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Variability in the behavior of microbial foodborne pathogens and spoilers causes
difficulties in predicting the safety and quality of food products during their shelf life.
Therefore, the quantification of the individual microbial lag phase distribution is of high
relevance to the field of quantitative microbial risk assessment. To construct models
that predict the effect of changes in environmental conditions on the individual lag, an
accurate determination of these distributions is required. Therefore, the current research
focuses on the development of an experimental and computational method for accurate
determination of individual lag phase distribution. The experimental method is unique in
the sense that full liquid volumes are sampled without using dilutions to detect the final
population, thereby minimizing experimental errors. Moreover, the method does not aim
at the isolation of single cells but at a low number of cells. The fact that several cells
can be present in the initial samples instead of having a single cell is considered by
the computational method. This method relies on Monte Carlo simulation to predict the
individual lag phase distribution for a given set of distribution parameters and maximum
likelihood estimation to find the parameters that describe the experimental data best.
The method was validated both through simulation and experiments and was found to
deliver a desired accuracy.

Keywords: individual lag, method development, maximum likelihood estimation, Monte Carlo simulation,
Escherichia coli

INTRODUCTION

Microbial risks associated with the consumption of food products are studied using quantitative
microbial risk assessments. These risk assessments rely on mathematical models from the field of
predictive microbiology to simulate microbial behavior. The risk that undesired events will take
place is calculate by including different source of variation in these model predictions through
techniques such as Monte Carlo simulation. The variation comes from several different sources,
e.g., experimental uncertainty and variability in processing conditions. Another important source of
variability comes from the microorganism, which includes the variability in the lag phase duration
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(Lianou and Koutsoumanis, 2013). The lag phase duration
and variability in a microbial population is a result of the
lag phase duration and variability of its individuals. Therefore,
the characterization of the variability in the individual lag
phase duration under various environmental stresses is of
high importance for improving microbial food safety and
quality (Guillier et al., 2005). Future research could aim
to construct mathematical models that describe the effect
of changes in environmental conditions on the individual
lag phase distribution. Therefore, accurate approximations of
these distributions are required. The current research deals
with the development and validation of an experimental and
computational method for the accurate determination of the
individual lag phase distribution.

Studying process variability requires a large amount of
experimental data. Therefore, researchers often turn to
high-throughput methods, such as optical density (OD)
measurements, for studying microbial variability (Francois et al.,
2005; D’Arrigo et al., 2006; Dupont and Augustin, 2009; Stringer
et al., 2011; Aguirre et al., 2013; Xu et al., 2015). However, this
technique comes with some limitations. First, the detection
limit is high, at about 106–107 CFU/mL for bacterial cells (Baka
et al., 2014). This means that measurements are taken close to
the stationary phase and require a long period of growth when
starting from low inoculum sizes. Secondly, the relationship
between the OD and the true number of viable cells is influenced
by the environmental conditions that the cells are subjected
to. As such, using calibration curves between these measures
reduces the method’s accuracy (Métris et al., 2006). Finally, there
are several common practical issues when working with the
microplates that are needed for these studies. They often suffer
from problems with respect to evaporation of the liquid from
the plate and condensation on the lid of the plates (Brewster,
2003; Walzl et al., 2012). Other high throughput methods are
available, such as the analysis of time laps microscopy imaging
or the ScanLag system (Pin and Baranyi, 2006; Levin-Reisman
et al., 2010). However, these methods are not frequently used
since they require equipment that is too expensive or not
available for many labs.

Based on the downsides and difficulties with respect to OD
methods, the first criterion was that the new method should work
with viable plate counts. Plate count methods deliver a great
accuracy by using a direct measurement of the number of living
microorganisms in a sample. The downside of this technique
is the high experimental load. Moreover, when considering the
inoculation methods that are commonly used to isolate individual
cells, the yield of experimental data over the total number of
samples is relatively low. This is because most samples either
contain no cells at all or have to be discarded for likely containing
too many cells. The first goal will be therefore to select the most
suitable inoculation method out of two conventional methods.

Two methods are commonly applied to isolate single cells.
In the first method, an inoculum is serially diluted in a
microplate such that the chance of achieving single cells
in the last columns is maximized (Francois et al., 2003).
In the other method, a solution is diluted to such a low
concentration that, when distributed over a microplate, the

chance of isolating single cells is maximized (Robinson et al.,
2001). Both methods have a few things in common. It is
inevitable that some of the samples may contain more than
1 cell. However, the computational methods that are typically
used to process the data from these experiments assume that
there is only a single cell in each sample that contains cells.
Therefore, to increase the chance of obtaining single cells as
opposed to multiple cells, the inoculum concentration should
be low. A low inoculum concentration will also increase the
chance of having no cells at all and therefore decreases the
yield of experimental data. As such, a trade of exists between
the quantity of experimental data and the quality of that data
(quality being a high likelihood of having a single cell in the
samples containing cells). Therefore, a computational method is
required that considers the initial distribution of the population
size in the calculation of the distribution of the individual cell
lag. Baranyi et al. (2009) published a methodology that takes
the initial concentration into account based on the method of
moments. However, this method does not allow to determine
the accuracy of the estimation results. In contrast, maximum
likelihood estimation allows the calculation of confidence bounds
on distribution parameters, which is of high importance in a
modeling context. The second goal is therefore the development
of a suitable computational method and comparison with the
existing moments-based method.

The overall goal of this work is the development of an
experimental and computational method that allows the accurate
determination of the distribution of the individual cell lag.
The experimental method will be designed in such a way that
experimental errors are decreased to an absolute minimum by
analyzing the total cell content of samples without dilutions.
The computational method will be developed so that there is no
longer a need to aim for single cell isolation in the experimental
method, but rather to include the initial cell distribution in an
accurate description of the uncertainty propagation.

MATERIALS AND METHODS

Bacterial Strain
Escherichia coli K12 MG1655 (CGSC#6300) was acquired from
the E. coli Genetic Stock Center at Yale University. A stock culture
was stored at−80◦C in Brain Hearth Infusion broth (BHI, Oxoid,
Hampshire, United Kingdom), supplemented with 20 % (w/v)
glycerol (Acros Organics, Geel, Belgium). This strain was used
for all microbiological experiments in this study.

Inoculum Preparation
The inoculum was prepared in a three step procedure: (i) A
loop (10 µL) of the stock culture was spread onto a BHI agar
plate, (BHIA, containing 14 g/L technical agar, VWR, Radnor,
PA, United States) and incubated overnight at 37◦C. (ii) Then,
a single colony was transferred to a 50 mL Erlenmeyer containing
20 mL BHI broth and stored at 37◦C for 9 h. (iii) Finally, 20 µL
of the stationary phase culture was inoculated in 20 mL of fresh
BHI broth and incubated at 37◦C for 17 h.
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Detection Limit
The detection limit of the optical density (OD) measurement was
defined as three time the standard deviation on the mean of a
repeated measurement. The OD was measured at 595 nm using a
FilterMax F5 microplate reader (Molecular Devices). The OD of
a 1/8 dilution of the second preculture, was measured 24 times at
a volume of 150 µL per well.

Calibration Curve
The method used to obtain the calibration curve was based on
Francois et al. (2003). All wells of a 96-well microplate were
filled with 150 µL of BHI broth, except for the first column. The
first and last well of the first column were filled with 300 µL
of BHI solution. These will cause the first and last row to serve
as blanks. The remaining 6 wells of the first column were filled
300 µL of the second preculture, after mixing it thoroughly.
A 1:2 dilution series was made by transferring 150 µL from all
wells of the first column to all wells of the second column. This
process is repeated 10 times until 150 µL is taken from the last
column and discarded. After measuring the OD, one sample
of each dilution was decimally diluted and plated on BHIA
plates for enumeration. BHIA plates were incubated overnight at
37◦C. This entire process was performed in duplicate. A linear
regression was applied to the natural logarithm of the cell density
vs. the natural logarithm of the OD, yielding the following
equation:

ln (N) = a+ b · ln(OD) (1)

with N [CFU/mL] the cell density, OD [−] the OD and a and
b the linear regression parameters. Given the low variance on
the measurements of OD compared to viable plate counts, the
former variance was considered negligible and the parameters
a and b were estimated using a simple least squares regression.
More details on the regression and calculation of uncertainty on
the parameters and predictions is provided in section “Parameter
Estimations.”

Serial Dilution Inoculation Method
This method is based on the work of Francois et al. (2003)
and aims at obtaining single cells in the last four or five rows
of a microplate after serial dilutions. The concentration of the
preculture was measured at 595 nm using six 150 µL samples of a
1:10 dilution of the preculture in BHI broth, using a FilterMax
F5 microplate reader. The OD of the cells in these samples
was calculated by subtracting the OD of six 150 µL samples of
pure BHI solution. The concentration of viable cells (CFU/mL)
was calculated using the calibration curve that is described in
section “Calibration Curve.” Based on this calculated cell density,
the preculture was further diluted to obtain 100 CFU per well
containing 150 µL. Therefore, the preculture was first serially
decimal diluted in BHI broth and a final dilution was made by
transferring the appropriate volume of diluted preculture to 8 mL
of BHI broth in a 15 mL centrifuge tube. The diluted culture
(300 µL) was transferred from the Falcon tube to each well of
the first row of a microplate. The remaining wells were filled with
150 µL of BHI broth each. Using a multichannel pipette, 150 µL
was transferred from each well of the first to the second row

of the microplate and mixed. This process was repeated for the
remaining rows and 150 µL was discarded from each well of the
last row. This process resulted in a 1:2 dilution series throughout
the rows of the microplate with the following expected number
of cells per well: 100.00, 50.00, 25.00, 12.50, 6.25, 3.13, 1.56, 0.78,
0.39, 0.20, 0.10, and 0.10 CFU.

Low Cell Density Inoculation Method
An alternative method for the inoculation of single cells in a
microplate was based on the inoculation of the entire plate with
the same concentration of diluted preculture. The concentration
is typically chosen below one CFU per well to have a high
likelihood of obtaining single cells in those wells that contain
cells. To initiate this method, the cell density of the preculture was
measured and calculated in the same way as described in section
“Serial Dilution Inoculation Method.” Then, the appropriate
volume to achieve the desired final concentration was transferred
from a serial decimal dilution of the preculture to 40 mL of BHI
broth in a 50 mL centrifuge tube. Using a multichannel pipette,
150 µL of this solution was placed in every well of a microplate.

Experimental Study of the Population
Variability
Starting from streak plates, three sets of preculture Erlenmeyer’s
were prepared the day before the experiments were inoculated.
When diluting the preculture into the final concentration, cells
were transferred in BHI broth containing 56 g/L NaCl to induce
a lag phase. Three sets of 96-well plates were inoculated in the
morning at different intended population sizes: (i) 4 96-well
plates at 0.48 CFU/well, (ii) 4 96-well plates at 4.80 CFU/well
and (iii) 2 96-well plates at 48.00 CFU/well. The method used
for inoculation was the low cell density method explained in
section “Low Cell Density Inoculation Method” and all wells were
inoculated with a volume of 150 µL. The time of inoculation
of each plate was noted down. After inoculation, all plates were
sealed with a polyester microplate sealing film before closing the
lid. The decimal dilution series that was used to inoculate the
BHI and salt broth was also used to plate 9 drops of 20 µL of
the 6th decimal dilution of the preculture for the calculation of
the concentration of cells in the BHI and salt broth. The first two
sets of plates were incubated overnight at 25◦C. Then, all samples
were transferred entirely to individual BHI agar plates that had
been left to dry at atmospheric conditions for several days to allow
fast absorption of the liquid and fixation of the individual cells
on the agar surface. Before transferring the samples to the agar
plates, they were pipetted up and down several times to make
sure all cells were in suspension. The time of sampling was noted
down for each sample. These plates were incubated overnight at
37◦C. The number of colonies on these plates represented exactly
the number of cells in the population that had developed from
the low initial number of cells. The third set of plates was used
to quantify the exponential growth rate of the population under
identical conditions as those used for the low inoculum levels.
After inoculation, three entire samples were taken and plated at
three time points to be able to quantify the initial population
density. During the following days, 50 µL samples were taken,
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diluted and plated every hour in triplicate during working hours.
As such, the full growth curve from lag until stationary phase was
included in the data.

Two- and Three-Phase Linear Model
To determine the lag phase duration and maximum specific
growth rate of experimental or simulation data, the following
simple three-phase linear model was used:

ln (N (t)) =

N0 + µ · (t−λ) · 1 (t−λ)−µ · (t−tmax) · 1(t−tmax) (2)

In this equation N is the number of cells at time t, N0 is the
initial number of cells, is the exponential growth rate, is the lag
phase duration of the population and tmax is the time at which
the maximum population density is obtained. The function 1( · )
represents the unit step function, which is 0 for all arguments
smaller than 0 and 1 for all arguments greater or equal than 0.
If no stationary phase behavior was included in the data, the last
term of this equation was omitted. This will be referred to as the
two-phase linear model. This equation was based on the work of
Buchanan et al. (1997), (McKellar and Lu, 2004).

Monte Carlo Simulations
Monte Carlo simulation was used in this research. Data
were generated with the function random of MATLAB 9.7
(MathWorks), according to the appropriate distribution. The
number of iterations varied depending on the desired accuracy
or the experimental system that was described by the simulation.
The number of iterations when describing inoculations according
to the Poisson [Pois(cell concentration · sample volume)]
distribution is expressed as the number of 96-well plates, in
equivalence with the experimental methods represented by
these simulations.

Parameter Estimations
Parameter estimations were carried out based on least squares
regressions using the lsqnonlin routine of the optimization
toolbox of MATLAB 9.7. Probability density functions were
fitted to data using the fitdist function of the same software.
The method for calculating the uncertainty on the model
parameters and output with the linear approximation is
described in Akkermans et al. (2018).

RESULTS AND DISCUSSION

The current research aims to determine the parameters of the
probability distribution of the individual cell lag, based on the
measurement of the population density after a certain period of
growth. Specifically, the method should deliver a high accuracy
while requiring a reasonable experimental effort and being
applicable in most microbiological labs. Based on the explanation
in the introduction, it was decided that a sample inoculation
method had to be selected that provides a high yield of
experimental data. Computational and experimental comparison
of two inoculation methods is presented in section “Comparison

of Conventional Inoculation Methods.” Section “Detection Limit
and Calibration Curve” will first present the results of the
determination of the detection limit and calibration curve,
which are essential for each of the inoculation methods. The
computational method to process the experimental data requires
a mathematical model that describes the stochastic process of cell
division in the lag and exponential phases of growth. Therefore,
section “Probabilistic Individual-Based Model” starts with
presenting an individual-based model that considers the life cycle
of each individual cell to predict the population growth. This
model is simplified until a population-based model with much
lower computational load is obtained in section “Probabilistic
Population-Level Model.” The parameters of the individual lag
phase distribution that minimize the difference between the
simulated and experimental distributions of the population size
are then selected. This requires that the type of distribution of the
population size is known. Therefore, several types of probability
distributions will be compared in section “Population Size
Distribution” to select the most suitable one. Section “Proposed
Experimental and Computational Method” presents an overview
of the complete experimental and computational method that
is proposed. This method is validated based on simulations in
section “Simulation Validation” and on experiments in section
“Experimental Validation.”

Detection Limit and Calibration Curve
Any method relying on the use of OD measurements should
start with the determination of the measurement’s detection limit
and making a calibration between the measured OD values and
the underlying quantity of colony forming units. Based on the
method explained in section “Detection Limit,” the standard
deviation of the measurement was calculated to be 1.55 × 10−3

OD units. This corresponds with a detection limit of 4.65× 10−3

OD units above the measurement blank. This detection limit
includes pipetting errors because the standard deviation was
determined based on replicates that were independently pipetted.

Only the seven most concentrated samples of the calibration
curve had OD values above this detection limit. The remaining
samples were therefore discarded from the calibration curve. The
parameters a and b of the calibration curve were estimated to
be 22.55 ln(CFU/mL) and 1.07 ln(CFU/mL)/ln(OD). The 95 %
confidence bounds of these parameters were [22.38; 22.72] and
[1.02; 1.12]. The mean squared error of the regression was just
0.01 ln(CFU/mL)2, demonstrating a good quality of fit. Based on
this calibration curve, the detection limit of 4.65× 10−3 OD units
corresponds with 1.98 × 107 CFU/mL. This reflects the high cell
density level that is required for applying OD measurements. In
comparison, the detection limit for viable plate counts is generally
between 102 and 103 CFU/mL.

Comparison of Conventional Inoculation
Methods
This section deals with the selection of an experimental method
that is suitable for high throughput data collection. This method
is needed because the study of the variation of the lag phase
(or any other process) requires large amounts of data. As such,
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experimental protocol for this method needs to be selected in
such a way that the quantity of useful data is maximized. In both
inoculation methods, there is no guarantee of obtaining single
cells in the different samples (wells of the microplate). However,
the idea is to maximize the chance that single cells are obtained.
The amount of useful data can be quantified by evaluating (i) the
number of wells that contain cells compared to the total amount
of wells and (ii) the number of wells containing exactly a single
cell compared to the total number of wells containing cells.

The experimental methods that are reported, respectively, in
section “Serial Dilution Inoculation Method” and section “Low
Cell Density Inoculation Method” were first implemented in
two sets of Monte Carlo simulation. The first set of simulation
only used the Poisson distribution to determine the random
number of cells that is transferred in each pipetting step. For each
experimental protocol, 105 iterations were run in which a 96-well
microplate was inoculated with a Poisson distributed number of
cells per well. In these first simulations, the number of cells in the
first column was fixed to 100 for the serial dilution method. When
evaluating the number of cells in the last five rows, 10.86 % of the
total number of wells were found to contain cells and 77.93 % of
those contained a single cell. (Table 1 part A). This latest measure
was taken as a benchmark to determine the concentration of the
diluted preculture for the low concentration inoculation method.
As such, it was found that at a concentration of 0.48 CFU/well,
the same fraction of wells with cells contained a single cell. On the
other hand, from the total number of wells, almost four times as
many contained cells (38.13 %). As such, the low concentration
inoculation method delivers a much higher quantity of useful
data for the same number of microplates and a slightly lower
workload (as the serial dilutions require more effort).

To further evaluate the difference between these methods, a
second set of Monte Carlo simulation was performed. In this set
of simulation, the variability that was due to the error related
to the calibration curve and the pipetting errors was included

TABLE 1 | Evaluation of the serial dilution and low concentration method for the
inoculation of microplate wells with single cells.

Origin of
variability

Evaluation
measure

Serial dilution
inoculation
method (%)

Low
concentration
inoculation
method (%)

A) Cell distribution Wells with cells 10.86 ± 5.07 38.13 ± 9.71

Wells with 1 cell 77.93 ± 26.76 77.93 ± 13.55

B) Cell distribution,
error on calibration,
pipetting errors

Wells with cells 10.25 ± 5.08 37.99 ± 12.09

Wells with 1 cell 77.93 ± 27.02 77.93 ± 14.50

C) Experimental
uncertainty and
microbial variability

Wells with cells 9.90 27.86

Wells with 1 cell 84.21 82.24

Percentages of (i) wells containing cells compared to the total number of wells and
(ii) wells containing a single cell compared to the wells containing cells. A and B
were calculated from Monte Carlo simulations and results are provided with 95 %
confidence intervals. C was obtained experimentally.

as well. For these calculations, the number of cells in the first
row of the microplate was no longer fixed to 200 CFU in
300 µL (of which on average half are transferred to the following
wells). Instead, the model prediction error on the calibration
curve was used to determine the probability distribution of the
number of cells in the 1:10 diluted preculture (see calculation
in section “Parameter Estimations”). Moreover, for all dilution
steps, the pipetting errors were considered as well. According
to the manufacturer specifications the pipetted volumes were
assigned normal distributions with relative standard deviations
of, respectively, 0.20, 0.25, 0.25 and 0.50 % for a single channel
200 µL pipette, a multichannel 200 µL pipette, a single channel
1,000 µL pipette and a single channel 5,000 µL pipette. As in the
previous simulations, the quantity of cells in the pipetted samples
followed the Poisson distribution. The resulting evaluation of
the two inoculation methods is presented in Table 1 part B.
These results are similar to the Monte Carlo simulation that only
considered the variance due to the cell distribution over pipetted
volumes. The low inoculation method is more susceptible to
the effect of pipetting errors and the error on the calibration
curve than the serial dilution method. This is probably because
the former method relies more on the accuracy of the obtained
calibration curve to perform the inoculation of the microplate
at the correct cell concentration. On the other hand, the low
inoculation method will always yield more wells containing cells
and will have less variability on the percentage of wells that
contains a single cell. As such, when considering all significant
stochastic processes in these methods, it was found that the
low inoculation method yielded the highest amount of useful
experimental data.

To prove the conclusions of the simulation study, an
experimental validation was performed on four independent
biological replicates for each protocol. This resulted in 384
inoculated wells for each inoculation method. The evaluation
of the experimental results is presented in Table 1 part C.
Compared to the simulation studies, there was a lower yield of
wells containing cells and a higher percentage of wells containing
a single cell. This was found to be due to having a lower
inoculation in practice, than was calculated from the calibration
curve. Irrespective of this, the experimental results are in line
with the Monte Carlo simulation and confirm the conclusion
that the low concentration inoculation method delivers more
useful experimental data. Moreover, the experimental work
demonstrated that the low inoculation method required the same
amount of lab consumables and had a slightly lower workload.
Based on these results, the low concentration inoculation method
was selected to be most suitable as part of an efficient and accurate
method to determine single cell lag.

Probabilistic Individual-Based Model
The computational method that will be developed requires a
mathematical model that is suitable for simulating cell growth
and its variability, starting from a single cell. Individual-based
models are perfectly suitable for this task, as they describe every
cell individual and the variation between these cells can be
included in that description. As such, the next step in the method
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development is to propose and test a very simple individual-
based model that can be used to simulate the lag phase and
growth starting from a single or few cells. The first step in this
process was to create a probabilistic simulation of the growth
of a population starting from a single cell. This simulation
is illustrated in Figure 1. The simulation assumes that cells
have a specific distribution for their generation time in the lag
phase and the exponential phase. The lag phase is considered
to be the time until the first division after a cell enters a new
environment. This assumption is supported by the research of Pin
and Baranyi (2006) in which individual cell division times were
observed through microscopy experiments. For a specific set of
experiments with E. coli K12, the time for the first, second, third
and fourth division were found to be 3.30, 1.04, 0.98 and 0.92 h.
This demonstrates that the lag phase duration is mainly related
to the time until the first division for single cells. For the current
paper, this time until first division is taken equal to the individual
lag time. It should be noted that some researchers consider the
time until the first division to be the sum of the lag time and
the generation time. When the generation time is known, a
simple conversion between the two definitions is possible. To
create a simulation case study for the model development, the
distribution parameters for the lag phase duration and generation
time were based on the data of Pin and Baranyi (2006). The
individual lag phase duration was assumed to have a mean of
3.30 h and standard deviation of 1.02 h, and the generation time
a mean of 0.92 h and standard deviation of 0.29 h. Given that
the lag and generation time can never be negative, these growth
parameters cannot be described by a normal distribution and a
lognormal distribution was assumed for these processes (Koch,
1966). In the past, researchers have also used other distributions

such as the Weibull, gamma and exponential distribution to
describe individual cell lag (Standaert et al., 2007). It is important
to stress that the results from this study would not be different
if a different probability distribution for the individual cell
lag was assumed.

The individual-based simulation starts from a single cell
that is assigned a lag time from the lognormal distribution
of the individual lag phase. Once this timepoint is reached,
the cell is replaced by two daughter cells. Each of these
daughter cells is assigned a random generation time according
to the lognormal distribution for the generation time in the
exponential phase of growth. When these daughter cells reach
their individually assigned generation times they are replaced
in the same manner and so on. This simple simulation can
also be made by starting from a set of multiple cells, each
with a randomly assigned individual lag time. Following this
random process, it is, however, not possible to estimate the
parameters from both the distribution of the individual lag
time and the generation time because they would be highly
correlated. Therefore, it is desirable that these two probability
distributions can be simplified to a single distribution. This
simplification is only possible if the model with a single
probability distribution can accurately describe the variability of
the process. To test this possibility, a Monte Carlo simulation
with 105 iterations was performed. Each iteration simulated
the inoculation and growth of a microorganism in the well of
a microplate, according to the low concentration inoculation
method established in section “Comparison of Conventional
Inoculation Methods” (0.48 CFU/well). In each well containing
cells, the growth occurred according to the individual-based
simulation with random distributions for both the individual lag

FIGURE 1 | Probabilistic simulation of the growth of a population starting from a single cell with generation time in the lag phase distributed according to the
lognormal distribution with parameters µl and σ2

l . Each of the daughter cells is assigned a generation time for the exponential phase from the lognormal distribution
with parameters µe and σ2

e.

Frontiers in Microbiology | www.frontiersin.org 6 November 2021 | Volume 12 | Article 725499

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-725499 October 29, 2021 Time: 14:22 # 7

Akkermans and Van Impe Method for Individual Cell Lag

time and exponential generation time. After obtaining all growth
curves, they were transformed to a logarithmic scale and the
mean and standard deviation were calculated as a function of
time (Figure 2). The evolution of the standard deviation of the
population size shows a sigmoidal behavior. This is because once
the population reaches a certain size, the fast and slow growing
cells will balance each other out and different populations all
grow at approximately the same rate. As such, when a certain
population size is reached, there is no further evolution of the
variability of the population growth on a logarithmic scale.

The evaluation of the variability was further assessed by
defining the population size where the variability settled to a
near-constant value. The Monte Carlo simulations were carried
out in parallel for increasing time values and the simulation
was stopped at the point where the relative increase of the
standard deviation of the population size was less than 0.01%.
As such, the final standard deviation of the population size
can be taken equal to the maximum standard deviation that
could be reached. Then, the population sizes were calculated at
which 95 and 99 % of the increase from the initial to the final
standard deviation were achieved. As such, it was found that
under the simulation conditions, the variability of the population
size settled to a constant value between population sizes of

FIGURE 2 | Monte Carlo simulation of the growth of small microbial
populations with random lag time and exponential generation time. The mean
(A) and standard deviation (SD) (B) of the obtained populations are shown as
a function of time. The striped lines indicate the point at which 95 and 99 % of
the maximum variability are reached at 6 and 18 CFU, respectively.

just 6–18 CFU on average. Although these values depend on
the simulation parameters, they illustrate that the variability
reaches an equilibrium at very low population sizes. This is in
agreement with the results of, e.g., Kutalik et al. (2005) who
found the standard deviation of the division time to decrease after
the first division.

These results demonstrate that the probabilistic simulation
model can be simplified from a model that has separate
distributions for the individual lag time and exponential
generation time to a model that only has a distribution for
the individual lag time and a constant generation time in
the exponential phase. This simplification holds under the
assumption that the model will be used to describe the variability
on the population size after a few generations. As such, the
variability of the initial phases of population growth can be
studied by analyzing the variability on the population size after
just a few generations.

Probabilistic Population-Level Model
The simulations with the individual-based model of section
“Probabilistic Individual-Based Model” provide a very accurate
description of the variation of population growth. However,
given the algorithm that needs to calculated with a high
number of iterations, simulating this model is slow. To allow
the proposed method to work, a model should be constructed
that approximates the individual-based model but can be
computed much faster. The model will be incorporated as
part of a Monte Carlo method within a parameter estimation
and will therefore be computed a high number of times.
Therefore, a population-level model should be constructed
that can be expressed by a simple mathematical expression.
The following simple mathematical expression is proposed
for the growth of a population starting from a single cell:

ln (Ns(t)) = 1 (t− λi) · µ · (t−λi) (3)

with Ns [CFU] the number of cells originating form a single
cell, t [h] the time, i [h] the individual lag time and [h−1]
the maximum specific growth rate in the exponential phase of
growth. The function 1(·) represents the unit step function, which
is 0 for all arguments smaller than 0 and 1 for all arguments
greater or equal than 0. As such, Equation 3 remains constant
at 0 during the individual lag time (t i) and predicts log-
linear growth for all times larger than i. For populations, N,
starting from multiple cells, N0, the equation can be written as:

ln (N(t)) = ln (N0)

N0∑
i=0

1(t− λi) · µ · (t− λi) (4)

The summation is used in this equation since the individual lag
times are not equal but obtained from a random distribution.
The population-level model in Equation 4 was compared with
the individual-based model with probability distribution for the
individual lag time and fixed generation times. This comparison
was done by performing a Monte Carlo simulation with 105

iterations and the same parameters for the lag time distribution
as the simulation in section “Probabilistic Individual-Based
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FIGURE 3 | Examples of the individual-based and population-level models (A,C) and the probability density functions of population sizes after 10 h (B,D).
A comparison is made between a population-level model using the individual lag time directly (A,B) and a population-level model in which the lag time is reduced
with half of the generation time (C,D).

Model.” The simulation results are presented in Figures 3A,B.
Figure 3A compares an example simulation from the two
different models for the same initialization parameters (initial
number of cells and their individual lag times). Figure 3B
provides the lognormal probability density functions that were
fitted to the population size data after 10 h, when the variability
on the population size has long settled. As can be seen from
these results, there is a discrepancy between the obtained
probability distributions. This discrepancy in the probability
distributions was because the predicted population size with
the population-level model was always lower than that of the
individual-based model (Figure 3A). This difference in the
predicted growth curves of each model originates from the
stepwise evolution of the individual-based model whereas the
population-level model lags behind with a gradual increase
that starts at the end of the lag time. This difference can
be balanced out by shortening the lag phase duration in the

population-level model by half the generation time in the
exponential phase. This correction essentially applies a time
shift to the exponential phase so that the log-linear increase
ends up halfway of the stepwise increase (see Figures 3A,C).
Since the generation time can be expressed as ln (2)/, the
model in Equation 4 is than converted to the following
expression:

ln (N(t)) =

ln (N0)+

N0∑
i=1

1
(

t− λi +
ln(2)

2µ

)
· µ ·

(
t− λi +

ln(2)

2µ

)
(5)

A comparison of the population model in Equation 5 and
the individual-based model is presented in Figures 3C,D.
Figure 3C demonstrates with an example that the new
population model is a linear approximation of the stepwise
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behavior of the individual-based model. Figure 3D
illustrates that this change in the population model
results in a good approximation of the distribution of the
population size that is obtained. As such, the model in
Equation 5 will be used to simulate the distribution of the
population density.

Without proving this point, it is worth mentioning that it is
possible to calculate the final population size, as done in Equation
5, by first calculating the population lag, p, using the following
equation:

λp = −
1
µ
· ln

(
1

N0

N0∑
i=1

exp
(

ln(2)

2µ
+ λi

)
· µ

)
(6)

The mean population density is then calculated as:

ln (N(t)) = ln (N0)+ 1
(
t− λp

)
· µ (7)

Although seemingly simpler, the fact that the summation
remained necessary through Equation 6, meant that the
computational load did not decrease in the current study. As
such, all calculations of the population size were carried out with
Equation 5 as a population model.

Population Size Distribution
Now that the population-based model has been proposed, all that
remains to finalize the method is to find the probability density
function that is most suitable to describe the population size at
a given time point. This probability density function is required
within the parameter estimation to compare the simulated model
output with the experimentally measured probability distribution
of the population size. The optimal parameters of the distribution
of the individual cell lag are those parameters that minimize the
difference between the simulated and experimental distributions
of the population size.

To test which probability density function would be most
suitable, a set of simulation data was generated. The data
was generated for 1,000 96-well plates, inoculated at intended
concentrations of 0.5, 1.0, 2.0 and 4.0 CFU/well according to
a Poisson distribution. In each sample containing cells, the
population growth was simulated for a period of 6 h, using
the individual-based model of Figure 1 with the parameters of
Pin and Baranyi (2006) as mentioned in section “Probabilistic
Individual-Based Model.” At each time point, the Weibull,
gamma and lognormal distribution were fitted to the distribution
of the population size. The mean squared errors between the data
and the distributions were calculated based on the cumulative
distributions and plotted as a function of time in Figure 4. As
can be seen from this figure, the Weibull distribution achieves a
better approximation of the distribution of the population size
for all inoculum sizes and at all time points. As such, the Weibull
distribution was selected as the most suitable distribution to
describe the population size and was used within the following
parameter estimations to determine the individual lag phase
distribution. The small differences between the approximation
by the different distributions is in line with the results of Huang
(2016) who found little difference between simulation results

using the normal, lognormal, Gumbel, gamma, Weibull, and
exponential distributions.

Proposed Experimental and
Computational Method
The current section describes all experimental and computational
steps that are proposed in the current method for the estimation
of the individual lag time distribution. The following steps are
taken: (i) determine the OD detection limit and calibration
curve between OD and colony forming units, (ii) perform a
growth experiment to find the growth rate in the exponential
phase, (iii) inoculate microplates with several cells per well and
quantify the number of cells after a period of time, (iv) correct all
measurements to the exact same sampling time and (v) perform
a parameter estimation to find the distribution of the individual
lag time that results in the same distribution of the cells at
the sampling time.

Even though the proposed method relies primarily on the use
of viable plate counts, OD measurements are a useful tool for
the inoculation procedure. The availability of a calibration curve
between the OD and the number of viable plate counts allows
the estimation of the cell density of the preculture or one of its
dilutions. This cell density should be known for the calculation of
the desired dilutions to start the actual experiments. Since the cell
density of the preculture will often vary, the OD can provide a fast
measurement of the cell density before starting the inoculation.
The detection limit is needed to know the lower bound of the
calibration curve. If it is not specifically desired to aim at the same
initial cell density among replicates, this step can also be omitted.
The initial concentration needs to be verified in any case based on
plate counts for a more accurate determination.

The next experimental and computational steps require
knowledge on the growth of the microorganism under the
relevant conditions. To this end, a growth curve is constructed
under the same conditions as during the actual experiments.
In the current research, the growth curve is therefore also
constructed using the same 96-well plates. Once the growth curve
is available, a parameter estimation with the simple three-phase
linear model (Equation 2) will provide the exponential growth
rate which is essential information for the computational part.

The next step is to inoculate samples with a relatively low
quantity of cells. The idea is to have a high chance of obtaining
at least one cell in every sample while not exaggerating with the
number of cells per sample either. After all, too high a number
of cells could cause the cells to influence each other during the
first stages of the microbial growth, which is not desirable in this
type of experiments. Before inoculating the samples, it is also
important to determine the concentration of the inoculum using
viable plate counts. After a certain period of time, the quantity
of cells in each sample is determined using the viable plate count
method. The fastest and most accurate method is to transfer the
entire sample volume to petri plates. This is possible when using
small sample sizes (e.g., 100 µL) and if the total number of cells
in the sample is kept limited (e.g., maximum 300 cells). As such,
the time point of sampling should be selected in such a way that
the individual lag phase has most likely passed but the number of
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FIGURE 4 | Mean squared error between the simulated cumulative distribution of the population size as a function of time and the approximated Weibull, gamma
and lognormal distribution for initial population sizes: (A) 0.5, (B) 1.0, (C) 2.0, and (D) 4.0 CFU/well. Simulations were performed using the individual-based model of
Figure 1 with the parameters described in section “Probabilistic Individual-Based Model”.

cells has not yet increased by too much. The growth experiment
from the previous step will indicate the appropriate time point.

The fact that the current method relies on plating the
entire undiluted volume of each sample, yields a relatively fast
experimental method. That is to say, samples from a full 96-
well plate can be transferred directly to 96 agar plates. However,
compared to OD methods, it is important to understand that
there is a significant additional work load involved. Obtaining
an OD measurement in a microplate reader takes only a few
minutes. On the other hand, even this efficient protocol for plate
counts would take at least about 1 h and could extend to several
hours, depending on the approach. The method can be done
in less than an hour when using ready-to-use agar plates in
combination with an automatic colony counter. When using self-
prepared agar plates and performing manual plate counts, the
method requires at least 2 h for a single 96-well plate.

After incubating the petri plates and counting colonies,
the final number of cells in each sample is known. However,
depending on the number of samples, there can be a significant
difference in the time between inoculation and sampling. As such,
it is important to determine the time t between inoculation and
sampling for each sample. All sample quantities can then be
recalculated for the mean sampling time t. The logarithm of the
sample quantity n [ln(CFU)] is then converted to n− µ · (t − t),
with µ being the previously estimated exponential growth rate.
After this correction, a distribution of the cell population size is
obtained at a specific time point t.

At this point, the following is known: (i) the distribution of the
initial quantity of cells at the time of inoculation, which follows a
Poisson distribution with the average number of cells per sample
as its only parameter, (ii) the exponential growth rate µ, (iii) the
time of sampling t and (iv) the distribution of the population
size at that point in time. It should be noted that the Poisson
distribution of the initial quantity of cells is valid in this case
because the experimental method relies on the distribution of
samples from a single suspension with a random distribution of
bacteria. If the experimental method were to be changed, it should
be considered if this distribution needs to be changed as well.
It is also possible to simulate a distribution of the population
size by using the population-based model of Equation 5 in a
Monte Carlo simulation with randomly generated initial cell
quantities from the known Poisson distribution and randomly
generated individual lag phase durations from a the lognormal
distribution. The parameters of this lognormal distribution are,
however, unknown. These parameters can therefore be found by
selecting them in such a way that the simulated and measured
distributions of the population size approximate each other best.
To quantify the distance between both probability distributions,
a Weibull distribution is fitted to the simulated distribution
and the difference between the cumulative form of that Weibull
distribution and the cumulative probability density of the data is
calculated. Finding the parameters of the lognormal distribution
of the individual lag phase can be achieved by solving this
optimization problem with the function lsqnonlin of MATLAB.
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Simulation Validation
Methods to determine the variation of a lag phase distribution are
difficult to validate because testing the reliability of these methods
requires high amounts of experimental data. Therefore, the first
step in validating the proposed method is to validate based on
the theoretical simulations. These simulations allow the repeated
calculation of a simulated experiment to test the reproducibility
of the results. To obtain representative simulations, the same
steps are followed that would be applied in an experimental study.
This validation was carried out using these steps: (i) a first dataset
was generated to estimate the growth rate, (ii) two datasets were
generated at different initial concentrations to determine the lag
phase distribution by using the individual-based growth model,
(iii) the lag phase distribution was estimated for both datasets,
(iv) a Monte Carlo simulation of the population growth was made
using the population-based model and estimated parameters,
and (v) the results were compared with those of a Monte Carlo
simulation of the original individual-based model.

When following the proposed method, the first step is
the estimation of the microbial growth rate. This step was
simulated by generating inoculation data for a 96-well plate with
liquid samples of approximately 48 CFU/well according to a
Poisson distribution. For each sample, the growth was simulated
according to the individual-based model that is described in
Figure 1. The mean and standard deviation for the generation
time of both the lag phase and exponential growth were again
taken from Pin and Baranyi (2006) to obtain realistic simulations:
3.30 and 1.02 h, and 0.92 and 0.29 h respectively. The growth of
all samples was simulated for a period of 12 h. Three random
samples were taken every hour out of the simulated results and
their averages were calculated as a function of time. These data
were used to estimate the lag phase duration and exponential
growth rate by fitting the three-phase linear model (Equation 2)
to the simulated data (Figure 5). The lag phase duration of the
population was found to be 2.24 h and the exponential growth

FIGURE 5 | Simulated data starting at Poisson distributed initial
concentrations and following growth according to the individual-based model
of Figure 1. The two-phase linear model was fitted to this data (Equation 2).

rate was 0.834 1/h. This exponential growth rate is essential to
determine the lag phase distribution in the following step.

In the second step, two datasets were simulated, each
consisting of 4 96-well plates. These datasets were inoculated with
intended concentrations of 0.48 and 4.80 CFU/well according
to a Poisson distribution. In all wells containing cells, growth
was simulated according to the same individual-based model
to obtain the population size after 6 h. These simulated data
correspond to the experimental data that would be obtained when
determining the viable plate counts of each sample after a given
time. As such, these data were used as inputs for two parameter
estimation problems to estimate the parameters of the lognormal
distribution that describes the individual lag phase duration. The
mean and standard deviation of this distribution were calculated
to be, respectively, 3.17 (3.14; 3.20) and 1.18 (1.14; 1.23) h, and
3.27 (3.25; 3.28) and 1.12 (1.08; 1.17) h for initial population sizes
of 0.48 and 4.80 CFU/well. These parameter values are close to the
mean and standard deviation of the individual lag phase duration
that were used in the individual-based model to generate the data
(3.30 and 1.02 h). It can be noted that the standard deviations
were found to be higher than that specified to run the simulation
with the individual-based model. This is due to the fact that the
standard deviation of the individual lag phase duration in the
population-based model captures the variability of both the lag
phase duration and the generation time in the exponential phase.
The small difference between the parameters used to simulate the
data and the estimated parameters is already a first indication of
the successful implementation of the proposed method.

Baranyi et al. (2009) have published a methodology that is
based on the method of moments for calculating the individual
lag phase distribution from the same type of data as described
here. This method has a much lower computational burden than
the method proposed in this work, which requires solving a
maximum likelihood estimation problem that involves a Monte
Carlo simulation. As such, this moments-based method was
compared on exactly the same simulation data. To this end,
the mathematical formulation to solve this problem was taken
directly from Baranyi et al. (2009). For the data at 4.80 CFU/well,
a decent estimate of the individual lag phase distribution
was obtained, with a mean of 2.90 and standard deviation
of 1.16 CFU/well. However, no reasonable solution could be
obtained for the low concentration data of 0.48 CFU/well.
Upon further examination, it was found that the accuracy
of the estimated distribution decreased with decreasing initial
concentrations. Combining this inaccuracy with the fact that this
method provides no uncertainty on the parameter estimates, the
moments-based method was found to be unsuitable for solving
the current problem.

A more thorough validation of the obtained method and
parameter estimation results was done by comparing a simulation
of the individual-based model using the original parameters
with a simulation of the population-based model using the
estimated parameters. The simulations were performed for 10
96-well plates at the original average inoculation densities and
the resulting mean and standard deviation of the population
size as a function of time are presented in Figure 6. The
number of plates (iterations) was chosen to obtain an accurate
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FIGURE 6 | Comparison between the mean and standard deviation of the
population size according to (i) the individual-based model used to generate
simulation data (— and . . .) and (ii) the population-based model that
approximates this data (— and . . .). This information is represented for the two
case studies with initial population sizes according to a Poisson distribution
with means of (A) 0.48 and (B) 4.80 CFU/well. The individual-based model
and parameters are described in section “Probabilistic Individual-Based
Model”.

estimation of the standard deviation as a function of time,
as indicated by smooth curves. Comparing the two model
simulations in the figure demonstrates that the newly developed
method enables the population-based model to provide a very
good approximation of both the average population behavior
and the individual cell variability. Specifically, the ability of
the method and the population-based model to describe the
variability is remarkable. Even though the model completely
ignores the variability between individual cells in the exponential
phase of growth, a good approximation is achieved, starting from
the initial concentration of cells, all the way into the exponential
phase of growth. This validation study proves that it is indeed
possible to capture the combined variability of the cells in the
lag and exponential phase of growth into a single variable, being
the individual lag phase duration. The prerequisites to obtain the
current results are that both the mean initial population size and
the exponential growth rate are determined accurately. The final
step in the method development is the experimental validation.

FIGURE 7 | Data on the growth of E. coli at 25◦C after being transferred to
BHI medium with 56 g/L NaCl at an average quantity of 48 CFU/well. The
three-phase linear model of Equation 2 was fitted to the data.

Experimental Validation
Given that the simulation validation was successful, an
experimental validation was performed specifically to test the
assumption that the method can be used at higher inoculation
levels and therefore at higher yields of experimental data.
The method for the experimental validation study is explained
in detail in section “Experimental Study of the Population
Variability.” The first step in the evaluation of the experimental
data was to estimate the exponential growth rate based on the
experiments that were inoculated at an intended concentration
or 48 CFU/well. The exponential growth rate µ was estimated
to be 0.224 1/h with 95 % confidence bounds of 0.216–0.232
1/h. This experimental data and the fitted model are illustrated
in Figure 7. The 95 % confidence bounds indicate a high level
of confidence in the estimated growth rate, because of the large
number of samples. The lag phase duration was estimated to be
7.10 h (4.88; 9.33).

The next step was to process the data on the distribution
of the population size. Given the difference in inoculation and
sampling times between all samples, it was considered that
not all samples were taken after the same period of time.
The average sampling time t was calculated for all samples
and the logarithm of the sample quantity n was corrected
to n− µ · (t − t). In this manner, all sample quantities were
obtained at the exact same time point, which was 26.79 h
for the experiments at 0.48 CFU/well and 21.97 h for the
experiments at 4.80 CFU/well. Based on the quantification of the
concentration of the diluted inoculum, the real average initial
concentrations were calculated to be 0.35 and 3.07 CFU/well.
Based on the known exponential growth rate, sampling time
and initial concentrations, the parameter estimation to determine
the distribution of the individual lag phase duration could be
performed as explained in section “Proposed Experimental and
Computational Method.” These parameter estimations led to
the identification of the mean and standard deviation of the
lognormal distribution of the individual lag phase duration
with 95 % confidence bounds to be 9.72 (9.65; 9.79) and
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1.77 (1.62; 1.93), and 9.80 (9.78; 9.82) and 1.95 (1.90; 2.00) for the
lower and higher inoculation level, respectively. These parameter
estimates were in good agreement between the experiments
at different inoculum levels and they were relatively accurate.
The parameter accuracy of the experiments started at the low
inoculum level was lower than those started at a high level.
This is simply due to the much lower number of wells that
contained cells for the low inoculum level (95 wells compared
to 375 wells). As such, these experiments demonstrated first of
all that the characterization of the individual lag phase duration
is possible with the current method at various inoculum levels.
More importantly even, these experiments have shown that this
new method allows for the determination of the individual lag
phase variability with the same precision, while requiring a much
lower experimental effort by starting the experiments at inoculum
levels that are more likely to place at least one cell in every
well instead of aiming at a high chance of having no more than
1 cell per well.

A final step in this validation was to predict the lag phase
duration for the experiment with the highest inoculum level that
was used to estimate the exponential growth rate, based on the
estimated distributions of the individual lag phase. This was done
using the population-based model at the same inoculum level of
39.76 CFU/well for 1,000 iteration. The lag phase durations were
estimated by approximating the simulation data with the two-
phase linear model. Based on the distribution from the inoculum
of 0.35 CFU/well the lag phase was estimated to be 7.68 h and
for the distribution from the inoculum of 3.07 CFU/well it was
7.61 h. The predicted lag phase durations were close to each
other because of the probability distributions being very similar.
Moreover, the predicted population lag times were in line with
the lag phase duration of 7.10 h that was estimated from the
growth data at the highest inoculum level. Both the data and
simulations demonstrated a reduction of the population lag phase
duration with increasing population size. This reduction of the
lag phase duration can be understood from the larger likelihood
of having fast growing cells that will dominate the population lag.
Moreover, this phenomenon has been demonstrated in previous
research. For example, Robinson et al. (2001) demonstrated
this effect experimentally for L. monocytogenes at increased
NaCl concentrations.

CONCLUSION

This research presents a combined experimental and
computational method for the determination of the individual
lag phase variability. The experimental method can readily be
implemented in most microbiology labs and the computational
combines robust techniques such as Monte Carlo simulation
and maximum likelihood parameter estimation, which are

familiar to researchers in the domains of predictive microbiology
and quantitative microbial risk assessment. The experimental
method requires an accurate estimation of the average initial
concentration and the growth rate under the given conditions.
By demonstrating that the variability on the logarithmic
concentration of the population settles after just a few
generations, it is possible to quantify this variability of the
population size as a measure for the variability on the initial
growth phases. The further simulations demonstrated that a
simple population-based model can accurately approximate and
predict this growth variability as a consequence of individual
cell variability. The experimental validation demonstrated the
ability of the proposed methodology to determine the probability
distribution of the individual lag phase through experiments at
higher inoculum levels (>1 CFU/sample). The advantage of these
higher inoculum levels is that a larger amount of useful data (wells
containing cells) can be obtained from the same experimental
effort and cost. Moreover, by plating full undiluted samples in
the experimental method, the experimental error is reduced to a
minimum. As such, the proposed method delivers high accuracy
while minimizing the experimental load.
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