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Cam morphology is defined as an aspherical femoral head-neck junction that causes

abnormal contact of the acetabular rim with the anterior hip. Imaging confirmation

of the cam morphology, associated with clinical signs and pain in the hip or groin,

is characterized as femoroacetabular impingement (FAI) syndrome. Although some

individuals with cam morphology do not experience any symptoms, sparse studies

have been done on these individuals. Understanding the way asymptomatic individuals

generate muscle forces may help us to better explain the progression of the degenerative

FAI process and discover better ways in preventing the onset or worsening of symptoms.

The purpose of this study was to compare the muscle and hip contact forces of

asymptomatic cam morphology (ACM) and FAI syndrome men compared to cam-

free healthy controls during a deep squat task. This prospective study compared 39

participants, with 13 in each group (ACM, FAI, and control). Five deep squatting trials

were performed at a self-selected pace while joint trajectories and ground reaction forces

were recorded. A generic model was scaled for each participant, and inverse kinematics

and inverse dynamics calculated joint angles and moments, respectively. Muscle and

hip contact forces were estimated using static optimization. All variables were time

normalized in percentage by the total squat cycle and both muscle forces and hip contact

forces were normalized by body weight. Statistical non-parametric mapping analyses

were used to compare the groups. The ACM group showed increased pelvic tilt and

hip flexion angles compared to the FAI group during the descent and ascent phases of

the squat cycle. Muscle forces were greater in the ACM and control groups, compared

to the FAI group for the psoas and semimembranosus muscles. Biceps femoris muscle

force was lower in the ACM group compared to the FAI group. The FAI group had lower

posterior hip contact force compared to both the control and ACM groups. Muscle

contraction strategy was different in the FAI group compared to the ACM and control

groups, which caused different muscle force applications during hip extension. These

results rebut the concept that mobility restrictions are solely caused by the presence

of the cam morphology and propose evidence that symptoms and muscle contraction

strategy can be the origin of the mobility restriction in male patients with FAI.

Keywords: femoroacetabular impingement, cam morphology, biomechanics, squat, muscle forces, hip contact

forces
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INTRODUCTION

Femoroacetabular impingement (FAI) syndrome has become
a common cause for athletic hip injuries, which result in
chondrolabral damage and early hip joint degeneration (Ganz
et al., 2003, 2008; Agricola et al., 2013). The cam-type hip
morphology is defined by an aspherical femoral head-neck that
produces elevated alpha angles and decreased anterior head-neck
offsets (Nötzli et al., 2002), and can result in anterior hip or groin
pain, labral tears, and damage to the acetabular articular cartilage
(Ito et al., 2001; Gosvig et al., 2008; Bowman et al., 2010; Speirs
et al., 2013). Previous studies on FAI pathomechanism have
speculated the existence of the cam-typemorphology as causative
to limit the functional range of motion (ROM), which has been
shown in patients with cam-type FAI who demonstrated less hip
and pelvic ROMduring gait (Kennedy et al., 2009; Rylander et al.,
2011; Brisson et al., 2013; Diamond et al., 2016; Ng et al., 2018b;
Catelli et al., 2019b; Savage et al., 2021), deep squat (Lamontagne
et al., 2009, 2011; Ng et al., 2015; Bagwell et al., 2016; Catelli et al.,
2019a, 2020), stairs (Rylander et al., 2013; Diamond et al., 2018;
Catelli et al., 2019a, 2021), and clinical assessments (Kapron et al.,
2012; Ng et al., 2016). Recent in silico analyses have demonstrated
reduced hip contact forces (HCFs) compared to matched healthy
individuals while performing different tasks (Catelli et al., 2019b,
2020, 2021). However, the increasing reports of individuals
with cam-type morphology who do not show clinical signs or
symptoms (Hack et al., 2010; Jung et al., 2011; Ng et al., 2015,
2018a; Catelli et al., 2018; Graffos et al., 2020) are an indication
that the cam-type morphology alone may not fully justify
symptoms of an individual or limited ROM. Understanding the
way individuals with ACM move may help us better explain the
causality of hip pain and progression of degenerative FAI process
and discover better ways in preventing the onset or worsening of
the symptoms.

The purpose of this study was to compare the muscle and
hip contact forces of ACM and FAI syndrome men compared
to cam-free healthy control (CTRL) individuals during a deep
squat task. It is hypothesized that the ACM kinematics, kinetics,
and muscle forces outputs will resemble the CTRL levels,
instead of the FAI. However, based on analysis of different
tasks (Ng et al., 2018b; Catelli et al., 2019b, 2020, 2021), we
expect the CTRL will still produce higher HCF compared to the
other groups.

MATERIALS AND METHODS

This prospective study compared three participant groups
(symptomatic, asymptomatic, and healthy cam-free individuals)
during cross-sectional observations of their squatting kinematics
and kinetics that fed a computational modeling approach to
estimate hip muscle forces and contact loading. The study
protocol was approved by the University and hospital research
ethics boards. Participants provided informed consent, and
investigations were conducted ethically in conformity with
research principles.

Participants
A 2-year recruitment process initially selected 68 participants
for this study. Twenty-two of them (two women) presented
themselves to the senior orthopedic surgeon with unilateral hip
pain, clinical impingement signs, and a cam-type morphology
(alpha angles > 50.5◦ anteriorly at the 3:00 clock-face position
about the femoral neck, or 60◦ anterosuperiorly at 1:30) (Nötzli
et al., 2002; Rakhra et al., 2009; Barton et al., 2011) were
classified as patients with FAI and scheduled for surgery. Forty-
six participants (six women) were recruited from the community
to serve as controls. Their initial radiographs were taken to
screen for the presence of a cam-type morphology, which was
confirmed positive for several individuals; however, they did
not experience any clinical symptoms. After this finding, the
decision was made to have all participants (with and without
the cam-type morphology) undergo full radiographic screening
using low-dose CT. Each participant underwent diagnostic
CT (Aquilion, Toshiba Medical Systems, Japan or Discovery
CT750, GE Healthcare, Mississauga, Canada) to confirm the
presence of the cam-type morphology. Physical examinations
and impingement tests (i.e., flexion-adduction and internal
rotation - FADIR, flexion-abduction and external rotation -
FABER) were performed to confirm the presence of symptoms.
The asymptomatic individuals remained blinded and were
unaware if they had a cam-type morphology until after the
completion of the study. As a matter of comparison, the affected
hip in patients with FAI with a bilateral cam-type morphology
was the one with greater clinical signs (i.e., surgical side); in the
ACM group, the side of interest was the one with the larger
alpha angle, and the selected hip for the CTRL participants
was based on their dominant leg (i.e., preferred leg to kick a
soccer ball).

Participants were excluded from this study if they had a body
mass index (BMI) higher than 30 kg/m2 or any other hip or spine
deformity, musculoskeletal abnormality, major lower-limb and
spinal injuries, or surgery. As a visual strategy to standardize the
characteristics of the deep squat, participants were also excluded
in case they were unable to surpass 90◦ of knee flexion during
the task. Due to the low number of female individuals recruited,
we decided to include only male participants in this study. As
a result, five participants were excluded for a high BMI (two
FAI, two CTRL, one ACM); one FAI for previous knee surgery;
one FAI for low back pain; one FAI for CT technical issues;
one FAI and one ACM for data collection complications; one
FAI, two ACM, and two CTRL did not perform a minimum
of 90◦ of knee flexion during squat; and two FAI, three ACM,
and three CTRL female participants were excluded. In all, 45
participants met the inclusion criteria. To age-, BMI-match the
participants in all groups, another six ACM participants were
excluded from the analyzed cohort. Therefore, a total of 39
participants were included in this study, with 13 participants
classified into each of the symptomatic (FAI), asymptomatic
(ACM), and control (CTRL) groups (Table 1). This study used
a subset of participants who had been enrolled in other studies
(Ng et al., 2017; Catelli et al., 2018).
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TABLE 1 | Summary of demographics, cam morphology measurement of the affected hips, and pain questionnaire, reporting mean ± SD.

Parameter FAI ACM CTRL P-value

Participants (n) 13 13 13 –

Presence of cam morphology (diagnostic imaging) Yes Yes No –

Positive impingement test result (clinical signs) Yes No No –

Symptoms Yes No No –

Age (years) 36 ± 8 34 ± 6 34 ± 7 0.96

BMI (kg/m2 ) 27 ± 5 26 ± 1 26 ± 3 0.65

FAI vs. ACM FAI vs. CTRL ACM vs. CTRL

Alpha-angle (deg) 3:00 position 55 ± 6 57 ± 7 43 ± 4 0.66 <0.001 <0.001

1:30 position 66 ± 4 71 ± 5 53 ± 4 0.01 <0.001 <0.001

HOOS Symptoms 67 ± 13 96 ± 7 97 ± 6 <0.001 <0.001 0.95

Pain 67 ± 15 98 ± 5 98 ± 5 <0.001 <0.001 0.98

Activities of daily living 77 ± 15 100 ± 1 99 ± 2 <0.001 <0.001 0.99

Sports and recreational activities 55 ± 24 98 ± 7 97 ± 7 <0.001 <0.001 0.97

Quality of life 38 ± 20 97 ± 9 95 ± 12 <0.001 <0.001 0.95

Motion Analysis
The pretesting preparation involved completing the hip disability
and osteoarthritis outcome score (HOOS) questionnaire
(Nilsdotter et al., 2003)—whose scale is 0–100, worst to
best outcome score—a 5-min cycle ergometer warm-up and
uninstructed lower limb stretching. A total of 45 retroreflective
markers were placed on the participants, according to the
University of Ottawa motion analysis model marker set
(Mantovani and Lamontagne, 2017). Motion capture recorded
five deep squatting trials performed at a self-selected pace, with
feet positioned parallel at hip-width apart and the arms stretched
out anteriorly. One static trial was also recorded per participant,
who was asked to assume a T-pose in the middle of the capturing
volume, also with their feet parallel at hip-width apart and the
palm of their hands facing forward. The marker trajectories were
captured using a 10-camera infrared system (200Hz, MX13,
Vicon, UK), and ground reaction forces (GRFs) were captured
using two embedded force plates (1,000Hz, FP4060, Bertec
Corporation, OH, USA), with one foot of the participant to each
of the force plates. The marker trajectories were labeled and
filtered (Woltring, mean squared error = 15 mm2) along with
the GRF (zero-lag fourth-order low-pass Butterworth filter at
6Hz) using Nexus 2.6.1 (Vicon, UK). All variables were time
normalized with respect to the full squat cycle [from standing to
squatted (lowest depth point) and back to standing].

Musculoskeletal Modeling
The selected musculoskeletal model was customized for the
high hip and knee flexion ranges of squatting (Catelli et al.,
2019c) and contained 80 lower-limb Hill-type muscle-tendon
units (MTUs), with 37 degrees of freedom. All the simulations
were conducted in the open-source musculoskeletal simulation
software OpenSim 3.3 (Stanford University, Stanford, CA, USA)
(Delp et al., 2007). The marker trajectories and GRF data set
were converted to OpenSim format (Mantoan et al., 2015), the
models were scaled based on static anthropometric dimensions of
each patient, recorded during static calibration trial acquisition,

and the data were batch processed using a dedicated toolbox
(Bedo et al., 2021). Anterior and posterior superior iliac spines,
and medial and lateral knee epicondyles markers, were defined
according to their placement during the CT scan. Therefore,
the markers of the pelvis and knee had their anisotropic scaling
weight computed 10 times higher than the other ones of the
model. Inverse kinematics and inverse dynamics tools calculated
joint angles and internal joint moments for each degree of
freedom, while a static optimization tool estimatedmuscle forces.
Once the kinematic state of the model at each time point
is known, static optimization resolves the net joint moments
into individual muscle forces while minimizing the sum of
squared muscle activations. Reserve actuators defined a 10N
optimal force for the three hip coordinates to avoid muscle
force saturation during static optimization calculations. The
JointReaction analysis tool (Steele et al., 2012) calculated HCF as
three-dimensional vectors acting on the acetabulum expressed in
the femoral coordinate system. The HCF vector direction was
also depicted in the sagittal plane. The hip muscle forces and
HCF components (x: anterior-posterior, y: superior-inferior, and
z: medial-lateral) and their resultant magnitude were normalized
to body weight (BW).

Data Analysis
The muscles that are subdivided in more than one MTU in the
model (i.e., adductor magnus, biceps femoris, gluteus maximus,
gluteus medius, and gluteus minimus), had their force resultant
summed after static optimization, and only the hip muscles have
been considered for the analysis.

The demographics and the HOOS questionnaire discrete data
were assessed for normality using the Shapiro–Wilk test and
the one-way ANOVA followed by post-hoc comparisons using
Bonferroni corrections (P ≤ 0.016).

A one-way ANOVA applied to statistical non-parametric
mapping (SnPM) (Pataky, 2010) was used to compare
the kinematics, kinetics, muscle forces, and HCF outputs
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FIGURE 1 | Pelvic tilt, hip sagittal, and hip frontal kinematics during the

squatting task for the FAI (dashed red), ACM (solid blue), and CTRL (dotted

(Continued)

FIGURE 1 | black) groups. Positive values refer to pelvis anterior, hip flexion

and hip adduction kinematics, respectively. SnPM results are displayed below

the figure and indicate significant differences among the groups (P ≤ 0.016).

SnPM, statistical non-parametric mapping; FAI, femoroacetabular

impingement; ACM, asymptomatic cam morphology; CTRL, control. Shading

indicates standard deviation.

(P ≤ 0.016) in the time-normalized full squat cycle (0–
100%). The SnPM{t} representing the non-parametric
univariate pseudo-t-statistic was calculated at each point
of the waveform; if it exceeded the critical threshold t, the
difference between the groups was considered significant
in that part of the waveform. All of the analyses were
performed in a custom script (R2018b Matlab, MathWorks,
Natick, USA).

RESULTS

Demographics and Patient-Reported
Outcome Measures
Asymptomatic cam morphology showed HOOS scores
comparable with the CTRL, while preoperative patients
showed significantly decreased scores in all five categories
compared to both the other groups. There were no BMI or age
differences among the groups (Table 1).

Kinematics and Kinetics
Overall, the ACM has a greater sagittal ROM in the pelvis and
the hip (Figure 1). The ACM individuals showed significantly
higher anterior pelvic tilt (from 9 to 36%, P = 0.001; and 74–
100%, P = 0.001) and higher hip flexion (13–43%, P = 0.001;
66–99%, P = 0.002) as compared to patients with symptomatic
FAI, during squat. FAI and CTRL comparisons, and ACM and
CTRL comparisons, reached no significant differences in pelvis
and hip kinematics (P > 0.016).

The analysis of the hip kinetics showed a significantly higher
hip extension moment in the ACM group compared with both
FAI and CTRL groups (12–20%, P = 0.001; 88–99%, P = 0.001,
respectively) (Figure 2). No significant differences in hip kinetics
were found between the FAI and CTRL groups (P > 0.016), and
no significant differences in the hip frontal moment were found
among the groups.

Muscle Forces
The six hip muscle groups that produced more force (>0.25
BW) during mid-squat were selected for plotting: adductor
magnus, biceps femoris, gluteus maximus, psoas, rectus femoris,
and semimembranosus.

The optimization analyses demonstrated significantly higher
psoas (60–64%, P = 0.003) and semimembranosus (0–9%, P =

0.002) muscle forces in the ACM individuals compared to the FAI
individuals. Contrarily, the biceps femoris force was lower in the
ACM compared with the FAI (21–26%, P = 0.001). The CTRL
also showed significantly higher psoas (51–58%, P = 0.009 and
79–81%, P = 0.002) and semimembranosus (2–9%, P = 0.003;
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FIGURE 2 | Hip sagittal and hip frontal kinetics during the squatting task for

the FAI (dashed red), ACM (solid blue), and CTRL (dotted black) groups.

Positive values refer to hip flexion and hip abduction moments, respectively.

SnPM results are displayed below the figure and indicate significant differences

among the groups (P ≤ 0.016). SnPM, statistical non-parametric mapping;

BW, body weight; FAI, femoroacetabular impingement; ACM, asymptomatic

cam morphology, CTRL, control. Shading indicates standard deviation.

33–41%, P= 0.002 and 69–77%, P= 0.001) forces compared with
the patients with FAI (Figure 3). The ACM showed significantly
higher gluteus medius force (16–19%, P = 0.006) compared with
the CTRL group.

Hip Contact Forces
The ACM individuals showed significantly higher posterior HCF
(0–7, 15–26, and 79–100%, all P = 0.001) compared with the
FAI values. Nonetheless, the CTRL individuals showed higher
posterior (0–7%, P = 0.005 and 72–82%, P = 0.001), superior
(67–70%, P = 0.005; Figure 4), and total magnitude (67–70%, P
= 0.006) HCF compared with the FAI. No significant differences

in HCF magnitude in any directions were found between the
ACM and CTRL groups (P > 0.016).

Hip contact force vector directions over the sagittal plane were
also statistically different between the asymptomatic groups and
the FAI. The ACM (0–7, 15–24, and 83–100%, all P = 0.001) and
the CTRL (0–7%, P = 0.002) reached higher contact angles than
the FAI during the squat (Figure 5). Once again, no significant
differences in HCF vector direction were found between the
ACM and the CTRL (P > 0.016).

DISCUSSION

The purpose of this prospective study was to compare the
pelvis and hip kinematics, kinetics, muscle forces, and HCF of
ACM individuals and compare to both, patients with FAI and
CTRL individuals during a deep squat task. The hypotheses were
confirmed as the hip kinematics of ACM individuals resembled
the CTRL and reached higher angles of anterior pelvic tilt and
hip flexion at descent and ascent mid-phases of the squat cycle
compared with the patients with FAI. The ACM individuals also
showed greater hip extension moments during the descent and
ascent phases compared with the FAI and CTRL, respectively.
While muscle force estimations did not vary between the ACM
and the CTRL individuals, they significantly differed from the
FAI values. Different from our hypotheses, the HCF analysis
showed similar contact loads between the ACM and the CTRL,
which were significantly greater compared with the patients
with FAI. The findings in the ACM individuals go in line with
a previous study (Catelli et al., 2020), showing that the HCF
reached a load magnitude of 2.5–3 times BW at the deepest phase
of the squat, and the adductor magnus, quadriceps, hamstrings,
and glutei muscles being the main contributors to perform such
a task. To our knowledge, this is the first study that compared hip
muscle and contact forces estimations in ACMwith symptomatic
FAI and healthy participants during a deep squatting task using
musculoskeletal modeling. These results show evidence that
despite the cam-type morphology, ACM individuals relied on
a biomechanical strategy that resembled the CTRL individuals,
and are unrelated to the muscle force imbalance that seems to
be present in patients with symptomatic FAI (Lamontagne et al.,
2015).

Although the presence of a cam-type hip morphology
increases the risk of labral tears and progressive hip joint
degeneration (Agricola et al., 2013), differences in gait
biomechanics between FAI and CTRL are not well-explained by
the size of cam morphology alone (Savage et al., 2021). ACM
individuals demonstrated higher anterior pelvic tilt compared
to their symptomatic peers, which aligned well with previous
reports that have also highlighted stronger hip extensors in the
asymptomatic individuals (Catelli et al., 2018; Ng et al., 2018a).
These two factors can indeed provide the ACM with a “closer
to normal” pelvis kinematics during the squat cycle. When
considering that the cam-type morphology is located at the
anterior-superior portion of the femoral head (Chakraverty et al.,
2013), it would be inclined to impinge when there is hip flexion
combined with an anteriorly tilted pelvis (Ross et al., 2014). The

Frontiers in Sports and Active Living | www.frontiersin.org 5 September 2021 | Volume 3 | Article 716626

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Catelli et al. Musculoskeletal Modeling in Asymptomatic FAI

FIGURE 3 | Muscle forces during the squatting task for the FAI (dashed red), ACM (solid blue), and CTRL (dotted black) groups. SnPM results are displayed below the

figure and indicate significant differences among the groups (P ≤ 0.016). SnPM, statistical non-parametric mapping; BW, body weight; FAI, femoroacetabular

impingement; ACM, asymptomatic cam morphology, CTRL, control. Shading indicates standard deviation.

higher degrees of both hip flexion and anterior pelvic tilt reached
by the ACM individuals may provide additional evidence that
it is not only the presence or size of the cam morphology that
modifies joint biomechanics in patients with FAI but it might
be related to a protective sensory-motor strategy to avoid pain
(Lamontagne et al., 2015; Diamond et al., 2017, 2019; Savage
et al., 2021). The progression of the cam-type morphology
associated with the beginning of the symptoms could have
induced patients with FAI to adopt a more posteriorly tilted
pelvis position, which would limit the hip mobility, therefore
establishing a protective mechanism to reduce HCFs (Ng et al.,
2018b; Catelli et al., 2019b, 2020, 2021).

Anatomical parameters have also been associated with
the FAI syndrome symptomatology. Decreased femoral neck-
shaft angle associated with reduced pelvic mobility (Ng
et al., 2015), greater pelvic incidence, and greater acetabular
version (Grammatopoulos et al., 2018) can discriminate those
symptomatic FAI to an asymptomatic ACM cohort. Nonetheless,
a higher pelvic incidence can also serve as a predictor for limited
sagittal hip mobility (Ng et al., 2018a). Therefore, the presence
of the cam morphology combined with other anatomical
parameters cannot completely explain clinical symptoms or
decreased hip and pelvis ROM (Ng et al., 2018a), once again
suggesting that altered muscle functions may play an important

role in the FAI symptomatology. The similar hip flexion moment
pattern produced by ACM and CTRL (Figure 2) is indicative
of the muscle force production similarities between these
individuals compared with the FAI. This can be explained by
the FAI reduced muscle force of one of the main hip flexors:
the psoas. Its estimated force magnitude was significantly lower
in the patients with FAI, while it ranged ∼0.2 BW in the ACM
and CTRL (Figure 3), can be associated with decreased anterior
pelvis tilt and hip flexion in the symptomatic patients (Ng et al.,
2018a,b; Catelli et al., 2019b). The direct role of the iliopsoas on
the FAI pathomechanism is yet to be established, but studies (Ng
et al., 2018b) suggested that a tighter iliopsoas tendon produces
unfavorable stresses to the anterior capsulolabral complex during
hip extension (Lewis et al., 2007; Alpert et al., 2009; Kennedy
et al., 2009), likely leading to labral damage (Domb et al., 2011).

The semimembranosus was the other muscle that also has
demonstrated significantly lower forces in the FAI compared
to both ACM and CTRL. Acting synergistically with the
gluteus maximus to support posterior pelvic tilt, a decreased
semimembranosus force could be associated with a protective
sensory-motor strategy during squatting (Catelli et al., 2020).
In fact, the higher biceps femoris forces produced by the FAI
(compared to ACM, 21–26%) suggest that the symptomatic
patients favor loading the biceps femoris in contrast with its
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FIGURE 4 | Hip contact forces during the squatting task for the FAI (dashed red), ACM (solid blue), and CTRL (dotted black) groups. SnPM results are displayed

below the figure and indicate significant differences among the groups (P ≤ 0.016). SnPM, statistical non-parametric mapping; BW, body weight; FAI,

femoroacetabular impingement; ACM, asymptomatic cam morphology; CTRL, control. Shading indicates standard deviation.

medial neighbor, the semimembranosus. This could also suggest
that these individuals would reach a higher hip abduction,
which did not happen in our analysis, perhaps due to the
lower hip abduction strength seen in FAI (Casartelli et al.,
2011). At the mid-phase of the squat, during its lowest depth,
there is a posterior tilt of the pelvis that is reached by high
assistance of the hamstrings. The imbalanced hamstrings in
the patients with FAI are suggestive of a muscular adaptive
mechanism to avoid the pain that affects the pelvis kinematics
during the squat. Additionally, although the gluteus maximus
did not present significant differences among our groups, a
higher force production of its inferior portion during a squat
has already been reported (Catelli et al., 2020), and along with
the decreased semimembranosus forces, is also suggestive of
imbalance in hipmuscle force production. Stronger hip extensors

play an important role in the sagittal pelvic ROM, allowing the
ACM individuals to posteriorly tilt their pelvis while reaching
the bottom of the squat. Rehabilitation plans that improve hip
extensors strengthening and enhancement of pelvis mobility may
alleviate symptoms for patients with FAI (Catelli et al., 2018).

Compared with CTRL individuals, lower magnitude HCF in
those with symptomatic FAI has already been reported during
gait (Ng et al., 2018b; Catelli et al., 2019b) and squat (Catelli
et al., 2020). Our results showed that the ACM individuals also
show significantly higher posterior HCF during both phases of
the squat (descent and ascent) compared with their symptomatic
peers, and resembling CTRL outputs. Considering the muscle
forces play an important role in contributing to HCF estimations
(Correa et al., 2010), the stronger ACM muscles (Catelli et al.,
2018) assisted these individuals to reach higher HCF levels
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FIGURE 5 | Hip contact forces projection angle during the squatting task in

the sagittal plane of a right femur, and three distinct data point scenarios of hip

contact forces displayed in the right column (A–C) for the FAI (dashed red),

ACM (solid blue), and CTRL (dotted black) groups. The FAI demonstrated

significantly less posterior forces compared to ACM (A–C) and CTRL (A).

(Figure 4). Concurrently, the differences in muscle forces and
HCF vector direction can be attributed to the different joint
positioning (hip and pelvis) during the squat among the groups
(Figures 4, 5), especially when considering the greater anterior
pelvis tilt reached by the ACM during the task.

The use of a maximal squat test as a diagnostic tool for
assessing FAI in the clinical setting has already been proposed
(Ayeni et al., 2014). The idea of using a task that demands
large hip and pelvis mobility that discriminates individuals
with the cam-type morphology from their cam-free peers is
understandable as it has already been shown that patients with
FAI are unable to squat as deep as their healthy peers because
of mobility restrictions at the pelvis and hip (Lamontagne et al.,
2009; Catelli et al., 2018). However, when including asymptotic
individuals in the analysis, the ACM kinematics resembles
the CTRL group, with higher hip flexion and anterior pelvic
tilt, refuting the concept that the restriction in mobility was
only caused by the presence of femoral cam morphology. This
reinforces the speculation that muscle contraction imbalance
(Catelli et al., 2018) combined with hip instability due to
weak capsule (Ng et al., 2021) could be associated with
FAI symptomatology.

The limitations to this study include the small sample size of
our cohort, as increasing the number of participants would have
resulted in higher predictive power. Limiting our cohort to male
individuals with cam-type morphology only, limits our findings
to this population, as differences by sex may occur (Lewis et al.,

2018; Brown-Taylor et al., 2020). Second, static optimization can
underestimate muscle force production during co-contractions
that are modified by a joint pathology; however, this technique
still produces results closest to experimental HCF (Wesseling
et al., 2015). Third, the used models did not include subject-
specific geometries of the cammorphology, once each participant
had his musculoskeletal data scaled based on a cam-free generic
model. A model that presents subject-specific cam morphology
may produce different HCF outputs.

This study provided insights into muscle forces and HCF
in the ACM male population, showing that both muscle
forces and HCFs with the greater pelvis and hip kinematics
are closely comparable with the controls, rather than their
FAI syndrome peers. These results rebut the concept that
FAI symptomatology is caused by the presence of the cam
morphology only but also associated with different muscle
contraction strategies inducing hip instability. Future studies
are necessary to better understand the complex role of soft
tissues, muscle contraction pattern, and divergence of hip
anatomical parameters.
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