. Coprinellus	Small- to medium- sized	Pale yellow-brown, bright grey-ochre, bright ochre-grey	Present or not obvious	Minute, granular, brown, or ochre flocks	Adnate or almost free, deliquescent	Present	Absent	Clayey soil
Sect. Aureogranulati	Small- to medium- sized	Yellow-brown to orange-brown	Not obvious	Minute, granular, brown, or ochre flocks	Adnate or almost free, deliquescent	Absent	Present	Soil
Sect. Aureodisseminati	· Small-sized	Cream, light yellow- brown at centre	Not obvious when young and present at mature	Sparse, not obvious whitish to cream granule	Adnate or almost free, withering	Absent	Present	Base of trunk, soil
Sect. <i>Micacei</i>	Medium-sized	Light brown to brown, light ochre	Absent or not obvious	Minute, granular, whitish flocks	Adnate or almost free, deliquescent	Present	Absent	Base of trunk, soil
Sect. <i>Disseminati</i>	Tiny- to small-sized	Whitish, cream, light yellow-brown	Present	Sparse, minute, colourless, and/or brown granule, only seen when young	Adnate or almost free, withering, or deliquescent in the moist environment	Absent	Present or absent	Base of trunk, soil

Table 5. Comparison of macro-morphological and habitat of known sections of Coprinellus.

MYCOLOGY 🕁 441

Table 6. Micr	o-morphological ch	aracteristics compari	ison of known sections of	f Coprinellus.					
Section name	Basidiospores	Basidia	Cheilocystidia	Pleurocystidia	Veil elements	Pileipellis	Pileocystidia	Caulocystidia	Clamp connection
Sect. <i>Deminuti</i>	Ellipsoid, smooth, germ pore central	4-spored, dimorphological	Clavate, ellipsoid	Absent	Chains of cylindrical-fusoid cells, encrusted, colourless to bright brown, thick-walled	Unknown	Absent	Present (not mentioned in previous literature)	Absent
Sect. Hepthemeri	Ellipsoid to oblong, smooth, germ pore distinctly eccentric	4-spored, trimorphological	Ellipsoid, utriform	Absent	Globose cells, often with long spine-like projections, thin- to thick-walled	Spherocysto -derm	Present	Present	Absent
Sect. Curti	Ellipsoid or ovoid, smooth, germ pore distinctly eccentric	4-spored, dimorphological	Ellipsoid, utriform	Absent	Globose cells, slightly thick-walled to thick-walled	Spherocysto -derm to paraderm	Present	Present	Present?
Sect. Flocculoci	Ellipsoid to oblong, smooth, germ pore eccentric	4-spored, dimorphological	(Sub)globose, ellipsoid, ovoid	Broadly utriform or subcylindrical	Chains of cylindrical cells, colourless, sometimes encrusted, thin-walled	Paraderm	Absent	Absent	Absent
Sect. Domestici	Ellipsoid, smooth, germ pore central or slightly eccentric	4-spored, trimorphological	Utriform, subglobose, ellipsoid, lageniform	Subglobose, broadly utriform or subcylindrical	Chains of subcylindrical cells or subglobose cells, brown, often thick-walled, sometimes encrusted	Paraderm	Absent	Present	Absent, only pseudoclamp present
Sect. Coprinellus	Ovoid or ellipsoid in front view, amygdaliform in side view, ornamented, germ pore central	4- or 2-spored, trimorphological	(Sub)globose to ellipsoid, lagniform	Present or absent	Globose cells or short chains of subglobose or subcylindrical cells, colourless to pale brown, slightly thick-walled, encrusted	Paraderm	Present	Present	Present or absent
Sect. Aureogranu -lati	Subcylindrical ellipsoid in front view, phaseoliform in side view	4-spored, trimorphological	Lagniform with cylindrical neck	Absent	Chains of subglobose or subcylindrical cells, brown or ochre, thick-walled, encrusted	Spherocysto -derm to paraderm	Present	Present	Absent
Sect. Aureodisse -minati	Ovoid	4-spored, trimorphological	Lagniform	Absent	Globose cells or chains of hyphae- like cells, yellow-brown or light ochre, slightly thin-walled to thick-walled	Spherocysto -derm to paraderm	Present	Present	Absent, but short branches of hyphae near septa, resembling clamp connections abundant
Sect. <i>Micacei</i>	Ellipsoid, ovoid, mitriform	4-spored, trimorphological	Subglobose, ellipsoid, or ovoid	Ellipsoid, ovoid, or subcylindrical	Globose cells, colourless to light brown or light ochre, slightly thick-walled	Paraderm	Present or absent	Present or absent	Absent, only pseudoclamp present
Sect. Disseminati	Ovoid	4-spored, mono-, di- or trimorphological	Absent in most species, the presence still in doubt in C. <i>disseminatussemi</i> - <i>lis</i>	Absent	Two types: 1) chains of small, thick-walled, cream to dark brown, ellipsoid to subglobose elements; 2) globose cells, colourless, thin-walled to slightly thick-walled	Spherocysto – derm	Present	Present	Absent, but short branches of hyphae near septa, resembling clamp connections abundant

Figure 5. Photographs of fresh fruiting body of *Coprinellus aureodisseminatus*. (a–d) HMJAU67119; (e–f) HMJAU67120; (g–h) HMJAU67118.

(5D3), finally blackish (6F4), not deliquescent at age. Stipe $1.5 - 4.5 \times 0.1 - 0.2$ cm, white (1A2) to cream (1A3), sometimes with a brown hue at the lower part of the stipe, hollow, crispy, pubescent, without a volva-like margin, often attached to a cream (1A3) to rust-brown (7E8) ozonium-state.

Basidiospores [78, 7, 4] (7.9)9.0 – 9.2(10.1) × (5.2) 5.4 – 5.6(6.1) × (4.7)5.3 – 5.4(5.8) μ m, Q₁ = 1.49 – 1.83, Q₂ = 1.53 – 1.92, ovoid in frontal view, amygdaliform with acute apex in side view, dark red-brown (7E8) in water and blackish (7F7) in 5% KOH solution; germ pore central, $1.7 - 2.4 \,\mu\text{m}$ in wide. Basidia trimorphologic, $15 - 37 \times 5 - 8 \,\mu\text{m}$, short clavate to clavate, usually constricted at the middle part, 4-spored, sterigmata $3 - 6 \,\mu\text{m}$ in length; each basidium surrounded with 4 - 6 pseudoparaphyses. Cheilocystidia lageniform, $16 - 68 \times 10 - 18 \,\mu\text{m}$, with $5 - 7 \,\mu\text{m}$ wide, tapering neck, sometimes with $3 - 5 \,\mu\text{m}$, lanceolate or $5 - 8 \,\mu\text{m}$, obtuse or subcapitate apex. Pleurocystidia unseen. Hymenophoral trama regular. Pileipellis in

Figure 6. Micromorphological features of *Coprinellus aureodisseminatus*. (a) Pileocystidia; (b) Pileipellis; (c1–c2) Veils composed of yellow-brown globose cells; (d) Basidiospores; (e) Basidia; (f) Cheilocystidia; (g) Caulopellis of the upper part of stipes; (h) Longitudinal section of the lower part of stipes; (i) Colorless to light yellow mycelium at base of stipes; (j) Top view of the lower part of stipes; (k) Hyphae of ozonium at base of stipes. Bars: a–b, c1–c2, e–k = $20 \mu m$; d = $5 \mu m$.

spherocystoderm at ridge part and in paraderm in groove part, consisting of subglobose cells, $18 - 72 \times 15 - 67 \mu$ m, hyaline to light yellow-brown (5A5), thinwalled to slightly thick-walled; pileocystidia slender lageniform, $63 - 138 \times 8 - 23 \mu$ m, with $6 - 12 \mu$ m wide, tapering neck, sometimes subcapitate apex, hyaline or

with brown hue at the base, thin-walled to slightly thickwalled. Caulopellis hyphae $3-8 \mu m$ wide, hyaline to yellow-brown (6C7), strongly multiple-branched and diverticulate which usually with septa, thin-walled; hyphae of stipe trama $13-27 \mu m$ wide, hyaline, thinwalled to somewhat thick-walled; caulocystidia

Figure 7. *Coprinellus aureodisseminatus.* (A) Basidiomata; (B) Pileipellis; (C) Basidiospores; (D) Basidia; (E) Cheilocystidia; (F) Hyphae of ozonium; (G) Longitudinal section of stipes: (G1) Middle and upper part of stipes; (G2) Lower part of stipes. Bars: A = 1 cm; B-G = 10 µm.

lageniform, $25 - 174 \times 11 - 13 \mu m$, with $5 - 9 \mu m$ wide, erect or bender, tapering neck, usually with capitate apex (sometimes in shape like thanatophidia head), same colour with hyphae of caulopellis. Elements of veil at peilus most in subglobose to globose, $16 - 70 \times$ $16 - 55 \mu m$, occasionally attached with a $2 - 5 \mu m$, short hyphae-like cell; elements of veil on stipe mostly consisted of hyphae-like cell, $4 - 6 \mu m$ in width, some subglobose to ellipsoid cells also present, $13 - 40 \times 12 - 27 \mu m$, slightly thick-walled, yellow-brown to dark brown. Hyphae of ozonium parallel dense arrangement, $3 - 6 \mu m$, slightly thick-walled to thick-walled, cream (1A3) to rust-brown (7E7), darker in 5% KOH solution. Clamp connection absent, but pseudocystidia present, and short side-branches of hyphae near septa which resemble clamp connections are often observed.

Habitat: In groups or caespitose on the bark of the broad-leaved tree or ground of a forest. Usually occurs in late spring to early autumn.

Distribution: Southeast and Southwest China.

Additional specimens examined: China: Zhejiang Province: Lishui City, Qingyuan County, Qingyuan Town, Baishanzu National Park, on rotten wood of broad-leaved tree, 15 August 2015, Tolgor Bau, HMJAU67120 (ITS: OR436414; LSU: OR436374); same location, on moss layer on the trunk of the broadleaved tree, 25 August 2023, Yong Zhou, HMJAU67119; Yunnan Province: Kunming City, Yeya Lake, on rotten wood of the broad-leaved tree, 7 August 2016, Tolgor Bau and Jun-Qing Yan, HMJAU67121 (ITS: OR436415; LSU: OR436375).

Notes: C. aureodisseminatus displays macroscopic similarities to C. disseminatus when mature, however, the pileus of the latter is initially whitish and exhibits a distinct line or groove when young. Microscopically, C. disseminatus lacks cheilocystidia, and its pileipellis consists of spherocystoderm, whether at the ridge or the groove. Additionally, the veil elements are comprised of two types of cells: one type is (sub)globose, hyaline, and thin-walled, while the other type mainly consists of chains of ellipsoid or subglobose, brown or ochre, thick-walled cells. It is worth noting that C. aureodisseminatus has been discovered in Australia, initially as "C. disseminatus" (Hubreqtse 2019), and in Ecuador as endophytes. These findings indicate that this species might have a widespread presence in subtropical or tropical areas (unpublished).

Coprinellus parcus T. Bau, L.Y. Zhu & M. Huang sp. nov, Figures 8–10

MycoBank: MB 849761.

Etymology: "parcus" refers to the relatively small size of this species in sect. *Disseminati*.

Diagnosis: Basidiomata tiny-sized; pileus almost without brown hue, white to pearl white when young and become grey-white at age; basidia dimorphologic, most in short clavate; terminal cells of caulopellis at the lower part of stipes most in globose to ellipsoid, or utriform; usually seen in grassland and distributed in southern China.

Type: China: Guangdong Province: Zhaoqing City, Dinghu Mountain National Nature Reserve, on moss layer on stone in broad-leaved forest, 11 May 2017, Mei Huang, HMJAU46316 (ITS: OL355008; LSU: OL375245).

Description: Basidiomata tiny-sized. Pileus 0.3–0.9 cm, first subglobose or ovoid, semisphere to obtuse conical when mature, sometimes with a rounded umbo; white to pearl white (2A2) when young, become grey-white (6B1, 6B2) at age, sometimes white (1A2) to cream (1A3) at centre; the radial grooves extended to the top 1/3 of the cap after maturation, with a clear line at the folding part; pubescent. Context is very thin, only present at the centre part, white to cream. Lamellae narrow adnate, L = 18 - 22, I = 0 or 1, 0.1 cm in wide, first white (1A2) to cream (1A3), then brown-grey (6D4), finally blackish (6E2), not deliquescent at age. Stipe $1.8 - 3.9 \times 0.05 - 0.1$ cm, white (1A2) to cream (1A3), hollow, crispy, pubescent, without a volva-like margin, often attached to a cream (1A3) ozonium-state.

Basidiospores [60, 6, 6] (6.0)7.1 – 7.3(8.3) × (4.1) $4.6 - 4.7(5.1) \times (3.8) 4.3 - 4.5(4.9) \ \mu m, \ Q_1 = 1.43 - 1.77,$ $Q_2 = 1.54 - 1.75$, ovoid in frontal view, amygdaliform with acute apex in side view, obconical at base and truncate at apex, dark red-brown (7E7) in water and blackish (7E4) in 5% KOH solution; germ pore central to slightly eccentric, 0.6 – 1.7 µm in wide. Basidia dimorphological, $10 - 20 \times 6 - 8 \mu m$, most in short clavate, 4-spored, sterigmata $2-4 \mu m$ in length; each basidium surrounded with 3-5 pseudoparaphyses. Cheilocystidia and pleurocystidia absent. Hymenophoral trama regular, trama hyphae $10 - 18 \,\mu m$ in wide. Pileipellis spherocystoderm at ridge part and groove part, consisting of subglobose cells, $15-54 \times 12-43 \,\mu$ m, hyaline, thin-walled to slightly thick-walled; pileocystidia clavate to slender lageniform, $121 - 259 \times 11 - 32 \,\mu$ m, with $9 - 14 \,\mu$ m wide, tapering neck, sometimes subcapitate apex, hyaline or with brown hue at base, thin-walled to slightly thick-walled. Caulopellis hyphae $2-6 \mu m$ wide, hyaline, sometimes branched and diverticulate, thin-walled to slightly thickwalled; hyphae of stipe trama $10 - 18 \,\mu\text{m}$ wide, hyaline, thin-walled to somewhat thick-walled. Caulocystidia lageniform to long lageniform, $28 - 170 \times 17 - 18 \,\mu\text{m}$, with 4 – 6 µm wide, erect or bender, tapering neck; terminal cells of caulopellis at lower part of stipes most in globose to ellipsoid, or utriform, $14 - 56 \times 8 - 24 \mu m$, sometimes with $4-6 \,\mu m$ wide stem, same colour with hyphae of caulopellis. Elements of the veil at pileus most in subglobose to globose, $16 - 53 \times 5 - 7 \mu m$, hyaline, thin-walled to slightly thick-walled; elements of the veil

Figure 8. Photographs of fresh fruiting bodies of Coprinellus parcus. (a-b) HMJAU67133; (c-d) HMJAU67155; (e-g) HMJAU67132.

on stipe mostly consisted of single or chains of subglobose to globose elements, $12 - 41 \times 9 - 35 \mu m$ when colourless, $6 - 12 \times 5 - 7 \mu m$ and with a constricted middle part when yellow-brown (6C7) to dark brown (6D8), sometimes attached with a hyphae-like element, $2 - 7 \mu m$ in width, usually branched and diverticulate, thinwalled to slightly thick-walled. Clamp connection and pseudoclamps absent.

Habitat: In groups or caespitose in grassland or on the bark of a broad-leaved tree. Usually occurs in the middle spring to summer.

Distribution: South China.

Additional specimens examined: China: Guangdong Province: Zhaoqing City, Dinghu Mountain National Nature Reserve, on moss layer on stone in the broadleaved forest, 11 May 2017, Mei Huang, HMJAU46315 (ITS: OR436404; LSU: OR436384); Guangzhou City, a campus of South China Agricultural University, in grassland, 11 April 2023, Jia-Yin Lin and Kun-Long Yang, HMJAU67133 (ITS: OR436405); Guangzhou City, Tianhe District, Huolushan Forest Park, on soil near Ficus microcarpa, 15 May 2023, An-Fei Zeng, HMJAU67137; Guangzhou City, Huangpu District, Niutou Moutain, on deciduous leaves of broad-leaved tree, 13 November 2023, Yu-Rong Liang, HMJAU67155; Shenzhen City, Longgang District, Furong Garden of Lotus Villa, in grassland, 26 April 2023, Li Yin, HMJAU67132 (ITS: OR436406; LSU: OR436387). Guangxi: Chongzuo City, Longzhou county, Nonggang National Nature Reserve, on rotten wood of broad-leaved tree, 17 May 2017, Tolgor Bau, Mei Huang, and Guang-Fu Mou, HMJAU46320 (ITS: OR436402; LSU: OR436385); same location, on soil

Figure 9. Micromorphological features of *Coprinellus parcus*. (a) Veil cells attaching pileus; (b) Pileipellis; (c) Basidiospores; (d) Basidia; (e) Veils composed of short chains of light yellow-brown to dark brown, subglobose to ellipsoid cells; (f) Veils and subglobose to ellipsoid caulocystidia; (g) Longitudinal section of stipes. Bars: a-b, $d-g = 20 \mu m$; $c = 5 \mu m$.

under broad-leaved forest, 16 May 2017, Tolgor Bau, Mei Huang, and Guang-Fu Mou, HMJAU46323 (ITS: OR436403; LSU: OR436386).

Notes: C. austrodisseminatus is similar to C. parcus in terms of colour and distribution, however, it could be distinguished by the latter by its larger pileus size, and its basidium is surrounded by 4–6 pseudoparaphyses, short-branched cylindrical terminal cells of caulopellis at the lower part of stipes, moreover, its caulocystidia and pileocystidia are relatively short which up to 140 µm. C. magnoliae is also found in southern China, it differs from C. austrodisseminatus in that its lamellae are relatively sparser, with a range of L = 16-19. Furthermore, C. magnoliae exhibits a trimorphological basidia.

Coprinellus austrodisseminatus T. Bau & L.Y. Zhu sp. nov, Figures 11–13

MycoBank: MB 849762.

Etymology: The prefix "austro" indicates that this species is distributed in southern China, while "disseminatus" indicates that the species is morphologically close to *C. disseminatus*.

Diagnosis: Basidiomata relatively large in sect. *Disseminati*, pileus usually over 1 cm in diameter, whitish from young to mature; basidia dimorphological; caulocystidia and pileocystidia relatively short which up to 140 μ m, most in clavate to narrow lageniform; terminal cells of caulopellis at the lower part of stipes mostly in short-branched cylindrical; distributed in southern China.

Type: China: Guangdong Province: Guangzhou City, Tianhe District, Linhe Street, Mingyayuan Community, on grassland, 25 April 2023, Hong-Sheng Wang, HMJAU67134 (ITS: OR436393; LSU: OR436378).

Description: Basidiomata small-sized. Pileus 0.7–1.5 cm, first ovoid, obtuse conical when mature, with a rounded umbo; pearl white (1A2) when young,

Figure 10. Coprinellus parcus. (A) Basidiomata; (B) Basidiospores; (C) Basidia; (D) Pileipellis; (E) Longitudinal section of stipes: (E1) Middle and upper part of stipes; (E2) Lower part of stipes. Bars: A = 1 cm; $B - E = 10 \mu \text{m}$.

become grey-white (1B2) at age, cream (1A3) at the centre; the radial grooves extended to the top 1/4 of the cap after maturation, with a clear line at the folding part; pubescent. Context is very thin, only present at the centre part, white to cream. Lamellae narrow adnate, L = 17 - 26, I = 1 - 3, 0.1 cm in wide, first white (1A2) to cream (1A3), then pink-brown (7B3, 7C3), finally dark brown (7E4), not deliquescent at age. Stipe $3.3 - 5.6 \times 0.1$ cm, white (1A1) to cream

(1A3), hollow, crispy, pubescent, without a volva-like margin.

Basidiospores [70, 4, 2] (6.2) 7.6 - 7.9 (9.1) × (4.3) 4.8 - 5.0 (5.8) × (3.8) 4.6 - 4.8 (5.5) µm, $Q_1 = 1.41 - 1.76$, $Q_2 = 1.44 - 1.81$, long ovoid in frontal view, amygdaliform with the acute apex in side view, obconical at the base and truncate at apex, dark red-brown (8E6, 8E8) in water and deep olivaceous (2F7) to blackish (2F3) in 5% KOH

solution; germ pore central to slightly eccentric, $1.3 - 2.7 \,\mu m$ in wide. Basidia dimorphologics, $10 - 19 \times 6 - 9 \, \mu m$, short clavate, 4- or 2- spored, sterigmata 2 – 5 µm in length; each basidium surrounded with 4-6 pseudoparaphyses. Cheilocystidia and pleurocystidia absent. Hymenophoral trama regular, trama hyphae $2-5 \,\mu\text{m}$ in wide. Pileipellis spherocystoderm at ridge part and groove part, consisting of subglobose cells, $20 - 53 \times 17 - 47 \,\mu\text{m}$, hyaline, thinwalled to slightly thick-walled; pileocystidia clavate to lageniform, $40 - 132 \times 13 - 23 \,\mu m$ slender with $7-12\,\mu m$ wide, with subcapitate apex, hyaline or with brown hue at base, thin-walled to slightly thick-walled. Caulopellis hyphae 3-8 µm wide, hyaline, sometimes branched and diverticulate, thin-walled to slightly thickwalled; hyphae of stipe trama $9-33 \,\mu\text{m}$ wide, hyaline, thin-walled to somewhat thick-walled. Caulocystidia most in clavate, occasionally in lageniform, $37 - 132 \times$ $13 - 23 \mu m$, with $7 - 12 \mu m$ wide; terminal cells of caulopellis at the lower part of stipes mostly in short-branched cylindrical, 22-50 µm in length, with obtuse apex. Elements of the veil at the centre of the pileus are composed of chains of thick-walled, cream (1A3) to dark brown (5E7), ellipsoid to subglobose elements, $7 - 31 \times 4 - 31 \mu m$; elements of the veil at the margin of pileus composed of thinwalled, hyaline, subglobose to globose elements, $22 - 74 \times$ 20-60 µm. Hyphae of ozonium parallel dense arrangement, $3-6 \mu m$, slightly thick-walled to thick-walled, cream (1A3) to light brown (4B5), darker in 5% KOH solution. Clamp connection and pseudoclamps are absent.

Habitat: In groups or caespitose in grassland or on the bark of broad-leaved tree. Usually occurs in the middle spring to summer.

Distribution: Southern China.

Additional specimens examined: China: Hunan Province: Changsha City, Yuelu Mountain Scenic Area, on soil in the broad-leaved forest, 19 July 2012, Tolgor Bau, HMJAU25112 (ITS: OR436394; LSU: OR436377).

Notes: C. austrodisseminatus is the sister of C. disseminatisimilis, a species that has been reported in Pakistan. However, the pileus of C. disseminatisimilis is usually greyish-brown when mature, and its basidiospores have relatively small germ pores $(0.5 - 1.0 \,\mu\text{m} \text{ in dia$ $meter})$. C. magnoliae and C. parcus are also distributed in southern China, however, they are relatively smallsized macroscopically (diameter of pileus usually less than 0.7 cm) and process longer pileocystidia and caulocystidia (up to $170 \,\mu$ m). Additionally, *C. magnoliae* exhibits trimorphological basidia.

Coprinellus magnoliae N.I de Silva, Lumyong & K.D. Hyde, Figures 14–16

Description: Basidiomata tiny-sized. Pileus 0.4 - 0.7 cm, first ellipsoid, semisphere when mature, without a rounded umbo; (sub)white (3A1) when young, become grey-white (5B1) or light purple-brown (7B2) to purple-grey (9D2) at age, without brown hue at the centre; the radial grooves extended to the top of the cap after maturation, with a clear line at the folding part which is slightly darker than other parts; pubescent. Context very thin, only present at the centre part, white (1A2) to cream (1A3). Lamellae narrow adnate, L = 16 - 19, I = 1, 0.1 - 0.2 cm in wide, first white (1A2) to light grey-white (9B1), finally dark brown-grey (7E3), usually deliquescent at age especially in moist environment. Stipe $2.8 - 4.0 \times 0.1$ cm, white (1A1) to cream (1A3), hollow, crispy, pubescent, without a volva-like margin.

Basidiospores [80, 4, 4] (6.2) 7.4 – 7.6 (8.4) × (3.9) 4.3 - 5.4 (4.7) × (3.4) 4.1 - 4.3 (4.6) µm, Q₁ = 1.55 - 1.91, $Q_2 = 1.62 - 2.04$, long ovoid in frontal view, amygdaliform with acute apex in side view, obconical at base and truncate at apex, dark red-brown (6E5) in water and brown-grey (6E3) in 5% KOH solution; germ pore central to slightly eccentric, 0.8 – 1.8 µm in wide. Basidia trimorphologic, $13 - 31 \times 4 - 7 \mu m$, short clavate to clavate, sometimes bulging in middle part, 4- or 2- spored, sterigmata 3-5 µm in length; each basidium surrounded with 4-6 pseudoparaphyses. Cheilocystidia and pleurocystidia absent. Hymenophoral trama regular, trama hyphae 3 – 9 µm in wide. Pileipellis spherocystoderm at ridge part and groove part, consisting of subglobose, ellipsoid or utriform cells, $22 - 53 \times 14 - 52 \mu m$, hyaline, thin-walled; pileocystidia clavate, lageniform to slender lageniform, $38 - 183 \times 11 - 29 \,\mu\text{m}$, with $10 - 17 \,\mu\text{m}$ wide, with subcapitate apex, hyaline, thinwalled. Caulopellis hyphae 3-6 µm wide, hyaline, sometimes branched and diverticulate, thin-walled; hyphae of stipe trama 11 - 26 µm wide, hyaline, thinwalled to somewhat thick-walled. Caulocystidia clavate to narrow lageniform, $82 - 170 \times 14 - 67 \mu m$, with

Figure 11. Photographs of the fresh fruiting body of Coprinellus austrodisseminatus. (a-b) HMJAU67134.

 $6-16 \,\mu\text{m}$ wide, could be found until the lower part of the stipes. Elements of the veil have two types: 1) chains of ellipsoid to subglobose elements, $19-38 \times 12-25 \,\mu\text{m}$, thick-walled, cream (1A3) to dark brown (6E8); 2) free subglobose to globose elements, $18-45 \times 13-41 \,\mu\text{m}$, thin-walled, hyaline. Hyphae of ozonium parallel dense arrangement, $2-5 \,\mu\text{m}$, slightly thick-walled to thick-walled, cream (1A3) to yellow-brown (5C6), darker in 5% KOH solution. Clamp connection and pseudoclamps are absent. The conidiophores are short and unbranched, constricted at the septa with swollen bases, hyaline, thick-walled, and around 2 μm in wide, the apical cell of each conidiophore could produce one subulate phialide, $8-9 \times 3-4 \,\mu\text{m}$, with a puncta apex. Conidium unseen.

Habitat: In groups or caespitose soil, moss layer, or rotten wood in broad-leaved trees. Usually occurs in the middle of spring to summer.

Distribution: Southern and eastern Asia (China, Thailand).

Additional specimens examined: China: Guangdong Province: Shaoguan City, Chebaling National Nature Reserve, on rotten wood in broad-leaved forest, 7 May 2017, Tolgor Bau and Mei Huang, HMJAU46308, HMJAU46311; same location, on moss layer, HMJAU46307 (ITS: OR436399; LSU: OR436381); Hainan Province: Baisha County, Wuzhishan National Nature Reserve, on rotten wood in broad-leaved forest, Tolgor Bau and Qin Na, 6 June 2018, HMJAU49305 (ITS: OR436400; LSU: OR436382); Guizhou Province: Qiandongnan Mao and Dong Autonomous Prefecture, Leigong Mountain National Forest Park, dead branches of broad-leaved tree, Jun-Qing Yan; Guangxi: Baise City, Leye Courty, Yachang Orchid National Nature Reserve, Niuping Protection Station, clayed soil in broad-leaved forest, Xiao-Liang Liu, Guang-Fu Mou and Li-Yang Zhu, 25 June 2021, HMJAU67122 (ITS: OR436401; LSU: OR436383); Yunnan Province: Kunming City, on rotten woods, October, 2017, Hai-Ying Bau, HMJAU49302; Kunming City, Kunming Botanical Garden, Fuligong Greenhouse, humus layer of *Alocasia macrorrhizos*, Tolgor Bau and Li-Yang Zhu, NaN Invalid Date NaN, HMJAU67135.

Note: This species was initially identified as an asexual endophytic fungus isolated from healthy leaves of Magnolia garrettii in Thailand and here we present the first description of its sexual stage. The main recognition feature of this species is the purple-grey pileus when mature, with the centre of the pileus lacking a brownish-yellow hue. Additionally, the caulocystidia of this species is relatively longer compared to other species in this section, typically measuring $120 - 170 \,\mu\text{m}$ in length, and could also be found even at the lower part of stipes. C. velutipes is close to C. magnoliae, however, it has long-branched terminal cells of caulopellis ($105 - 190 \,\mu\text{m}$ in length) at the lower part of the stipes as well as clamp connection and pseudoclamp. The lower part of the stipes of C. parcus has distinct subglobose or utriform terminal cells that could be distinguished from C. magnoliae.

Coprinellus velutipes T. Bau & L.Y. Zhu sp. nov, Figures 17–19

MycoBank: MB 849765.

Etymology: "velutipes" refers to its stipes with fine tomentum.

Figure 12. Micromorphological features of *Coprinellus austrodisseminatus*. (a) Pileocystidia; (b) Pileipellis; (c) Basidiospores; (d1–d2) Freely exfoliated veil cells; (e1–e2) Veils composed of short chains of light yellow-brown to dark brown, subglobose to ellipsoid cells; (f) Basidia; (g) Longitudinal section of lamellae; (h) Longitudinal section of stipes; (i) Colorless to light yellow mycelium at base of stipes; (j–k) Hyphae of ozonium at base of stipes. Bars: a–b, d1–d2, e1–e2, f–k = 20 μ m; c = 5 μ m.

Diagnosis: Basidiomata tiny-sized; lower part of stipes with fine tomentum which is composed of longbranched cells usually with tapering apex microscopically; with cream to light brown ozonium at base of stipes; basidia trimorphological; clamp connection present but rare and only seen in hyphae of subpileipellis or hymenophoral trama, pseudoclamps abundant in all part.

Type: China: Jiangsu Province: Nanjing City, a greenhouse in the south garden of Nanjing Botanical Garden

Figure 13. Coprinellus austrodisseminatus. (A) Basidiomata; (B) Basidiospores; (C) Basidia; (D1–D2) Pileipellis: (D1) Margin of pileus; (D2) Central of pileus; (E) Longitudinal section of stipes: (E1) Middle and upper part of stipes; (E2) Lower part of stipes; (F) Hyphae of ozonium. Bars: A = 1 cm; $B-F = 10 \mu \text{m}$.

Mem. Sun Yat-Sen, on humus layer of Orchidaceae plant, 2 May 2022, Zi-Han Zhang, HMJAU67124 (ITS: OR436396).

Description: Basidiomata tiny-sized. Pileus 0.3 – 1.3 cm, first subglobose or campaniform, semiglobose to obtuse conical when mature, sometimes with a rounded umbo; white (1A1) to pearl white (2A2) when young, become grey-white (1B1), light purple-grey (14B2) or yellow cream (2A3) at age, light brown yellow (3B3) at the centre; the radial grooves extended to the top, with a clear line at the folding part; pubescent. Context is very thin, only present at the centre part, white (1A1) to cream (3A2). Lamellae narrow adnate, L = 17 - 26, I = 0 or 1, 0.1 cm in wide, first white (1A1) to cream (3A2), then pink-brown (7B2), finally blackish (7F4), undeliquencing at age. Stipe $2.8 - 5.3 \times 0.1 - 0.15$ cm, white (1A2) to cream (3A2), hollow, crispy, pubescent, and with fine tomentum, without a volva-like margin and usually attach to cream to light brown ozonium.

Figure 14. Micromorphological features of *Coprinellus magnoliae*. (a) Pileocystidia; (b) Pileipellis; (c) Basidiospores; (d) Basidia; (e) Veils composed of short chains of light yellow-brown to dark brown, subglobose to ellipsoid cells; (f–g) Freely exfoliated veil cells; (h) Longitudinal section of stipes; (i) Hyphae of ozonium at base of stipes; (j) Colorless mycelium at base of stipes; (k) Conidiophores. Bars: a-b, $d-k = 20 \mu m$; $c = 5 \mu m$.

Basidiospores [120, 6, 4] (6.5) 8.3 - 8.6 (10.7) × (4.4) 4.9 -5.1 (6.2) × (4.2) 4.7 -4.8 (5.5) µm, $Q_1 = 1.38 - 2.03$, $Q_2 = 1.49 - 2.08$, ovoid to long ovoid in frontal view, amygdaliform with acute apex in side view, obconical at the base and truncate at apex, dark red-brown (6E8) in water and blackish (5E3) in 5% KOH solution; germ pore

central to slightly eccentric, $0.9 - 1.9 \,\mu\text{m}$ in wide. Basidia trimorphological, $14 - 26 \times 6 - 10 \,\mu\text{m}$, short clavate to clavate, 4- or 2- spored, sterigmata $3 - 5 \,\mu\text{m}$ in length; each basidium surrounded with 4 - 6 pseudoparaphyses. Cheilocystidia and pleurocystidia absent. Hymenophoral trama regular, trama hyphae $2 - 7 \,\mu\text{m}$ in wide. Pileipellis

Figure 15. Photographs of the fresh fruiting body of Coprinellus magnoliae. (a-d) HMJAU67122.

spherocystoderm at ridge part and groove part, consisting of subglobose cells, $20 - 53 \times 17 - 47 \,\mu\text{m}$, hyaline, thin-walled to slightly thick-walled; pileocystidia clavate to lageniform, $23 - 169 \times 17 - 47 \,\mu\text{m}$, with $9 - 19 \,\mu\text{m}$ wide, tapering neck, sometimes subcapitate apex, hyaline or with brown hue at base, thin-walled, sometimes slightly thick-walled at base. Caulopellis hyphae $4-7 \,\mu m$ wide, hyaline, rare diverticulate at middle and upper part and multiple-branched (29-336 µm in length) and diverticulate at lower part, thin-walled; hyphae of stipe trama $10 - 20 \,\mu\text{m}$ wide, hyaline, thinwalled to somewhat thick-walled. Caulocystidia multishaped: 1) long lageniform to clavate, $81 - 143 \times$ $13 - 22 \mu m$, with $7 - 15 \mu m$ wide, erect or bender, tapering neck; or 2) subglobose to ellipsoid, $16 - 54 \times 10 - 20$ µm, thin-walled to slightly thick-walled. The veil on pileus and stipes only composed of colourless, subglobose to globose cells, $16 - 49 \times 10 - 20 \,\mu\text{m}$, hyaline, thin-walled to slightly thick-walled; terminal cells of caulopellis at the lower part of stipes long-branched, 105 – 190 µm in length, usually with tapering apex. Hyphae of ozonium parallel dense arrangement, 4-6 µm, slightly thickwalled to thick-walled, cream (5A2) to rust-brown (6D8), darker in 5% KOH solution. Clamp connection is rare and only be seen in hyphae of subpileipellis or hymenophoral trama, pseudoclamps abundant in all parts.

Habitat: In groups or caespitose on the humus layer of Orchidaceae plant or on or near a living tree or the bark of the broad-leaved tree. Usually occurs in summer.

Distribution: Eastern and central China.

Additional specimens examined: China: Zhejiang Province: Hangzhou City, Zijingang Campus of Zhejiang University, on living tree of *Styphnolobium japonicum*, 5 July 2021, Tolgor Bau, Wen-Fei Lin, and Li-Yang Zhu, HMJAU67123 (ITS: OR436398); Hunan Province: Changsha City, Yuelu Mountain, on soil near *Platanus hispanica*, 8 July 2022, Li-Yang Zhu, Han-Bing Song, HMJAU67126 (ITS: OR436395; LSU: OR436389); Shaoyang City, Shidai Park, on bark of broad-leaves tree, 3 July 2022, Li-Yang Zhu, Han-Bing Song, HMJAU67125 (ITS: OR436397; LSU: OR436388).

Notes: This species is characterised by its clamp connections and flocculent stipes, while lacking brown veil elements (which were not even observed in young basidiomata in our study). Currently, this species has only been found in eastern and central China. The cream to light brown ozonium of this species is relatively dense on the humus layer of orchids, but scarcer on other substrates. *C. disseminatus* subsp. *orientalis* is similar to *C. velutipes*, while this species lacks clamp connection and has brown thick-walled veil

Figure 16. *Coprinellus magnoliae*. (A) Basidiomata; (B) Basidiospores; (C) Pileipellis; (D) Basidia; (E) Longitudinal section of stipes; (F) Conidiophores; (G) Hyphae of ozonium. Bars: A = 1 cm; $B-G = 10 \mu \text{m}$.

elements. Furthermore, *C. disseminatus* subsp. orientalis is only found in northern China.

Coprinellus disseminatus subsp. *orientalis* T. Bau & L. Y. Zhu subsp. nov, Figures 20–22

MycoBank: MB 849766.

Etymology: "orientalis" indicates that this new subspecies is distributed in northeast Asia.

Diagnosis: Basidiomata tiny-sized; pileus light grey to grey when mature, mostly without brown hue; lamellae relatively sparse (L = 14 - 19); basidia trimorphological; terminal cells of caulopellis at the lower part of stipes mixed with short-branched, long-branched and urtiform or ellipsoid cells; distributed in northeast Asia.

Type: China: Jilin Province: Changchun City, a campus of Jilin Agricultural University, on the base of the living tree of *Salix* spp., 16 September 2020, Li-Yang Zhu, HMJAU67128 (ITS: OR436409).

Figure 17. Micromorphological features of *Coprinellus velutipes*. (a) Basidiospores; (b) Basidia; (c) Longitudinal section of lamellae; (d1–d2) Freely exfoliated veil cells; (e) Veil cells attaching pileus; (f) Longitudinal section of pilei; (g) Longitudinal section of lower part of stipes; (h) Long branches of hyphae of caulopellis of lower part of stipes; (i) Longitudinal section of upper part of stipes; (j1–j3) Short branches of hyphae near septa, resembling clamp connections; (k) Clamp connection; (l) Hyphae of ozonium. Bars: $a = 5 \mu m$; $b-l = 20 \mu m$.

Description: Basidiomata tiny-sized. Pileus 0.3 - 0.9 cm, first subglobose, pearl white to pale grey, cover with yellow-brown to dark brown powdery or finely scaly scales; then become ellipsoid or campaniform, white (1A1), cream (3A2) to light yellow-brown (3B3), the colour on the centre of pileus usually darker; obtuse conical when mature, light grey (1B1) to grey, mostly without brown hue; the radial grooves extended to the top, with a clear line at the folding part; pubescent. Context is very

Figure 18. Photographs of the fresh fruiting body of Coprinellus velutipes. (a-b) HMJAU67124; (c) HMJAU67125; (d) HMJAU67123.

thin, only present at the centre part, white (1A1) to cream (3A2). Lamellae narrow adnate, L = 14 - 19, I = 0 - 3, 0.1 cm in wide, first white (1A1) to cream (3A2), then purple-brown (7B2), finally blackish (7F4), mostly non-deliquescent at age except in moist environment. Stipe $1.3 - 3.8 \times 0.1 - 0.15$ cm, white (1A2) to cream (3A2), hollow, crispy, pubescent, and with fine tomentum at the middle and lower part of the stipe, without a volva-like margin. Ozonium at the base of the stipe is absent most time.

Basidiospores [60, 6, 5] (6.3) 7.9 - 8.2 (9.0) × (4.4) $4.9 - 5.1 (5.6) \times (4.5) 4.8 - 5.0 (5.7) \mu m$, $Q_1 = 1.36 - 1.77$, $Q_2 = 1.47 - 1.83$, ovoid to long ovoid in frontal view, amygdaliform with the acute apex in side view, obconical at the base and truncate at apex, dark red-brown (6E8) in water and blackish (5E3) in 5% KOH solution; germ pore central to slightly eccentric, $1.0 - 1.9 \,\mu\text{m}$ in wide. Basidia trimorphological, $11 - 31 \times 4 - 8 \mu m$, short clavate to clavate, 4-spored, sterigmata 3-4 µm in length; each basidium surrounded with 4-6 pseudoparaphyses. Cheilocystidia and pleurocystidia absent. Hymenophoral trama regular, trama hyphae 2-11 µm in wide. Pileipellis spherocystoderm at ridge part and groove part, consisting of subglobose cells, $20 - 57 \times 18 - 46 \,\mu\text{m}$, hyaline, thin-walled to slightly thick-walled; pileocystidia clavate to lageniform, $71 - 211 \times 8 - 29 \,\mu$ m, with $9 - 16 \,\mu$ m wide, tapering neck, sometimes subcapitate apex, hyaline or with brown hue at base, thin-walled, sometimes slightly thick-walled at base. Caulopellis hyphae $2-6\,\mu m$ wide, hyaline, rare diverticulate at middle and upper part and multiple-branched (16-96 µm in length) and diverticulate at lower part, thin-walled; hyphae of stipe trama $10 - 22 \,\mu m$ wide, hyaline, thinwalled to somewhat thick-walled. Caulocystidia long lageniform to clavate, $41 - 180 \times 16 - 33 \mu m$, with $6 - 13 \,\mu\text{m}$ wide, erect or bender, tapering neck; terminal cells of caulopellis at the lower part of stipes mixed with short-branched, long-branched and urtiform or ellipsoid cells. The veil on pileus and stipes dimorphologic: (1) subglobose colourless, to globose cells, $16 - 49 \times 10 - 20 \,\mu$ m, hyaline, thin-walled to slightly thick-walled; (2) chains of light yellow-brown to dark brown, subglobose to ellipsoid cells, $6-20 \times$ $6 - 15 \,\mu\text{m}$, thick-walled. Clamp connection absent.

Habitat: In groups or caespitose on the base of the trunk or near living trees or bark of broad-leaved trees. Usually occurs in summer to autumn.

Distribution: North and Northeast China.

Additional specimens examined: China: Heilongjiang Province: Yichun City, Liangshuihe National Forest Park, on rotten woods, 29 August 2015, Tolgor Bau, HMJAU46466, HMJAU46467; Jiamusi City, Fuyuan City, Tongjiang Town, Dongfa Village, on moss layer on

Figure 19. Coprinellus velutipes. (A) Basidiomata; (B) Pileipellis; (C) Basidiospores; (D) Basidia; (E1–E2) Longitudinal section of stipes: (E1) Middle to upper part of stipes; (E2) Lower part of stipes; (F) Hyphae of ozonium. Bars: A = 1 cm; $B-F = 10 \mu \text{m}$.

trunk of living tree of *Quercus mongolicus*, 29 July 2023, Li-Yang Zhu and Wei-Nan Hou, HMJAU67140; Inner Mongolia Autonomous Region: Tongliao City, Daqinggou National Nature Reserve, on bark of living tree, 1997, Tolgor Bau, HMJAU1651; same location, on rotten wood, 16 June 2018, Tolgor Bau and Mei Huang, HMJAU46427; same location, on bark of living tree, 6 August 2021, Tolgor Bau and Li-Yang Zhu, HMJAU67131 (ITS: OR436407); Jilin Province: Changchun City, Jingyuetan National Forest Park, on bark of willow (*Salix* spp.) tree, Jian-Rui Wang, 24 June 2005, HMJAU3734, HMJAU3744; same location, on rotten woods, 25 June 2017, Qin Na and Ming-Zheng Duan, HMJAU46334; same location, on rotten woods,

Figure 20. Photographs of the fresh fruiting body of *Coprinellus disseminatus* subsp. *orientalis*. (a) HMJAU67140; (b) HMJAU67141; (c) HMJAU67131; (d) HMJAU67139; (e-h) HMJAU67128 (type).

7 July 2017, Mei Huang, HMJAU46362; Changchun City, campus of Jilin Agricultural University, on base of broad-leaved tree, 15 July 2023, Li-Yang Zhu and Jun-Lin Wei, HMJAU67141; Yanbian Korean Autonomous Prefecture, Antu County, Erdaobaihe Town, on rotten wood, 18 July 2001, Tolgor Bau, HMJAU5168; same location, on rotten wood, 30 July 2014, Tolgor Bau, HMJAU35909; Yanbian Korean Autonomous Prefecture, Dunhua City, Hancongling State Forest Farm, on root of *Pinus koraiensis*, 27 July 2022, Tolgor Bau and Li-Yang Zhu, HMJAU67130 (ITS: OR436411; LSU: OR436380); Yanbian Korean Autonomous Prefecture, Fusong County, Lushui River Hunting Ground, 25 June 2009, Tolgor Bau, HMJAU22008 (ITS: OR436408; LSU: OR436379); Yanbian Korean Autonomous Prefecture, Antu County, Erdaobaihe

Figure 21. Micromorphological features of *Coprinellus disseminatus* subsp. *orientalis*. (a) Basidiospores; (b) Basidia; (c1–c2) Freely exfoliated veil cells; (d) Dark brown, subglobose to ellipsoid veil cells; (e) Longitudinal section pileus of the young fruiting body; (f) Longitudinal section of pileus of the mature fruiting body; (g) Short branches of hyphae near septa, resembling clamp connections; (h) Hyphae of ozonium; (i) Colorless to light yellow mycelium at base of stipes; (j) Longitudinal section of the upper part of stipes; (k) Longitudinal section of the lower part of stipes. Bars: $a = 5 \mu m$; $b-k = 20 \mu m$.

Town, Heping Forest Farm, on rotten woods, 26 July 2017, Yu-Peng Ge, HMJAU67143; Yanbian Korean Autonomous Prefecture, Helong City, Bajiazi Town, Xianfeng National Forest Park, on the base of broad-leaved tree, 22 August 2020, Tulgor Bau and Li-Yang

Zhu, HMJAU67139; Jilin City, Jiaohe City, Laoyeling Mountain, on ground under forest, 13 June 2009, Tolgor Bau, HMJAU21901; Jilin City, Jiaohe City, Qianjin Forest Farm, 26 June 2017, Tolgor Bau and Mei Huang, HMJAU46339; Jilin City, Jiaohe City,

Figure 22. Coprinellus disseminatus subsp. orientalis. (A) Basidiomata; (B) Basidiospores; (C) Pileipellis; (D) Basidia; (E1–E2) Longitudinal section of stipes: (E1) Middle to upper part of stipes; (E2) Lower part of stipes. Bars: A = 1 cm; B-F = 10 µm.

Shengli River Forest Farm, on stump of broad-leaved tree, 27 June 2017, Tolgor Bau and Mei Huang, HMJAU46345, HMJAU46346; Jilin City, Jiaohe City, Shansongling Mountain, on root of fallen broad-leaved tree, 26 July 2022, Tolgor Bau and Li-Yang Zhu, HMJAU67129 (ITS: OR436410); Shaanxi Province: Yangling Agricultural Hi-tech Industries Demonstration Zone, campus of Northwest A&F University, on the ground around with *Albizia* *julibrissin*, 20 September 2020, Hui-Ning Peng, HMJAU67127 (ITS: OR436412).

Notes: The distribution in Northeast Asia is a significant distinguishing characteristic of this subspecies. The pileus of the original subspecies found in Europe was previously described as pale brown, yellow-brown, or ochre, but the colour of materials we collected usually lacked the yellow-brown hue. Additionally, the basidia of the original subspecies are relatively larger $(16 - 41 \,\mu\text{m})$ than those of the specimens we observed here. The presence of multiple-branched and diverticulate caulopellis hyphae at the lower part of the stipes was not reported in the original subspecies, but we found it to be a relatively stable characteristic in *C. disseminatus* subsp. *orientalis. C. velutipes* also process similar structures, while their branches are much longer, measuring up to 336 μm in length.

Furthermore, we identified a unique 54 bp length sequence in the hyper-variable ITS1 domain (5'-TTGCRTGTGCGTAGCRCTGCGTGTTCGCGCRCGTTGCG-TTGCGTACGGGCTC(T)A-3', site 135 to 190; shown in Table 2) for this subspecies. This sequence could also distinguish this Northeast Asian subspecies from the original subspecies from Europe. The blast result with this sequence (Figure S2) revealed that the most similar sequences were all located in Northeast Asia. Therefore, we consider these fragments as the DNA barcode of this subspecies.

Tulosesus pseudodisseminatus (T. Bau & M. Huang) T. Bau & L.Y. Zhu comb. nov

MycoBank: MB 849767.

Basionym: Coprinellus pseudodisseminatus T. Bau & M. Huang, in Huang & Bau, Phytotaxa 374(2): 119–28 (2018).

Etymology: The prefix "pseudo" means false and "disseminatus" means the morphological similarity between this species and *C. disseminatus*.

Type: China: Jilin Province, Lushuihe National Forest Park, Baishan City, August 7, 17, Tolgor Bau and Mei Huang, HMJAU46301.

Additional specimens examined: China: Heilongjiang Province: Yichun City, Liangshuihe National Forest Park, on rotten woods, 16 July 2016, Jun-Qing Yan and Qin Na, HMJAU46303; Jilin Province: Yanbian Korean Autonomous Prefecture, Antu County, Erdaobaihe Town, Mountain near Academy of Sciences of Changbai Mountain, rotten woods, 6 August 2017, Tolgor Bau and Mei Huang, HMJAU46300; Guangdong Province: Shaoguan City, Chebaling National Nature Reserve, on rotten woods, 8 May 2017, Mei Huang, HMJAU46312; Zhaoqing City, Dinghushan National Nature Reserve, on rotten woods, 10 May 2017, Mei Huang, HMJAU46298; Chongqing City: Fuling District, Baihe Forest Park, on bark of living tree, 2 October 2017, Mei Huang, HMJAU46302; Hainan Province: Yuedong County, Jianfengling National Nature Reserve, Mingfeng Valley, on rotten woods, 28 June 2018, Tolgor Bau and Qin Na, HMJAU46442; Guangxi Zhuang Autonomous Region: Chongzuo City, Longzhou County, Nonggang National Nature Reserve, on rotten woods, 16 May 2017, Mei Huang, HMJAU46299; same location, on rotten woods, 17 May 2017, Mei Huang, HMJAU46321.

Notes: T. pseudodisseminatus is phylogenetic close to *T. velatopruinatus*, and these two species share similar ellipsoid to oblong basidiospores and cylindrical veil elements that differ from "fairy inkcap" in *Coprinellus*. However, *T. velatopruinatus* mostly grows on grassland, with pileus that are usually tussle-shaped to flat when mature, and cheilocystidia that are mostly globose to ellipsoid. In comparison, *T. subdiseminatus* mainly grows on grassland and lacks cheilocystidia.

Tulosesus subdisseminatus (M. Lange) D. Wächt. & Melzer, Figures 23, 24

Description: Basidiomata tiny-sized. Pileus 0.4 - 0.7 cm, first ellipsoid, semisphere when mature, without a rounded umbo; cream (1A2) when young, become grey-white (1B1) or light purple-grey (11D2) at age, light orange-brown (6B5) at the centre; the radial grooves extended to the top of the cap after maturation; pubes-cent. Context very thin, only present at the centre part, white (1A1) to cream (1A2). Lamellae narrow adnate, L = 16 - 19, I = 1, 0.1 cm in wide, first white to light grey-white (9B1), finally light red-brown (9D5), non-deliques-cent at age. Stipe $2.1 - 3.0 \times 0.1$ cm, white (1A1) to cream (1A2), hollow, crispy, pubescent, without a volva-like margin.

Basidiospores [40, 3, 1] (10.6) 11.8 – 12.3 $(14.9) \times (5.7)$ 6.2 - 6.6 $(7.3) \times (5.3)$ 5.9 - 6.3 (7.3) µm, $Q_1 = 1.58 - 2.52$, $Q_2 = 1.68 - 2.40$, oblong to cylindrical in front and side view, dark red-brown (8E8) in water and deep olivaceous (28F4) or dark brown-grey (30F5) in 5% KOH solution; germ pore eccentric, 1.7 – 3.2 µm in wide. Basidia dimorphologics, $17 - 34 \times 6 - 10 \,\mu$ m, short clavate to clavate, 4- or 2- spored, sterigmata $4 - 7 \mu m$ in length; each basidium surrounded with 4-6 pseudoparaphyses. Cheilocystidia pleurocystidia and unseen. Hymenophoral trama regular, trama hyphae 3-12 µm in wide. Pileipellis spherocystoderm at ridge part and groove part, consisting of subglobose, ellipsoid or utriform cells, $16 - 71 \times 14 - 51 \mu m$, hyaline, thin-walled; pileocystidia clavate, lageniform to slender lageniform, $56 - 159 \times 13 - 19 \,\mu\text{m}$, with $7 - 14 \,\mu\text{m}$ wide, hyaline and with brown hue (5B3) at base, thin-walled. Caulopellis hyphae $3-9 \mu m$ wide, hyaline, thin-walled; hyphae of stipe trama 11 – 26 µm wide, hyaline, thin-walled. Caulocystidia clavate to slender lageniform, $95 - 134 \times 13 - 25 \mu m$, with $7 - 12 \,\mu m$ wide, thin-walled, hyaline. Elements of veil unseen. Sclerocystidia absent. Clamp connection present.

Habitat: in groups in grassland. Occur in summer.

Specimens examined: China: Jiangsu Province: Nanjing City, Zhongshan Hill Scenic Area, on lawn, 18 June 2022, Wei-Jie Li, HMJAU67117.

Distribution: Europe (Denmark, the Netherlands, Hungary) (Lange and Smith 1953; Ujlé and Bas 1991), Asia (China).

Note: This species was previously believed to be closely related to *C. disseminatus* (Lange and Smith 1953; Ujlé and Bas 1991; Uljé et al. 2005). However, Wachter and Melzer's phylogenetic results in 2020 confirmed that it should be classified as *Tulosesus*. During our study, we did not observe any cheilocystida, while previous studies based on European materials (Lange and Smith 1953; Ujlé and Bas 1991; Uljé et al. 2005) have described the presence of cheilocystidia. This species is relatively rare and is mostly found on wet sticks and other vegetable substrates, as reported in previous studies.

Key

1. Veil present 2
1. Veil absent
2. Veil only composed of chains of narrow, branched,
hyaline cellsT. pseudodisseminatus
2. Veil mostly composed of hyaline or brown (sub)
globose cells3
3. Hyaline veil cells absent; pileipellis in spherocys-
toderm at ridge part and in paraderm in groove
partC. aureodisseminatus
3. Hyaline veil cells present; pileipellis in spherocys-
toderm at ridge part and groove part4
4. Cheilocystidia present C. disseminatus-similis
4. Cheilocystidia absent
5. Basidia monomorphological or dimorphological.
6
5. Basidia trimorphological, sometimes constricted

in the middle part.....7

Figure 23. Photographs of the fresh fruiting body of Tulosesus subdisseminatus. (a-c) HMJAU67117.

Figure 24. *Tulosesus subdisseminatus.* (A) Basidiomata; (B) Pileipellis; (C) Basidiospores; (D) Basidia; (E) longitudinal section of stipes. Bars: a = 1 cm; $B-E = 10 \text{ }\mu\text{m}$.

- 7. Lower part of the stipe obviously puberulent which is composed of multi-branched hyphae.
- 7. Lower part of the stipe is not obviously puberulent......C. magnoliae

8. Veil cells diomorphological, composed of hyaline (sub)globose cells and short chains of brown or ochre globose cells; clamp connection absent....9

- (9) Pileus with white-grey to grey hue when mature...... *C. disseminatus* subsp. *orientalis*

4. Discussions

4.1. Morphological features and amendment of description of sect. Disseminati

Diverging from previous studies, *C. disseminatus* subsp. *orientalis* and *C. magnoliae* were observed to autolyse in humid environments. Combining these observations, we propose four revisions to the description of sect. *Disseminati*, in addition to the original definition by Wächter and Melzer (2020): 1) Lamellae are generally not deliquescent under most conditions, except for high humidity; 2) Veils consist of two types of elements: Chains of brown, thick-walled subglobose or cylindrical cells (unseen in *C. velutipes*) and free hyaline thin-walled globose cells; 3) Cheilocystidia are absent in most species; 4) Clamp connections are absent in most species, but short side-branches of hyphae near septa, resembling clamps, are often observed.

Although previous descriptions of species in "fairy inkcap" have used basidia types, the criteria for these have not been clearly defined. In this study, we employed numerical classification to cluster the lengths of basidia based on scatter coordinates (Figure S1). Based on our observation of the longitudinal section of gills, we propose that the clustering of basidia length could serve as a taxonomic feature in this section. For example, basidia lengths concentrated in one range could be classified as "monomorphological", while two non-adjacent ranges indicate "dimorphological", and so on. Additionally, the caulopellis of lower stipes and the number of pseudoparaphyses around each basidium differ among species in this section (3 - 5 in C. parcus)and 4-6 in other species in this section), and these features could aid in distinguishing this complex.

Another noteworthy finding is the cream to yellowbrown ozonium state at the base of stipes, which resembles species in sect. *Domestici*, sect. *Aureogranulati*, and our new reported sect. Aureodisseminati. This characteristic, often observed when the fruit body grows on the humus layer of Orchidaceae or the rotten wood of broad-leaved trees, is described here in sect. *Disseminati*. However, further research is needed to determine whether this feature can be regarded as a classification standard.

In comparison with other coprinoid fungi, species in the "fairy inkcap" group are not easily deliquescent. Morphologically, we speculate that this may be due to the absence of cheilocystidia and pleurocystidia. Pseudoparaphyses in this group are narrower than those in other coprinoid fungi, which might also contribute to the difficulty of autodigestion.

4.2. A case of fungal evolution

Our study confirms that the "fairy inkcap" is derived from two genera, yet they do share similar macro- and microscopic characteristics, as well as habitats and growth substrates, suggesting the presence of convergent evolution. Although the functions of pileocystidia and caulocystidia have not been verified, these structures likely play a role in protecting the basidiomata and preventing the adhesion of gills to stipes during development (Nagy et al. 2012). Based on our observation, these hair-like cells likely originate from the pileipellis or caulopellis cells, or in other words, they could be seen as specialised terminal cells of pileus or stipes. Thus, the aforementioned characteristics are preserved in several lineages in coprinoid fungi or have originated in Psathyrellaceae multiple times. Within in genus Coprinellus, similar convergent processes occur, as the presence of such structures is not consistently observed between sister sections (Nagy et al. 2011; Hussain et al. 2018; Wächter and Melzer 2020; Zhu et al. 2022), objectively leading to the difficulties in morphological identification of this type of species.

A high level of genetic diversity was observed in species of sect. *Disseminati*, with haplotype diversity (Hd) \ge 0.500 per population, except for *C. austrodisseminatus* and *C.* sp. (refer to Table 3). This was coupled with relatively low nucleotide diversity (π) < 0.005 per population (refer to Table 3). This phenomenon might be attributed to the similarities in nucleotide sequences among haplotypes, indicating a high potential for dispersal, as

observed in other taxa with population expansion (Uthicke and Benzie 2003; Brown et al. 2004; Ma et al. 2015; Van Doren et al. 2017). Ancient hybridisation in this section is supported by both network analysis (Figure 4) and mutation sites of the ITS region (Table 2). For example, *C. disseminatinus-similis* exhibits significant divergence from *C. disseminatus* and is relatively close to *C. austrodisseminatus* and *C. velutipes*. However, the nucleotide sequences of sites 139–141, 147–148, and 157–159 in the highly variable region of the ITS1 domain of *C. disseminatinus-similis* are identical to those of the former species, despite the distant relationship. These genetic exchanges among populations could contribute to diversification and accelerate the evolution of this lineage.

The speciation process in sect. *Disseminati* likely involves geographic isolation, which may be the primary factor leading to the formation of *C. disseminatus-similis* and the division of different subspecies of *C. disseminatus*. Additionally, the presence of numerous rare variants (Table 2) in *C. austrodisseminatus*, *C. magnoliae*, and *C. parcus*, which share similar distributions and habitats, likely contribute to the differentiation of these three species. These two evolutionary events may represent typical cases of allopatric and sympatric speciation, respectively.

Notably, several specimens we collected, as well as the original materials of the download sequences, are closely related to Orchidaceae. Previous studies on species in this section have suggested that they might be mycorrhizal fungi of orchids and promote orchid seed germination. We speculate that this clade may be undergoing a transformation process from saprophytic to symbiotic trophic types or expanding into additional ecological niches.

Acknowledgments

We thank Prof. Hai-Ying Bau, Dr. Jun-Qing Yan, Dr. Yu-Peng Ge, Dr. Qin Na, Dr. Bang Feng, Dr. Guang-Fu Mou, Mr. Wen-Fei Lin, Mr. Jia-Ming Cai, Mr. Yu-Rong Liang, Mr. Hong-Sheng Wang, Mr. An-Fei Zeng, Mr. Kun-Long Yang, Mr. Bo Xiao, Mr. Wei-Jie Li, Mr. Jun-Jie Liu, Mr. Zi-Han Zhang, Ms. Mei Huang, Ms. Fei-Yang Chen, Ms. Hui-Ning Peng, Ms. Jia-Yin Lin, Ms. Li Yin, Ms. Yi Liu, and Ms. Si-Heng Pu for their kind helps in specimen collection and photographing.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the National Natural Science Foundation of China (32070010) and the Science and Technology Basic Resources Survey Project of the Ministry of Science and Technology of China (2023FY101300).

ORCID

Liyang Zhu (b) http://orcid.org/0000-0001-9376-7507 Tolgor Bau (b) http://orcid.org/0000-0003-2461-9345

Author contributions

Liyang Zhu: Collection, design of methodology, illustration, and writing original draft; Tolgor Bau: Collection, instruction, review, and editing of the original draft.

References

- Arhipova N, Gaitnieks T, Donis J, Stenlid J, Vasaitis R. 2011. Decay, yield loss and associated fungi in stands of grey alder (*Alnus incana*) in Latvia. Forestry. 84(4):337–348. doi: 10.1093/forestry/cpr018.
- Bakys R, Vasiliauskas A, Ihrmark K, Stenlid J, Menkis A, Vasaitis R. 2011. Root rot, associated fungi and their impact on health condition of declining *Fraxinus excelsior* stands in Lithuania. Scand J For Res. 26(2):128–135. doi: 10.1080/02827581.2010. 536569.
- Bas C. 1969. Morphology and subdivision of *Amanita* and a monograph of its section *Lepidella*. Persoonia. 5(4):285–573.
- Bau T, Yan JQ. 2021. A new genus and four new species in the/ *Psathyrella* sl clade from China. MycoKeys. 80:115. doi: 10. 3897/mycokeys.80.65123.
- Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB. 2004. Nucleotide diversity and linkage disequilibrium in loblolly pine. PNAS. 101(42):15255–15260. doi: 10.1073/PNAS. 0404231101.
- Buller AHR. 1924. Researches on fungi. Vol. III. Longmans, London, UK: Green & Comp; p. 611.
- Bulliard P. 1790–1798. Herbier de la France. Paris: BHL Publication.
- Clémençon H. 2012. Cytology and plectology of the hymenomycetes. 2nd revised edition. Gebr. Stuttgart, Germany: Borntraeger Verlagsbuchhandlung; p. 520.
- Clements FE, Shear CL. 1931. The genera of fungi. New York, USA: Hafner; p. 496.
- De Silva NI, de Silva NI, Maharachchikumbura SSN, Thambugala KM, Bhat DJ, Karunarathna SC, Tennakoon DS, Phookamsak R, Jayawardena RS, Lumyong S, et al. 2021. Morpho-molecular taxonomic studies reveal a high number of endophytic fungi from *Magnolia candolli* and *M. garrettii* in China and Thailand. Mycosphere. 12(1):163–237. doi: 10.5943/myco sphere/12/1/3.

- Desjardin DE, Perry BA. 2016. Dark-spored species of agaricineae from Republic of São Tomé and Príncipe, West Africa. Mycosphere. 7(3):359–391. doi: 10.5943/myco sphere/7/3/8.
- Dobzhansky T. 1940. Speciation as a stage in evolutionary divergence. Am Nat. 74(753):312–321. doi: 10.1086/280899.
- Doveri F, Sarrocco S, Pecchia S, Forti M, Vannacci G. 2010. *Coprinellus mitrinodulisporus*, a new species from chamois dung. Mycotaxon. 114(1):351–360. doi: 10.5248/114.351.
- Dvořák P, Jahodářová E, Stanojković A, Skoupý S, Casamatta DA. 2023. Population genomics meets the taxonomy of cyanobacteria. Algal Res. 72:103128. doi: 10.1016/j.algal. 2023.103128.
- Enderle M. 2004. Der Kleine Erd-Tintling, *Coprinus deminutus* Enderle. Z Mykol. 70(2):157–159.
- Folt B, Bauder J, Spear S, Stevenson D, Hoffman M, Oaks JR, Wood PL Jr, Jenkins C, Steen DA, Guyer C, et al. 2019. Taxonomic and conservation implications of population genetic admixture, mito-nuclear discordance, and male-biased dispersal of a large endangered snake, *Drymarchon couperi*. PLoS One. 14 (3):e0214439. doi: 10.1371/journal.pone.0214439.
- Frankham R, Ballou JD, Briscoe DA. 2010. Introduction to conservation genetics. 2nd ed. New York, NY, USA: Cambridge University Press; p. 644.
- Frankham R, Briscoe DA, Ballou JD. 2002. Introduction to conservation genetics. New York, NY, USA: Cambridge University Press; p. 609.
- Gao Y, Peng S, Hang Y, Xie G, Ji N, Zhang M. 2022. Mycorrhizal fungus *Coprinellus disseminatus* influences seed germination of the terrestrial orchid *Cremastra appendiculata* (D. Don) Makino. Sci Hortic. 293:110724. doi: 10.1016/j.scienta.2021. 110724.
- Hartl DL, Clark AG. 1997. Principles of population genetics. Sunderland, MA, USA: Sinauer; p. 635.
- Hopple JS Jr, Vilgalys R. 1994. Phylogenetic relationships among coprinoid taxa and allies based on data from restriction site mapping of nuclear rDNA. Mycologia. 86(1):96–107. doi: 10.1080/00275514.1994.12026378.
- Huang M, Bau T. 2018. New findings of *Coprinellus* species (Psathyrellaceae, Agaricales) in China. Phytotaxa. 374 (2):119–128. doi: 10.11646/phytotaxa.374.2.3.
- Hubregtse J. 2019. Fungi in Australia, Rev. 2.2. Blackburn, Victoria, Australia: Field Naturalists Club of Victoria Inc.
- Huelsenbeck JP, Hillis DM. 1993. Success of phylogenetic methods in the four-taxon case. Syst Biol. 42(3):247–264. doi: 10. 1093/sysbio/42.3.247.
- Hughes KW, Petersen RH, Lodge DJ, Bergemann DJ, Baumgartner K, Tulloss RE, Lickey E, Cifuentes J. 2013. Evolutionary consequences of putative intra-and interspecific hybridization in agaric fungi. Mycologia. 105(6):1577– 1594. doi: 10.3852/13-041.
- Hussain S, Usman M, Ahmad H, Khan J, Khalid AN, Khalid AN. 2018. The genus *Coprinellus* (Basidiomycota; Agaricales) in Pakistan with the description of four new species. MycoKeys. 39:41. doi: 10.3897/mycokeys.39.26743.

- Huyse T, Poulin R, Theron A. 2005. Speciation in parasites: A population genetics approach. Trends Parasitol. 21(10):469–475. doi: 10.1016/j.pt.2005.08.009.
- Ikabanga DU, Stevart T, Koffi KG, Monthe FK, Nzigou Doubindou EC, Dauby G, Souza A, M'Batchi B, Hardy OJ. 2017. Combining morphology and population genetic analysis uncover species delimitation in the widespread African tree genus *Santiria* (Burseraceae). Phytotaxa. 321(2):166– 180. doi: 10.11646/phytotaxa.321.2.2.
- James TY, Srivilai P, Kues U, Vilgalys R. 2006. Evolution of the bipolar mating system of the mushroom *Coprinellus disseminatus* from its tetrapolar ancestors involves loss of mating-type-specific pheromone receptor function. Genetics. 172(3):1877–1891. doi: 10.1534/genetics.105.051128.
- Jargeat P, Martos F, Carriconde F, Gryta H, Moreau PA, Gardes M. 2010. Phylogenetic species delimitation in ectomycorrhizal fungi and implications for barcoding: The case of the *Tricholoma scalpturatum* complex (Basidiomycota). Mol Ecol. 19(23):5216–5230. doi: 10.1111/j.1365-294X.2010.04863.x.
- Katoh K, Standley DM. 2016. A simple method to control overalignment in the MAFFT multiple sequence alignment program. Bioinformatics. 32(13):1933–1942. doi: 10.1093/bioin formatics/btw108.
- Keirle MR, Hemmes DE, Desjardin DE. 2004. Agaricales of the Hawaiian Islands. 8. agaricaceae: Coprinus and Podaxis; Psathyrellaceae: Coprinopsis, Coprinellus and Parasola. Fungal Divers. 15(3):33–124.
- Ko KS, Lim YS, Kim YH, Jung HS. 2001. Phylogeographic divergences of nuclear ITS sequences in *Coprinus* species *sensu lato*. Mycol Res. 105(12):1519–1526. doi: 10.1017/ S0953756201005184.
- Kornerup A, Wanscher JH. 1978. Methuen handbook of colour. London, UK: Eyre Methuen; p. 248.
- Kühner R. 1928. Le developpement et la position taxonomique de l'*Agaricus disseminatus* Pers. Botaniste. 20:147–195.
- Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 33(7):1870–1874. doi: 10.1093/molbev/msw054.
- Laessøe T, Petersen JH. 2019. Fungi of temperate Europe. Princeton, NJ, USA: Princeton University Press; pp. 534–535.
- Lange JE. 1938. Studies in the Agarics of Denmark. Part XII Hebeloma, Naucoria, Tubaria, Galera, Bolbitius, Pluteolus, Crepidotus, Pseudopaxillus, Paxillus. Dan Bot Ark. 9(6):1–104.
- Lange JE. 1939. Flora Agaricina Danica. Vol. 4. Copenhagen, Denmark: Recato; p. 160. (P103).
- Lange M, Smith AH. 1953. The *Coprinus ephemerus* group. Mycologia. 45(5):747–780. doi: 10.1080/00275514.1953. 12024313.
- Larsson E, Örstadius L. 2008. Fourteen coprophilous species of *Psathyrella* identified in the Nordic countries using morphology and nuclear rDNA sequence data. Mycol Res. 112 (10):1165–1185. doi: 10.1016/j.mycres.2008.04.003.
- Leaché AD, Reede TW, Rannala B. 2002. Molecular systematics of the eastern fence lizard (*Sceloporus undulatus*): A comparison of parsimony, likelihood, and Bayesian approaches. Syst Biol. 51(1):44–68. doi: 10.1080/106351502753475871.

Liang JF, Xu J, Yang ZL. 2009. Divergence, dispersal and recombination in *Lepiota cristata* from China. Fungal Divers. 38:105–124.

Li J, He X, Liu XB, Yang ZL, Zhao ZW. 2017. Species clarification of oyster mushrooms in China and their DNA barcoding. Mycol Prog. 16(3):191–203. doi: 10.1007/s11557-016-1266-9.

Lygis V, Vasiliauskas R, Larsson KH, Stenlid J. 2005. Woodinhabiting fungi in stems of *Fraxinus excelsior* in declining ash stands of northern Lithuania, with particular reference to *Armillaria cepistipes*. Scand J For Res. 20(4):337–346. doi: 10. 1080/02827580510036238.

Ma HY, Ma CY, Li CH, Li JX, Zou X, Gong YY, Wang W, Chen W, Ma LB, Xia LJ. 2015. First mitochondrial genome for the red crab (*Charybdis feriata*) with implication of phylogenomics and population genetics. Sci Rep. 5(1):11524. doi: 10.1038/ srep11524.

Medrano M, López-Perea E, Herrera CM. 2014. Population genetics methods applied to a species delimitation problem: endemic trumpet daffodils (*Narcissus* section *Pseudonarcissi*) from the southern Iberian Peninsula. Int J Plant Sci. 175(5):501–517. doi: 10.1086/675977.

Miller MA, Pfeiffer W, Schwartz T 2010. Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). 14 November. New Orleans, LA, USA. p. 1–8.

Mou GF, Bau T. 2021. Asproinocybaceae fam. nov. (Agaricales, agaricomycetes) for accommodating the genera *Asproinocybe* and *Tricholosporum*, and description of *Asproinocybe sinensis* and *Tricholosporum guangxiense* sp. nov. J Fungus. 7(12):1086. doi: 10.3390/jof7121086.

Nagy LG. 2005. Additions to the Hungarian mycobiota 2 *Coprinus* and *Tricholoma*. Österr Z Pilzk. 14:191–301.

Nagy LG, Házi J, Szappanos B, Kocsubé S, Bálint B, Rákhely G, Vágvölgyi C, Papp T. 2012. The evolution of defense mechanisms correlate with the explosive diversification of autodigesting *Coprinellus* mushrooms (Agaricales, fungi). Syst Biol. 61(4):595–607. doi: 10.1093/sysbio/sys002.

Nagy LG, Házi J, Vágvölgyi C, Papp T. 2012. Phylogeny and species delimitation in the genus *Coprinellus* with special emphasis on the haired species. Mycologia. 104(1):254–275. doi: 10.3852/11-149.

Nagy LG, Urban A, Örstadius L, Papp T, Larsson E, Vágvölgyi C. 2010. The evolution of autodigestion in the mushroom family Psathyrellaceae (Agaricales) inferred from maximum likelihood and Bayesian methods. Mol Phylogenet Evol. 57 (3):1037–1048. doi: 10.1016/j.ympev.2010.08.022.

Nagy LG, Walther G, Hazi J, Vágvölgyi C, Papp T. 2011. Understanding the evolutionary processes of fungal fruiting bodies: Correlated evolution and divergence times in the Psathyrellaceae. Syst Biol. 60(3):303–317. doi: 10.1093/sysbio/ syr005.

Nylander J. 2004. Mrmodeltest 2.3. Computer program and documentation distributed by the author. Uppsala, Sweden: Evolutionary Biology Center, Uppsala University.

Örstadius L, Ryberg M, Larsson E. 2015. Molecular phylogenetics and taxonomy in psathyrellaceae (Agaricales) with focus on psathyrelloid species: Introduction of three new genera and 18 new species. Mycol Prog. 14(5):1–42. doi: 10. 1007/s11557-015-1047-x.

Persoon CH. 1801. Synopsis methodica fungorum. Göttingen: Henricum Dieterich; p. 708.

Pinzón JH, Lajeunesse TC. 2011. Species delimitation of common reef corals in the genus *Pocillopora* using nucleotide sequence phylogenies, population genetics and symbiosis ecology. Mol Ecol. 20(2):311–325. doi: 10.1111/j.1365-294x.2010.04939.x.

Quélet L. 1872. Les Champignons du Jura et des Vosges Mémoires de la Société d'Émulation de Montbéliard. Ser. 2:5:43–332.

Redhead SA, Vilgalys R, Moncalvo JM, Johnson J, Hopple JS Jr. 2001. *Coprinus* pers. and the disposition of *Coprinus* species sensu lato. Taxon. 50(1):203–241. doi: 10.2307/1224525.

Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 19:1572–1574. doi: 10.1093/bioinformatics/btg180.

Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbecj JP. 2012.
MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choices across a large model space. Syst Biol. 61 (3):539–542. doi: 10.1093/sysbio/sys029.

Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos Onsins SE, Sánchez-Gracia A. 2017. DnaSP
6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 34:3299–3302. doi: 10.1093/molbev/msx248.

Schaeffer JC. 1774. Fungorum qui in Bavaria et Palatinatu circa Ratisbonam nascuntur icones, nativis coloribus expressae. Erlangae, Apud Joann Jacobum Palmium. 4:1-136. doi: 10. 5962/bhl.title.3884.

Schafer DJ. 2010. Keys to sections of *Parasola*, *Coprinellus*, *Coprinopsis*, and *Coprinus* in Britain. Field Mycol. 11(2):44–51. doi: 10.1016/j.fldmyc.2010.04.006.

Schafer D, Alvarado P, Smith L, Liimatainen K, Loizides M. 2022. Coprinoid psathyrellaceae species from Cyprus: Three new sabulicolous taxa from sand dunes and a four-spored form of the fimicolous species *Parasola cuniculorum*. Mycol Prog. 21(5):52. doi: 10.1007/s11557-022-01803-2.

Stamatakis A. 2014. Raxml version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30(9):1312–1313. doi: 10.1093/bioinformatics/btu033.

Thorn RG, Reddy CA, Harris D, Paul DA. 1996. Isolation of saprophytic basidiomycetes from soil. Appl Environ Microbiol. 62 (11):4288–4292. doi: 10.1128/aem.62.11.4288-4292.1996.

Tóth A, Hausknecht A, Krisai-Greilhuber I, Papp T, Vágvölgyi C, Nagy LG, Joly S. 2013. Iteratively refined guide trees help improving alignment and phylogenetic inference in the mushroom family bolbitiaceae. PLoS One. 8(2):e56143. doi: 10.1371/journal.pone.0056143.

Ujlé CB, Bas C. 1991. Studies in *Coprinus*—II. Subsection *Setulosi* of section *Pseudocoprinus*. Persoonia. 14(3):275–339.

Uljé CB, Noordeloos ME, Kuyper THW, Vellinga EC. 2005. Flora agaricina neerlandica volume 6. Oxfordshire, UK: Taylor & Francis Group; Vol. 226. p. 22–109. *Coprinus* Pers. Flora agaricina neerlandica

Uthicke S, Benzie JAH. 2003. Gene flow and population history in high dispersal marine invertebrates: Mitochondrial DNA

analysis of holothuria nobilis (Echinodermata: Holothuroidea) populations from the Indo-Pacific. Mol Ecol. 12(10):2635–2648. doi: 10.1046/j.1365-294x.2003.01954.x.

- Van Doren BM, Campagna L, Helm B, Illera JC, Lovette IJ, Liedvogel M. 2017. Correlated patterns of genetic diversity and differentiation across an avian family. Mol Ecol. 26 (15):3982–3997. doi: 10.1111/mec.14083.
- Vellinga EC. 1988. Glossary. In: Bas C, Kuyper T, Noordeloos M, Vellinga E, editors. Flora agaricina Neerlandica. Rotterdam, Netherlands: AABalkema; Vol. 1. p. 182
- Wächter D, Melzer A. 2020. Proposal for a subdivision of the family psathyrellaceae based on a taxon-rich phylogenetic analysis with iterative multigene guide tree. Mycol Prog. 19 (11):1151–1265. doi: 10.1007/s11557-020-01606-3.
- Wang SN, Fan YG, Yan JQ. 2022. *lugisporipsathyra reticulopilea* gen. et sp. nov. (Agaricales, psathyrellaceae) from tropical China produces unique ridge-ornamented spores with an obvious suprahilar plage. MycoKeys. 90:147. doi: 10.3897/myco keys.90.85690.
- Wang PM, Liu B, Dai YC, Horak E, Steffen K, Yang ZL. 2018. Phylogeny and species delimitation of *Flammulina*: Taxonomic status of winter mushroom in East Asia and a new European species identified using an integrated approach. Mycol Prog. 17(9):1013–1030. doi: 10.1007/ s11557-018-1409-2.

- White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols: A guide to methods and applications. Cambridge, MA, USA: Academic Press; p. 315–322.
- Wiens JJ. 2007. Species delimitation: New approaches for discovering diversity. Syst Biol. 56(6):875–878. doi: 10.1080/ 10635150701748506.
- Winker K. 2018. Systematics, population genetics, and taxonomy, and their importance for tracking avifaunal change. In trends and traditions: Avifaunal change in Western North America. In: Shuford WD, Gill R, editors. Studies of western birds 3. Camarillo, CA, USA: Western Field Ornithologists; p. 453–465.
- Yagame T, Fukiharu T, Yamato M, Suzuki A, Iwase K. 2008. Identification of a mycorrhizal fungus in *Epipogium roseum* (Orchidaceae) from morphological characteristics of basidiomata. Mycoscience. 49(2):147–151. doi: 10.1007/S10267-007-0396-Y.
- Yan JQ, Bau T. 2018. The Northeast Chinese species of *Psathyrella* (Agaricales, psathyrellaceae). MycoKeys. 33:85. doi: 10.3897/mycokeys.33.24704.
- Zhu LY, Huang M, Bau T. 2022. Taxonomy of coprinoid fungi in China. Mycosystema. 41(6):878–898. doi: 10.13346/j.myco systema.210398.