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Abstract
Data clustering is commonly employed in many disciplines. The aim of clustering is to parti-

tion a set of data into clusters, in which objects within the same cluster are similar and dis-

similar to other objects that belong to different clusters. Over the past decade, the

evolutionary algorithm has been commonly used to solve clustering problems. This study

presents a novel algorithm based on simplified swarm optimization, an emerging popula-

tion-based stochastic optimization approach with the advantages of simplicity, efficiency,

and flexibility. This approach combines variable vibrating search (VVS) and rapid central-

ized strategy (RCS) in dealing with clustering problem. VVS is an exploitation search

scheme that can refine the quality of solutions by searching the extreme points nearby the

global best position. RCS is developed to accelerate the convergence rate of the algorithm

by using the arithmetic average. To empirically evaluate the performance of the proposed

algorithm, experiments are examined using 12 benchmark datasets, and corresponding

results are compared with recent works. Results of statistical analysis indicate that the pro-

posed algorithm is competitive in terms of the quality of solutions.

Introduction
Cluster analysis is principally used to explore useful knowledge, particularly inherent structure,
hidden in a dataset with scarce pre-existent information. Such technique has been frequently
applied in many complicated tasks, including pattern recognition, image analysis, facility loca-
tion, and other fields of engineering [1–2]. Cluster analysis aims to categorize unlabeled data
into different clusters on the basis of the similarity between data instances. Similarity is gener-
ally measured by the distance metric and can also be treated as an optimization problem that
requires an optimal assignment of objects to clusters by minimizing the sum of distance metric
between each object and its cluster centroid [3].

K-means (KM) clustering, which uses distance metric to partition data into K clusters, is
common and fundamental because of its simplicity and efficiency. However, the initial state
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may cause the algorithm to be trapped in local optima, thereby affecting the quality of the solu-
tion [4]. Recent studies have made significant progress in overcoming the drawback of KM
clustering, particularly by using evolutionary algorithms, including genetic algorithm [5–6],
tabu search approach [7], ant colony optimization [8–9], artificial bee colony algorithm [10],
and particle swarm optimization [11–13]. Several algorithms inspired by physical phenomenon
have also been employed. These algorithms include simulated annealing algorithm [14], big
bang-big crunch optimization [15], gravitational search algorithm combined with KM
(GSA-KM) [16], and black hole algorithm (BH) [3].

Those approaches may take time to converge in dealing with clustering problems, particularly
large problems, because the initial particles are randomly generated and the subsequent updates
are probabilistic. To speed up the convergence rate, Krishna andMurty [5] have employed an
accelerated strategy called KM operator (KMO), which merges the principles of KM into the
clustering algorithm to efficiently find an effective solution. KMO uses arithmetic average to
determine new cluster centers in each generation. However, KMOmay be disabled after a num-
ber of generations. In this case, the computation cost is wasted, and the diversity of population is
restricted by the arithmetic average. Some clustering algorithms have combined with the KM by
using the result of KM as one of the initial solutions to speed up the convergence rate [9, 13, 16].
However, the outcome of KM heavily depends on the initial choice of the cluster centers and
may converge to the local optima rather than global optima. As a result, these hybrid algorithms
may start searching from a local optimum and obtain poor-quality solutions.

To overcome such problem, this study proposes an improved simplified swarm optimiza-
tion (SSO) that combines variable vibrating search (VVS) and rapid centralized strategy (RCS)
to solve clustering problems. VVS is an exploitation search scheme which can search nearby
for the global best position to refine the quality of the solution by using vibrated movement. It
obtains a balance between exploration and exploitation by introducing a function of time (t).
RCS is modified from KMO and stochastically activated to reduce the computation cost and
the loss of the population diversity. To evaluate the proposed algorithm, 10 benchmark datasets
are tested, and the performance is compared with state-of-the-art works. Encouraging results
are found in terms of efficiency and effectiveness of the proposed algorithm.

The remainder of this paper is organized as follows: Section 2 briefly describes the clustering
problem and SSO. Section 3 introduces the proposed algorithm including VVS and RCS. Sec-
tion 4 presents and discusses the computational results as well as the statistical analysis. Finally,
conclusions are summarized in Section 5.

Related works

Clustering problem
The goal of clustering is to partition a given set of N objects Y = {Y1, Y2,. . ., YN}, each Yi = {y1,
y2,. . ., yD} ∈ RD, into K groups, also called clusters C = {(C1, Z1), (C2, Z2),. . ., (CK, ZK)}, where
Ck represents the kth cluster, Zk represents the centroid of the kth cluster, and K� N. The clus-
ter structure is represented as follows [2]:

1: Ck 6¼ �; k ¼ 1; 2; . . . ;K; ð1Þ

2:
[K

k¼1
Ck ¼ Y ; ð2Þ

3: Ci \ Cj ¼ �; i; j ¼ 1; 2; . . . ;K and i 6¼ j: ð3Þ
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To split the objects into different clusters, many similarity criteria have been used in this
task. One of most popular criterion is the Euclidean distance metric [3, 7, 9, 11, 16]. KM is an
efficient and common clustering method which adopts this metric. The steps of this algorithm
are as follows [17]:

Step 1: Randomly choose the K initial centroids of clusters, Z = {Z1, Z2,. . ., ZK}.

Step 2: Measure the similarity by the Euclidean distance metric, and allocate object Yi to Ck, if ||
Yi, Zk||

2 � ||Yi, Zp||
2, p = 1, 2,. . ., K, and k 6¼ p.

Step 3: Evaluate the objective function named the sum of intra-cluster distances (SICD), as
follows:

f ðY ;CÞ ¼
XK

k¼1

X
Yi2Ck

kYi;Zkk2 ð4Þ

Step 4: Recalculate new centroids of clusters, as follows:

Znew;k ¼
1

Nk

X
8Yi2Ck

Yi ð5Þ

Step 5: If Znew,k = Zk, then halt. Otherwise, continue from Step 2.

KM regards the clustering problem, which is an NP problem [18], as an optimization prob-
lem and aims at minimizing SICD, by assigning objects to the closest cluster centroid. KM is a
well-known method in dealing with clustering problems because of its simplicity and effi-
ciency. However, it suffers from the local optimum. This work introduces a novel SSO-based
algorithm using the concept of KM to find optimal centroids by minimizing SICD without the
initialization problem of KM.

Simplified swarm optimization
SSO is a population-based algorithm proposed by Yeh in 2009 [19] to compensate for the defi-
ciencies of PSO in solving discrete problems. This algorithm has recently been applied in many
research areas because of its simplicity, efficiency, and flexibility [20–22].

In SSO, each individual in the swarm, called a particle representing a solution, is encoded as
a finite-length string with a fitness value. Similar to many population-based algorithms, SSO
improves the solution of a specified problem by the update mechanism (UM), which is the
core of any evolutionary algorithm scheme. The UM of SSO is as follows:

xtij ¼

xt�1
ij if r 2 ½0;CwÞ
pt�1
ij if r 2 ½Cw;CpÞ
gj if r 2 ½Cp;CgÞ
x if r 2 ½Cg ; 1�

ð6Þ

8>>>><
>>>>:

where xtij is the position value in the ith particle with respect to the jth variable of the solution

space at generation t. pi = (pi1, pi2,. . ., pid), where d is the total number of variables in the prob-
lem domain, represents the best solution with the best fitness value in its own history, known
as pBest. The best solution with the best fitness value among all solutions is called gBest, which
is denoted by g = (g1, g2,. . ., gd), and gj denotes the jth variable in gBest. x is a new randomly
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generated value between the lower bound and the upper bound of the jth variable. ρ is a uni-
form random number between 0 and 1. Cw, Cp, and Cg are three predetermined parameters
that form four interval probabilities. Thus, cw = Cw, cp = Cp-Cw, cg = Cg-Cp and cr = 1-Cg repre-
sent the probabilities of the new variable from four sources, namely, the current solution,
pBest, gBest, and a random movement in the UM, respectively. The UM updates each particle
to be a compromise of those four sources, particularly a random movement, which is different
from the original PSO, maintains population diversity, and enhances the capacity of escaping
from a local optimum.

Proposedmethods
The proposed algorithm is based on the original SSO, and combines with variable vibrating
search (VVS) and rapid centralized strategy (RCS). This section introduces VVS, RCS and
overall procedure for the proposed algorithm to solve the clustering problem.

SSO clustering algorithm
Similar to many population-based algorithms, the SSO clustering algorithm randomly gener-
ates a population of particles, also called solutions. Encoding solution is the critical first step
toward becoming a clustering algorithm. Assume that a clustering problem with D features is
partitioned into K clusters, then Z = {Z1, Z2,. . ., ZK} represents centroid vector and Zk = {zk1,
zk2,. . ., zkD}, where k = 1, 2,. . ., K. Therefore, each solution string can be defined as X = {x1,
x2,. . ., xK×D} as illustrated in Fig 1.

The primary steps of the SSO for clustering are summarized as follows:

Step 1: Generate a population of particles that represent centroids of each cluster with random
positions based on a given dataset.

Step 2: Evaluate the fitness value for each particle in the population according to Eq (4).

Step 3: Update pBest and gBest if necessary.

Step 4: Update the particle’s variables according to Eq (6).

Step 5: Stop the algorithm if the maximum number of iterations is met; otherwise, return to
step 2.

Variable vibrating search (VVS)
The UM promotes SSO to be an algorithm with the advantages of simplicity and flexibility.
However, the UM is a stochastic process with insufficient capability to find nearby extreme
points that can affect the efficiency and robustness of SSO, particularly in continuous prob-
lems. One way to improve the performance of SSO is adding the local search operation [23].
This modified SSO, called SSO-ELS, uses exchange local search scheme to find a new pBest of
the particle or a new gBest by exchanging attributes with two randomly chosen particles in pop-
ulation. However, it consumes more time than the original SSO.

To overcome such exploitation problem of SSO, this work proposes an exploitation search
scheme called VVS rather than a local search. It can refine the quality of the solution by search-
ing the extreme points nearby the global best position. A new variable in a solution after VVS
is calculated as Eq (7)

VVSðxjÞ ¼ gj þ ðUbj � LbjÞ � VðtÞ ð7Þ
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where gj denotes the jth variable in gBest. Lbj and Ubj are the lower and upper bounds of the jth
variable, respectively. The amplitude constant V is a function of time (t) as follow:

VðtÞ ¼ l� expð�n
iter
Niter

Þ ð8Þ

where λ represents a random number uniformly distributed in [-1,1]. ν is a predetermined
parameter to handle the amplitude of variables. Niter is the total number of iterations and iter
is the number of current iterations. As shown in Fig 2, with an increase in the number of itera-
tions, V(t) moves in the plot as vibration wave and decreases toward zero at the last iteration.
Hence, the particles search extreme points around the gBest position.

The balance between exploration and exploitation is an important criterion that can deter-
mine the performance of population-based optimization [24–25]. To tackle this problem, a
function of time (t), cr(t) as Eq (9), is introduced to replace cr which is a fixed constant in the
original UM. This change leads the particles to stochastically explore the search spaces in
beginning steps and gradually transform to exploit the extreme points nearby the gBest position
as the number of iterations increases.

crðtÞ ¼ crð0Þ �
iter
Niter

ð9Þ

crð0Þ ¼ 1� Cg ð10Þ

However, the modified UM is more complex and consumes more time than the original
UM because of the additional VVS. According to the result of preliminary tests as shown in S1
Table, the pBest scheme can be discarded in the modified UM to maintain the simplicity and
efficiency of the proposed algorithm without affecting the performance of the proposed algo-
rithm. Therefore, the UM of the proposed algorithm is modified as Eq (11)

xtij ¼

xt�1
ij if r 2 ½0;CwÞ
gj if r 2 ½Cw;CgÞ

VVSðxjÞ if r 2 ½Cg ;Cg þ crðtÞÞ
x if r 2 ½Cg þ crðtÞ; 1�

ð11Þ

8>>>><
>>>>:

Rapid centralized strategy (RCS)
As mentioned in Section 1, the proposed algorithm may take more time to converge. Krishna
and Murty [5] employed KMO to determine new cluster centers for all particles in each genera-
tion after initial population procedure by using Eq (5). However, overusing the arithmetic

Fig 1. Example of a solution string.

doi:10.1371/journal.pone.0137246.g001
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average may clamp the particles searching in the solution space because the members in clus-
ters of different particles are the same after running a number of iterations. For example, if two
particles in different positions have the same members in clusters, then both of them will move
to exactly the same point, which is the mean point of the cluster after conducting KMO, as
shown in Fig 3. In this case, particles may keep searching nearby the mean point rather than
gBest. The computation cost is wasted, and the diversity of population is restricted by arithme-
tic average.

Some clustering algorithms take advantage of combining with KM and using its result as
one of the particles for speeding up the convergence rate [9, 13, 16]. This strategy is named
one-from-KM (OFK) in this work. However, these hybrid algorithms may start searching from
a local optimum because of the initialization problem of the KM.

In this work, a modified accelerated strategy, RCS, is proposed. RCS is inspired by KMO
and can efficiently find a better centroid of a cluster at the initial state and keep the diversity of
population. The following two steps constitute RCS:

Step 1: In the initial state, the cluster centroids of all particles are recalculated according to Eq
(5), after being generated randomly by the proposed algorithm.

Step 2: In each iteration, only some particles are recalculated by RCS depending on its random
number.

Recalculating the centroids of all particles in the initial state can escape from the initializa-
tion problem of the KM through the diversity of particles and then obtain a promising initial
solution. In step 2, a random number, rand, belonging to [0, 1] is generated for each particle
after the particle is updated by the modified UM. If rand< β, then the RCS is implemented to
recalculate the cluster centroids of the particle. β is a predetermined parameter in the interval
[0, 1] to decide the proportion of particles that need to be recalculated the centroids.

Based on the above description, the proposed algorithm is called VSSO-RCS, and its steps
are shown in Fig 4.

Fig 2. An amplitude of V(t) along with iteration when v = 5.

doi:10.1371/journal.pone.0137246.g002
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Experiment Results and Discussion
The experiments are composed of two parts. In the first experiment, RCS is compared with
other accelerated strategies, including KMO and OFK, to illustrate the effectiveness of the pro-
posed accelerated strategy. In the second experiment, well-known and recently developed pop-
ulation-based algorithms are implemented to evaluate the performance of the proposed
algorithm. These population-based algorithms include SSO [17], SSO-ELS [23], BH [3],
KSRPSO [13], and GSA-KM [16]. All experiments are executed in MATLAB R2012b on a
computer equipped with an Intel 2.4 GHz CPU and 12 GB of memory.

As mentioned in Section 2, this work uses SICD as a criterion to evaluate the performance
of all clustering algorithms. SICD is the sum of the distances between objects in the same clus-
ter, as defined in Eq (4). A smaller SICD results in a higher quality solution.

Data sets
According to the categorization of dataset size described by Kudo and Sklansky [26], the prob-
lem can be categorized into three categories in terms of the number of features: small with 0<
D� 19, medium with 20< D� 49 and large with D� 50. Twelve datasets, which are taken
from the UCI repository database [27], cover all categories to test all approaches implemented
in this work. The characteristics of these datasets are summarized in Table 1. These datasets
have sizes ranging from hundreds to thousands and the feature size ranges from 3 to 60. All
datasets contain numeric features with no missing data.

Parameter settings
The algorithmic parameters for all approaches are illustrated in Table 2. Parameter settings
may influence the quality of results and the settings of each approach are suggested from previ-
ous studies. In KSRPSO, the settings of cognition c1 and social c2 parameters are 0.5 and 2.5,
respectively. The inertia weight w is equal to 0.5×rand/2, where rand is a uniformly generated
random number between 0 and 1. Three parameters, f, d and a, are set to 0.2, 0.2 and 0.8
respectively, controlling the selective particle regeneration mechanism for local search [13].
The parameters in SSO, SSO-ELS and SSO-RCS, Cw, Cp and Cg, are all set at 0.1, 0.4 and 0.9,
respectively [17, 23]. In VSSO-RCS, Cw, Cg, ν and β are set at 0.2, 0.9, 10 and 0.1, respectively.
Based on the preliminary test this parameter setting of VSSO-RCS provides a good chance of
finding the global optimal solution. Two parameters in GSA-KM, the initial gravitational con-
stant G0 and α, are set at 100 and 20, respectively [16, 28]. BH has no parameters need to be set
[3].

Fig 3. Particles moving behavior in accelerated strategy.

doi:10.1371/journal.pone.0137246.g003
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Fig 4. Flowchart of the VSSO-RCS algorithm.

doi:10.1371/journal.pone.0137246.g004
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For each run, the number of iterations and population size of each approach depends on the
number of features and clusters of each dataset. 10×C iterations and 3×C population size are
performed, andC is equal to D×K. [11, 12].

Results and discussion
Experiment 1: Evaluation of RCS. KM, SSO, SSO-KMO, SSO-OFK and SSO-RCS are

implemented to demonstrate the effectiveness of the proposed RCS. SSO-KMO, SSO-OFK,
and SSO-RCS represent SSO that adopted the accelerated strategies KMO, OFK, and RCS,
respectively. Four datasets are selected among three categories of datasets for this experiment,
including Cancer, Glass, Ionosphere, and Sonar. The experimental results summarized in
Tabel 3 include SICD and CPU time (CT). SICD is given in terms of the best, average, worst,
and standard deviation (Std.) of the obtained solutions after 30 runs. CPU time is a record of
the average proceeding time of 30 runs.

As shown in Table 3, where the best average values are shown in bold, SSO without any
accelerated strategy produces the worst solution on all selected datasets in comparison with
SSO-KMO, SSO-OFK, and SSO-RCS. This result confirms that the three accelerated strategies
are functional and facilitate SSO to find better solutions. SSO-KMO consumes more time and
obtains worse solution than SSO-RCS. This result proves that RCS modified from KMO not
only reduces the computational cost but also enhances the performance of SSO. As expected,

Table 1. Characteristics of the considered data sets.

Categorization Dataset Features (D) Instances (N) Clusters (K)

Small Vowel 3 871 6

Iris 4 150 3

Crude oil 5 56 3

Cancer 9 683 2

CMC 9 1473 3

Glass 9 214 6

MG Telescope 10 19020 2

Wine 13 178 3

EGG eye 15 14980 2

Medium WDBC 30 569 2

Ionosphere 34 351 2

Large Sonar 60 208 2

doi:10.1371/journal.pone.0137246.t001

Table 2. Value of parameters in six algorithms.

Parametera KSRPSO SSO-based VSSO-RCS GSA-KM

Value

c1, c2 0.5, 2.5 - - -

w 0.5×rand/2 - - -

f, d, a 0.2, 0.2, 0.8 - - -

Cw, Cp, Cg - 0.1, 0.4, 0.9 0.2, -, 0.9 -

v, β - - 10, 0.1 -

G0, α - - - 100, 20

a There is no parameter need to be set in BH [3].

doi:10.1371/journal.pone.0137246.t002
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SSO-OFK is faster than the other strategies. However, the solutions obtained by SSO-OFK are
all worse than those obtained by SSO-RCS. The results reveal that SSO-RCS yields higher qual-
ity solutions on all selected datasets than SSO-KMO and SSO-OFK. Obviously, RCS outper-
forms other strategies in this experiment.

Fig 5 depicts the progress of the average gBest over 30 runs, providing insights into the con-
vergence behavior of SSO-KMO, SSO-OFK, and SSO-RCS. For all datasets, SSO exhibits the
worst convergence pattern. SSO-KMO cannot obtain any benefit of yielding initial solutions.
Furthermore, it displays a fast but premature convergence to a local optimum on Glass, Iono-
sphere and Sonar dataset, as shown in Fig 5(B), 5(C) and 5(D). This result is understandable
because the global search capability depends on the diversity of population. KMO recalculates
the centroids of all particles at each iteration using the arithmetic average. After a number of
iterations, the overuse of the arithmetic average may backfire and compel the particle to be the
same as its predecessor or neighbors. As a result, KMOmay be disabled, and the population
diversity would be diminished.

OFK using the result of KM as one of the initial particles can offer SSO-OFK promising ini-
tial solutions that lead to initially converging faster than SSO-KMO. However, the initial solu-
tions obtained from KMmay suffer from local optimum. Therefore, gBest and pBest are
initialized from a pitfall and seriously affect the capability of global search, as shown in Fig 5
(B), 5(C) and 5(D).

SSO-RCS demonstrates a consistent performance pattern among all the considered acceler-
ated strategies. RCS not only produces promising initial solutions but also aids SSO to find
higher quality solutions than SSO-KMO and SSO-OFK on all of the selected datasets. Results
show that the proposed RCS is an ideal choice for accelerating convergence speed in clustering
algorithms.

Table 3. Results of three accelerated strategies.

Dataset Criteria KM SSO SSO-KMO SSO-OFK SSO-RCS

Cancer Best 2,986.96 2,965.13 2,965.56 2,964.82 2,964.93

Avg. 2,987.84 2,967.87 2,967.11 2,966.65 2,965.91

Worst 2,988.43 2,975.96 2,969.20 2,970.40 2,967.93

Std. 0.73 2.55 1.05 1.40 0.82

CT(s) 1.45 5.52 10.84 5.79 5.83

Glass Best 213.24 213.52 211.53 211.70 211.34

Avg. 223.58 223.85 220.55 214.71 212.11

Worst 253.83 240.66 243.43 218.57 215.60

Std. 10.21 9.74 10.00 1.65 1.01

CT(s) 2.75 45.64 85.25 48.05 48.42

INSP Best 796.33 811.75 795.90 795.42 795.13

Avg. 796.40 817.62 796.23 796.10 795.37

Worst 796.47 824.36 796.66 796.33 795.59

Std. 0.07 3.72 0.28 0.28 0.15

CT(s) 1.88 110.06 197.01 108.65 114.02

Sonar Best 234.77 235.25 240.00 234.72 234.51

Avg. 235.10 238.32 240.42 235.06 234.58

Worst 235.21 240.32 241.66 235.21 234.60

Std. 0.15 2.33 0.50 0.20 0.03

CT(s) 2.29 664.94 693.93 432.56 425.46

doi:10.1371/journal.pone.0137246.t003
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Experiment 2: Evaluation of VSSO-RCS. Well-known and recent population-based algo-
rithms including SSO, SSO-RCS, SSO-ELS, BH, KSRPSO, and GSA-KM are implemented to
demonstrate the effectiveness of the proposed algorithm, VSSO-RCS. Experimental results
tested on 12 benchmark datasets are summarized in Tables 4–6, where the best values are
shown in bold and all results are obtained after 30 runs.

As illustrated in Tables 4–6, VSSO-RCS produces better results than SSO-RCS on all of the
datasets. This result proves that the proposed exploitation scheme VVS plays its prescribed
roles in exploitation search and can refine the solutions. For the Vowel, Crude oil, Cancer,
CMC, Glass and EGG eye datasets, the average values obtained by VSSO-RCS are 149148.08,
277.26, 2964.39, 5532.18, 211.31 and 2354849.12, respectively, which are better than those
obtained by the other algorithms. For the Cancer, CMC, EGG eye and WDBC datasets, the
worst values obtained by VSSO-RCS are 2964.39, 5532.18, 2355129.21 and 149473.86, respec-
tively, which are better than the best values yielded by the other test algorithms except for BH
and GSA-KM. This result means that other SSO-based algorithms and KSRPSO are powerless
to achieve those values even once within 30 runs. Moreover, the standard deviation on the Iris,
Cancer, CMC, WDBC, Ionosphere, and Sonar datasets are 0.00, which means that the pro-
posed algorithm is more reliable than the other algorithms.

In terms of CPU time, the proposed algorithm is faster than other SSO-based algorithms.
This advantage is attributed to the modified UM of VSSO-RCS by discarding the pBest scheme.
GSA-KM is time consuming because of its computational complexity. In general, BH and

Fig 5. Convergence comparison of different accelerated strategies.

doi:10.1371/journal.pone.0137246.g005

Simplified SwarmOptimization for Data Clustering

PLOS ONE | DOI:10.1371/journal.pone.0137246 September 8, 2015 11 / 19



VSSO-RCS take less processing time than KSRPSO on small and medium size datasets.
KSRPSO has superiority on large size dataset.

The statistical analysis. A nonparametric statistical analysis, the Friedman test, is con-
ducted to confirm whether the proposed VSSO-RCS offers a significant improvement. If statis-
tically significant differences exist among all algorithms, then the Holm’s method is employed
as a post hoc test to compare the proposed algorithm (control algorithm) and the other algo-
rithms. The significance level is set to α = 0.05 to determine whether or not the hypothesis is
rejected in all cases. These tests are detailed in [29].

Table 7 reports the average ranks computed through the Friedman test based on the average
values of SICD. The table shows that the average rank of the proposed VSSO-RCS is the small-
est among the algorithms. Therefore, the proposed method is the best performing one, followed
by BH, SSO-RCS, GSA-KM, KSRPSO, SSO-ELS, and SSO, successively.

The p-Values computed through the Friedman test is given in Table 8, suggesting significant
differences in the average values of SICD among the considered approaches.

To determine sufficient statistical differences between VSSO-RCS and the remaining algo-
rithms, the Holm’s method is conducted as a post hoc test.

Table 9 shows that all p-values are smaller than α = 0.05, which indicates that the control
algorithm VSSO-RCS is statistically better than SSO, SSO-RCS, SSO-ELS, BH, KSRPSO, and
GSA-KM in term of SICD.

The same procedure is conducted to check whether or not significant differences in CPU
time exist between the clustering algorithms. The results are shown in Tables 10–12. The Fried-
man’s test reveals that the proposed algorithm is ranked second behind BH and that statisti-
cally significant differences in the average CPU time exist among the algorithms. Table 12
indicates that VSSO-RCS is more efficient than SSO-RCS, SSO-ELS, and GSA-KM. No signifi-
cant difference is found among SSO, KSRPSO, BH, and VSSO-RCS.

Table 4. Results obtained by the algorithms on Vowel, Iris, Crude oil and Cancer datasets.

Dataset Criteria SSO SSO-RCS SSO-ELS BH KSRPSO GSA-KM VSSO-RCS

Vowel Best 149,247.64 149,021.16 149,096.69 148,967.24 149,089.96 149,076.71 148,967.24

Avg 150,421.69 149,315.13 150,118.24 151,684.62 151,758.39 152,289.92 149,148.08

Worst 154,119.51 150,267.43 153,232.13 168,379.82 170,433.64 158,612.03 150,139.66

Std 1,249.07 394.08 863.56 5,100.30 4,205.04 2,947.95 336.16

CT 6.54 6.97 10.86 6.13 6.65 13.38 6.44

Iris Best 96.75 96.67 96.72 96.66 96.68 96.66 96.66

Avg 97.11 96.73 97.17 96.66 98.98 96.71 96.66

Worst 98.06 96.82 97.94 96.71 127.67 97.22 96.66

Std 0.35 0.04 0.42 0.01 6.96 0.13 0.00

CT 0.70 0.74 1.20 0.61 0.75 1.85 0.61

Crude oil Best 277.25 277.25 277.24 277.21 277.22 277.21 277.21

Avg 277.53 277.35 277.99 277.27 277.35 277.63 277.26

Worst 278.21 277.42 293.58 277.30 277.86 285.76 277.36

Std 0.25 0.04 2.95 0.04 0.13 1.56 0.05

CT 0.99 1.06 1.64 0.83 1.02 3.76 0.83

Cancer Best 2,965.13 2,964.93 2,964.95 2,964.39 2,964.86 2,965.00 2,964.39

Avg 2,967.87 2,965.91 2,967.05 2,964.40 2,966.32 2,973.42 2,964.39

Worst 2,975.96 2,967.93 2,970.83 2,964.41 2,969.62 2,985.84 2,964.39

Std 2.55 0.82 1.32 0.00 1.24 6.57 0.00

CT 5.52 5.83 10.03 5.16 5.90 11.28 5.39

doi:10.1371/journal.pone.0137246.t004
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Table 6. Results obtained by the algorithms on EGG eye, WDBC, INSP and Sonar datasets.

Dataset Criteria SSO SSO-RCS SSO-ELS BH KSRPSO GSA-KM VSSO-RCS

EGG eye Best 8,032,669.11 5,644,264.31 2,385,500.94 2,354,713.85 3,010,467.48 2,778,514.06 2,354,756.19

Avg 16,361,259.24 14,464,277.41 2,505,596.68 2,586,299.09 3,210,719.24 2,791,675.62 2,354,849.12

Worst 26,910,999.74 29,333,498.64 2,762,809.53 3,214,000.36 3,456,696.67 2,867,748.16 2,355,129.21

Std 6,668,788.32 6,757,831.04 108,461.85 271,990.85 114,894.72 27,242.75 129.73

CT 856.77 874.94 1116.37 850.98 880.40 912.04 849.99

WDBC Best 149,474.46 149,474.20 149,474.40 149,473.86 149,473.89 149,473.86 149,473.86

Avg 149,480.77 149,477.49 149,479.23 149,473.86 149,474.13 149,473.86 149,473.86

Worst 149,494.82 149,483.18 149,493.45 149,473.87 149,474.62 149,473.86 149,473.86

Std 5.93 2.76 4.10 0.00 0.20 0.00 0.00

CT 94.57 105.77 185.15 90.91 90.58 732.59 90.76

INSP Best 814.52 794.96 794.32 793.92 793.78 793.71 793.71

Avg 819.07 795.13 794.86 794.30 793.87 793.71 793.71

Worst 827.72 795.30 796.37 795.34 794.02 793.71 793.72

Std 4.76 0.10 0.61 0.42 0.07 0.00 0.00

CT 105.74 114.02 195.46 105.38 95.97 1,171.57 96.35

Sonar Best 247.73 234.51 238.85 234.22 233.77 233.76 233.76

Avg 249.19 234.58 239.87 245.02 233.86 233.76 233.76

Worst 251.12 234.60 245.27 266.59 234.08 233.76 233.77

Std 1.11 0.03 1.93 14.97 0.09 0.00 0.00

CT 395.85 425.46 650.07 347.83 301.61 11,132.94 328.31

doi:10.1371/journal.pone.0137246.t006

Table 5. Results obtained by the algorithms on CMC, Glass, MG Telescope andWine datasets.

Dataset Criteria SSO SSO-RCS SSO-ELS BH KSRPSO GSA-KM VSSO-RCS

CMC Best 5,533.46 5,532.77 5,532.76 5,532.19 5,532.36 5,532.19 5,532.18

Avg 5,535.93 5,533.45 5,534.84 5,532.24 5,532.87 5,532.19 5,532.18

Worst 5,540.84 5,534.59 5,539.57 5,532.45 5,533.59 5,532.19 5,532.18

Std 1.77 0.45 1.48 0.05 0.32 0.00 0.00

CT 27.90 28.66 46.22 26.10 27.45 54.62 27.12

Glass Best 213.52 211.34 211.19 237.65 210.36 213.11 210.43

Avg 223.85 212.11 218.38 260.93 217.87 218.52 211.31

Worst 240.66 215.60 235.35 269.64 245.32 227.58 214.81

Std 9.74 1.01 8.50 8.36 7.91 3.60 1.78

CT 45.64 48.42 78.82 38.66 36.94 508.16 39.26

MG Telescope Best 1,623,698.99 1,623,296.10 1,623,772.73 1,623,042.28 1,623,322.11 1,623,042.27 1,623,042.28

Avg 1,631,490.90 1,625,505.00 1,629,648.90 1,623,042.31 1,627,770.46 1,623,042.27 1,623,045.45

Worst 1,637,591.98 1,632,364.00 1,635,628.40 1,623,042.38 1,635,781.99 1,62,3042.27 1,623,072.86

Std 4,685.46 3,544.38 3,877.04 0.03 4,191.48 0.00 9.63

CT 1145.16 1175.22 1709.08 988.84 1211.86 1341.66 1084.09

Wine Best 16,292.44 16,292.45 16,292.43 16,292.19 16,292.22 16,292.67 16,292.18

Avg 16,294.07 16,293.86 16,294.14 16,292.71 16,292.78 16,293.90 16,292.76

Worst 16,296.90 16,295.72 16,295.67 16,294.17 16,294.47 16,294.17 16,294.17

Std 1.09 0.89 1.05 0.70 0.67 0.45 0.82

CT 20.00 21.65 34.01 17.64 18.33 141.91 18.08

doi:10.1371/journal.pone.0137246.t005
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The results of empirical and statistical analyses show that VSSO-RCS is not that superior in
CPU time compared with SSO, BH and KSRPSO. However, VSSO-RCS exhibits promising
and effective clustering performance.

Empirical analysis of algorithm efficiency. The results from the previous subsection
demonstrate that the proposed algorithm can perform better than its competitors in terms of
the quality of solutions. Also, it can be observed that the problem size may impact the compu-
tation time. To better observe the effect of the number of data instances and features on the
proposed method, two groups of artificial datasets are generated. As shown in Table 13, the
first group varies the number of instances from 16000 to 2048000 at the fixed number of fea-
tures (i.e. D = 6) for evaluating the effect of instance size. The second group varies the number
of features from 400 to 51200 at the fixed number of instances (N = 1000) for observing the
effect of feature size as shown in Table 14. The number of clusters in both of the two groups is
fixed to K = 2. The proposed method performs 10 independent runs on each dataset with 100
iterations and 30 population size.

Table 7. Results of Friedman ranks on the average of SICD.

Dataset SSO SSO-RCS SSO-ELS BH KSRPSO GSA-KM VSSO-RCS

Vowel 4.00 2.00 3.00 5.00 6.00 7.00 1.00

Iris 5.00 4.00 6.00 1.50 7.00 3.00 1.50

Crude oil 5.00 3.50 7.00 2.00 3.50 6.00 1.00

Cancer 6.00 3.00 5.00 2.00 4.00 7.00 1.00

CMC 7.00 5.00 6.00 3.00 4.00 2.00 1.00

Glass 6.00 2.00 4.00 7.00 3.00 5.00 1.00

MG T 7.00 4.00 6.00 2.00 5.00 1.00 3.00

Wine 6.00 4.00 7.00 1.00 3.00 5.00 2.00

EGG eye 7.00 6.00 2.00 3.00 5.00 4.00 1.00

WDBC 7.00 5.00 6.00 2.00 4.00 2.00 2.00

Ionosphere 7.00 6.00 5.00 4.00 3.00 1.50 1.50

Sonar 7.00 4.00 5.00 6.00 3.00 1.50 1.50

Average 6.17 4.04 5.17 3.21 4.21 3.75 1.46

doi:10.1371/journal.pone.0137246.t007

Table 8. Results of Friedman tests on the average of SICD.

Method Statistical value p-Value Hypothesis

Friedman 34.07 0.000 Rejected

doi:10.1371/journal.pone.0137246.t008

Table 9. Results of the post hoc test on the average of SICD.

Method z-Value p-Value Hypothesis

SSO 5.339 0.000 Rejected

VSSO-RCS 2.929 0.003 Rejected

SSO-ELS 4.205 0.000 Rejected

BH 1.984 0.047 Rejected

KSRPSO 3.118 0.002 Rejected

GSA-KM 2.598 0.009 Rejected

doi:10.1371/journal.pone.0137246.t009
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As reported in Tables 13 and 14, the results obtained from the two analysis cases indicate
that the ratios of CPU time increase both converge to 2. Fig 6 and Fig 7 show log-log plots of

Table 10. Results of Friedman ranks on the average of CPU time.

Dataset SSO SSO-RCS SSO-ELS BH KSRPSO GSA-KM VSSO-RCS

Vowel 3.00 5.00 6.00 1.00 4.00 7.00 2.00

Iris 3.00 4.00 6.00 1.50 5.00 7.00 1.50

Crude oil 3.00 5.00 6.00 1.50 4.00 7.00 1.50

Cancer 3.00 4.00 6.00 1.00 5.00 7.00 2.00

CMC 4.00 5.00 6.00 1.00 3.00 7.00 2.00

Glass 4.00 5.00 6.00 2.00 1.00 7.00 3.00

MG T 3.00 4.00 7.00 1.00 5.00 6.00 2.00

Wine 4.00 5.00 6.00 1.00 3.00 7.00 2.00

EGG eye 3.00 4.00 7.00 2.00 5.00 6.00 1.00

WDBC 4.00 5.00 6.00 3.00 1.00 7.00 2.00

INSP 4.00 5.00 6.00 3.00 1.00 7.00 2.00

Sonar 4.00 5.00 6.00 3.00 1.00 7.00 2.00

Average 3.50 4.67 6.17 1.75 3.17 6.83 1.92

doi:10.1371/journal.pone.0137246.t010

Table 11. Results of Friedman tests on the average of CPU time.

Method Statistical value p-Value Hypothesis

Friedman 60.464 0.000 Rejected

doi:10.1371/journal.pone.0137246.t011

Table 12. Results of the post hoc test on the average of SICD.

Method z-Value p-Value Hypothesis

SSO 1.795 0.073 Not rejected

VSSO-RCS 3.118 0.002 Rejected

SSO-ELS 4.819 0.000 Rejected

BH 0.189 1.150 Not rejected

KSRPSO 1.417 0.156 Not rejected

GSA-KM 5.575 0.000 Rejected

doi:10.1371/journal.pone.0137246.t012

Table 13. Empirical analysis result of varying in number of data instances.

i 1 2 3 4 5 6 7 8

N (D = 6) 16000 32000 64000 128000 256000 512000 1024000 2048000

Max CT 15.21 29.72 56.83 121.20 246.08 496.77 999.67 2149.43

Mean CT 14.47 28.49 55.80 119.06 241.86 484.74 966.41 1958.85

Min CT 13.85 27.38 54.90 116.95 237.07 473.70 945.32 1989.48

Std CT 0.48 0.73 0.69 1.26 2.77 6.65 18.57 51.56

Ratioa 1.97 1.96 2.13 2.03 2.00 1.99 2.03

aRatio = Mean CTi / Mean CTi-1

doi:10.1371/journal.pone.0137246.t013
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CPU time vs. instance size and vs. feature size, respectively, both indicating that the computa-
tion time grows with the size of instance and feature in a linear and stable manner.

Conclusions
The proposed VSSO-RCS is a modified version of simplified swarm optimization to effectively
and efficiently tackle the clustering problems. VVS overcomes the exploitation problem in SSO
and facilitates VSSO-RCS to refine the quality of solution. VSSO-RCS also converges fast to an
optimum solution by adopting RCS.

To assess the performance of VSSO-RCS, two experiments are conducted. First, RCS is
compared with other two powerful accelerated strategies. RCS not only can obtain promising
initial solutions but also converge more efficiently than KMO and OFK. Second, VSSO-RCS is
compared with state-of-the-art population-based algorithms on 12 benchmark datasets.
Results reveal that VSSO-RCS is superior to its competitors from the perspective of solution
quality and is efficient in terms of the processing time required.

Our results on empirical analysis suggest that instance and feature size both affect the
computation efficiency of the proposed algorithm. As the problem size grows, it adds more
challenges to the computation time of our proposed method, especially for dealing with very

Table 14. Empirical analysis result of varying in number of data features.

i 1 2 3 4 5 6 7 8

D (N = 1000) 400 800 1600 3200 6400 12800 25600 51200

Max CT 55.82 109.48 217.14 434.14 881.76 1764.43 3592.34 7413.43

Mean CT 54.76 108.70 214.54 431.66 877.09 1754.31 3574.15 7227.01

Min CT 53.43 107.58 211.54 428.05 871.33 1727.27 3557.24 7230.68

Std CT 0.71 0.60 1.95 2.07 2.88 10.68 10.60 54.29

Ratio 1.99 1.97 2.01 2.03 2.00 2.04 2.02

doi:10.1371/journal.pone.0137246.t014

Fig 6. Log-log plot of CPU time vs. instance size.

doi:10.1371/journal.pone.0137246.g006
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large-size problems (i.e. big data) [30]. Due to such aspect, our future research will focus on the
following:

1. Apply effective techniques [31–35] which can reduce the search space into the proposed
algorithm to mitigate such an issue.

2. Modify the proposed method in a parallel or distributed form [36–38] to improve the com-
putation efficiency.

In addition, it is also worth exploring other potential application, such as classification, fully
utilize the VSSO-RCS.
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