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Abstract

The statistics of drug development output and declining yield of approved medicines has been the subject of many recent
reviews. However, assessing research productivity that feeds development is more difficult. Here we utilise an extensive
database of structure-activity relationships extracted from papers and patents. We have used this database to analyse
published compounds cumulatively linked to nearly 4000 protein target identifiers from multiple species over the last
20 years. The compound output increases up to 2005 followed by a decline that parallels a fall in pharmaceutical patenting.
Counts of protein targets have plateaued but not fallen. We extended these results by exploring compounds and targets for
one large pharmaceutical company. In addition, we examined collective time course data for six individual protease targets,
including average molecular weight of the compounds. We also tracked the PubMed profile of these targets to detect
signals related to changes in compound output. Our results show that research compound output had decreased 35% by
2012. The major causative factor is likely to be a contraction in the global research base due to mergers and acquisitions
across the pharmaceutical industry. However, this does not rule out an increasing stringency of compound quality filtration
and/or patenting cost control. The number of proteins mapped to compounds on a yearly basis shows less decline,
indicating the cumulative published target capacity of global research is being sustained in the region of 300 proteins for
large companies. The tracking of six individual targets shows uniquely detailed patterns not discernible from cumulative
snapshots. These are interpretable in terms of events related to validation and de-risking of targets that produce detectable
follow-on surges in patenting. Further analysis of the type we present here can provide unique insights into the process of
drug discovery based on the data it actually generates.
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Introduction

The declining productivity of global pharmaceutical develop-

ment, measured in terms of small-molecule New Chemical Entities

(NCEs) factored against their rising cost, has been extensively

analysed and commented on in recent years [1,2,3,4,5]. Although

the longer term approval rate has been projected as closer to linear

than a real decline [1], the attrition rates from 1990 to 2004 have

continuously increased for every development phase [3]. Assessing

information and statistics about the progression of NCEs is

possible because by the time candidates enter clinical trials they

have usually been declared in publications, meeting reports, news

releases and portfolio listings. As they approach regulatory

submission they will also have been assigned an International

Non-Proprietary Name (INN) [6] and national equivalents thereof,

such as the USAN. The statistics quoted by competitive

intelligence sources that collate such data vary in exact numbers,

but suggest approximately 35,000 compounds have ever entered

development and the 2010 figure of 9,737, was nearly 10-fold

higher than for 1980 [7]. A more open and specific count of

historically advanced drug candidates can be obtained by

performing a query in PubChem Compound for INN or USAN.

This retrieves 10421 structures (June 2013). Thus, for R&D, while

there is adequate data to measure the ‘‘D’’ output an equivalent

assessment of ‘‘R’’ (as the input to ‘‘D’’) is much more difficult.

The main reason is because the data generated by commercial

organisations that dominate global output is considered proprie-

tary, even though the continuing imperative for this has been

challenged [8].

Notwithstanding this information shadow that extends back into

the research phase, patents and journal publications provide

valuable surrogate outputs. We have been unable to find any

formal description of the information flow between these two

document types but it can be briefly described as follows. Drug

discovery project teams typically apply for patents to claim and

protect the chemical space around their lead series from which

clinical development candidates may be chosen [9]. This sets the

minimum time between the generation of data and its disclosure to

18 months. In practice, this is usually extended, not only by the

time necessary for collating the data and drafting the application

but also where strategic choices may be made to file later in the

development cycle to maximise the patent term. It is also common

to file separate applications for each distinct chemical series the

team is progressing.
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While some drug discovery operations may eschew non-patent

disclosure entirely, it is nevertheless common practice (and has

business advantages) for project teams to submit papers to journals

that include some of the same structures and data from their

patents. While the criteria for inventorship are different than for

authorship, there are typically team members in-common between

the two types of attribution. Journal publications may or may not

identify the lead compound by linking the structure to a code

name, depending on how far this may have progressed as a clinical

candidate [10].

The time lag can vary between submitting manuscripts

immediately after filing, waiting until the application has

published, deferring publication until a project has been discon-

tinued, or the code name may never be publically resolvable to a

structure. A recent comparison showed that 6% of compound

structures exemplified in patents were also published in journal

articles [11]. While the patterns described above will be typical for

pharmaceutical and biotechnology companies, the situation in the

academic sector differs in a number of respects [12]. Universities

and research institutions are publishing increasing numbers of

patents for bioactive compounds but their embargo times for

publication and/or upload of screening results to open reposito-

ries, such as PubChem BioAssay, are generally shorter [13].

So what is the global research phase output of compounds

across time directed against protein targets for human disease?

There is no current public information source that can supply a

definitive answer because this is associated with complex data

mining challenges, particularly for the patent component.

However, data related to the wider question is becoming more

accessible. For example, the query interfaces at major patent office

portals have improved considerably over the last few years (EPO

Espacenet [14], USPTO [15], and WIPO [16]). In addition, there

has been a proliferation of open resources for full-text patents such

as Free Patents Online [17] and Google Patents [18]. These have

recently been joined by new public resources that include chemical

structures extracted from patents. These include extractions from

US patents in SCRIPDB [19], the deposition from IBM of

structures from pre-2000 patents into PubChem [20], selected

European patent structures added to PubChem by the SLING

Consortium [21], and the recent release of SureChemOpen [22].

Notwithstanding the utility of these resources, they cannot be

used to extract the explicit mapping between compounds and

targets with high specificity at large-scale. The obstacles to this

include identifying representative patents, unambiguous resolution

of target names, and establishing which example structures are

linked to what activity data. Last but not least, these challenges are

compounded by the common strategic practice for patents to be

written in a style that obfuscates data relationships, even if these

may later be reformulated in journal papers with the necessary

clarity to pass peer-review. In regard to the extraction of

structures, activity data and protein targets from papers, the

largest public source is ChEMBL to which links are available from

PubChem BioAssay, European PubMed Central and other

databases [23,24,25].

In addition to public sources there are a number of companies

whose business models are based on brokering drug research and/

or development data extracted from patents, papers and other

public sources. Many of these declare their basic entity counts and,

by definition, their products provide functionality for subscribers

to query the content. However, research output statistics at the

magnitude and detail we are considering here continue to be

difficult to retrieve with high precision from any single source,

public or commercial. This is because of both insufficient

integration of data relationships and the extractions are not

carried out at a large enough scale [26].

As a prelude to comparing the two, it is useful to note the

different time scales for ‘‘R’’ vs. ‘‘D’’ quoted in the literature.

Significantly, the averages have moved up, from 9.7 years during

the 1990’s, to 13.9 years for products launched from 2000

onwards [3]. The research phases have been estimated at

approximately 5.5 years from hit-to-candidate with a subsequent

average clinical development phase of 6 years [2]. The timing of

chemical patenting within this research span varies considerably

depending on organisational or project-specific choices. For

example, the decision may be made for an early defensive filings

with a lead series. Alternatively this may be delayed until well after

optimisation to maximise patent term [27]. Regardless of these

uncertainties, we can assume that NCE drugs approved during

2012 will, on average, have had their first composition-of-matter

patents published approximately 10 years previously.

In this work we have undertaken an assessment of early-phase

drug discovery output. We have been able to achieve this using

data compiled from structure-activity-target relationships extract-

ed from over 140,000 patents and papers extending over more

than 40 years. In a previous report, we used this data corpus to

rank 1654 protein targets by the number of compounds directed

against them [29]. The difference in this study is that we now

analysed the same corpus (updated by two years) but, rather than

the cumulative end-point statistics, we focus here on following

entity changes on a year-on-year basis. This is possible because the

data structure enables every protein identifier and compound to be

linked to the publication year of each document it was extracted

from. Earlier versions of similar data sets to those used in this work

(i.e. also using the GVKBIO databases) have been dissected

according to institution, target numbers, target classes and

molecular properties against time [27], a single journal across

time [28], and, from a cumulative snapshot, the ranking of all

targets by compound numbers vs. molecular scaffolds [29].

We have restricted out tracking of research output to the

20 years of 1991 to 2010 for three reasons. Firstly, it encompasses

the distinct global growth phase. Secondly, we can rely on the

completeness of data collection up to 2010 (i.e. without any

significant back-log from source feeds or curatorial triage).

Thirdly, this period covers the completion of the human genome

along with major advances in screening technology. Lastly, it

covers the development time for recently approved drugs as well as

the early research efforts directed against their targets. Our

approach starts with the discernment of major time patterns for

compounds and targets. By selecting corroborative data sources

and ancillary analyses we test some possible explanations for these

patterns. We then focus on an individual institution and, lastly,

track six individual targets on the same year-by-year basis.

Results

Cumulative statistics
The use of the word ‘‘compound’’ for a generally lead-like

chemical structure needs no qualification here, except to point out

that the data set encompasses a significant proportion beyond the

typical small-molecule range of MWs above 1000. These are

typically peptidic protease inhibitors, antibiotics and complex

natural products. We have previously discussed the imprecision

and equivocality associated with the term ‘‘target’’ in some detail

[29]. In summary, the comprehensive capture of compound-to-

protein relationships encompasses a significant proportion that are

not considered as drug targets per se, for example those derived

from paralogue and orthologue cross-screening. It is thus more
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correct to classify the data as compound-to-protein mappings.

However, for convenience, we continue to use ‘‘target’’ as the

umbrella term for the protein identifiers.

Our first task was to update the statistics for the data sets we

used for our 2011 analysis [29]. The current figures in Table 1

provide the new cumulative totals from 1945 for journals and 1966

for patents up to November 2012.

The first analysis results of plotting SAR-linked compound

output from patents and papers are show in Figure 1. For patent

chemistry output three distinct phases can be discerned. The first

is a steady increase up to the 1990s. The second is acceleration

between 2001 and 2005. However, this is followed by a fall from

2005 to 2012 amounting to ,35%. In comparison, journal

outputs show a steady increase over the entire period, although

there are suggestions of an acceleration between 2001 and 2007,

together with a subsequent slowdown. Additional plots were

generated to test if the stringency of target mapping made any

difference (results not shown). Regardless of whether compound

plots were generated by the inclusion of all target species, human,

mouse and rat or human only, the curve shapes were essentially

the same.

While the inference is a decline of patented chemistry output

related to drug discovery research we sought corroborative data to

support this. We thus compared, over the same time scale, selected

document counts for metadata queries from major patent office

portals. These are the primary sources that feed into the GVKBIO

triage for data extraction but are independent from it. We plotted

four counts shown in Figure 2.

We can use the patent office primary data in Figure 2 for

hypothesis-testing the derived extraction data in Figure 1. Firstly,

the post-2005 drop in compound output approximately parallels

the selections for medicinal chemistry and pharmaceutical patents.

The correlation thus infers that the downturn in Figure 2 is specific

for (or at least dominated by) pharmaceutical research output. The

rise in academic C07D patents, the International Patent Classi-

fication (IPC) code under which medicinal chemistry patents are

usually filed, suggests the absence of confounding trends (i.e. no

overall decline of non-pharma medicinal chemistry filings). As an

obvious control data set, global patent output shows a constant

increase over the same 20 years. Further inference testing was

done by examining correlation between compounds and docu-

ments. As expected, document counts closely paralleled the

compound profiles (results not shown) but it was also necessary

to check for possible confounding changes in compounds-per-

document. These results are plotted in Figure 3.

As the cumulative average since 1976 is 45 (Table 1) we can

discern an approximate doubling of compounds-per-patent over

the 20 years (Figure 3). In the context of declining output, this

seems a counter-intuitive result. However, on the basis of a per-

document average alone, we cannot discriminate between

alternative interpretations of either, more examples per se being

included or, an increase in the proportion of linked SAR data.

However, our familiarity with the curation triage leads us to

suggest the latter. Because the same source was used, the patent

figures are comparable to those published for a molecular property

study that included assignee comparisons [27]. In particular for

that study, the calculated per-patent averages for WO filings

covering the period 2001 to 2007 were AstraZeneca 57,

GlaxoSmithKline 58, Merck 60, and Pfizer 71. These are broadly

in line with the moving averages in Figure 3 but add the

observation that individual assignee differences can be significant.

The compounds-per-paper numbers contrast with the increase

for patents. While this averages out for papers at 12 (since 1945 in

Table 1) it has risen to above 20 in 2010. Notably these numbers

can be compared with other journal curation efforts. The latest

releases of the World of Molecular Bioactivity WOMBAT

database [30] indicates 18 compounds per-paper with ChEMBL

(release 16) coming in at 17 compounds per-paper [31].

Considering the likelihood of differences in curation triage, SAR

selection and journal choice in these independent operations

(GVKBIO, WOMBAT and ChEMBL), this indicates both some

consistency for expert extraction and a degree of long-term

uniformity, at least in terms of SAR density in the medicinal

chemistry literature. This consistency becomes important where

journal outputs show small but interpretable changes for

individual targets.

Table 1. Content statistics of MCD and TCD, populated from
journal papers and patents, respectively.

Entity Type Count

1. Journal articles 82,146

2. Patents 58,809

3. Compounds from journals 1,007,340

4. Average number of compounds per journal article 12.3

5. Compounds from patents 2,702,397

6. Average number of compounds per patent 46

7. Compounds from journals and patents 3,566,264

8. Human targets with protein IDs from journals 1,759

9. Human targets with protein IDs from patents 1,401

10. Human targets with protein IDs from journals and patents 1,987

11. All targets with protein IDs from journals 4,084

12. All targets with protein IDs from patents 2,676

13. All targets with protein IDs from journals and patents 4,628

Compound counts are unique chemical structures for the specified source or
source combination. All protein identifiers are linked to quantitative assay
results which include values for IC50, pIC50, Ki or % inhibition. This data was
retrieved from the GOSTAR database that integrates MCD and TCD with other
GVKBIO database products [55].
doi:10.1371/journal.pone.0077142.t001

Figure 1. Compounds linked to human protein targets. These
were extracted by year from patents (red) and journals (blue).
doi:10.1371/journal.pone.0077142.g001
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Total Targets
Our first assessment was to follow all protein identifiers across

the 20 years. Results are shown for the cumulative totals (Figure 4)

and the incremental totals (Figure 5). The initial feature to be

noted is that the papers include more targets than patents (i.e.

opposite to the distribution between compounds in Figure 1). We

propose three main factors to explain this. The first is that, as a

business choice for prioritising SAR extraction, patents are

currently limited to the ‘‘big-ten’’ target classes. The second is

that papers typically include a broader set of cross-screening results

than patents, some of which may have been accumulated by a

project team in the years between the drafting of the patents and

the papers. The third reason is that papers, certainly from the

academic sector, encompass a wide range of bioactive chemistry

research (e.g. chemical biology) not directly related to drug

discovery. A notable feature of the output from papers is the steady

growth rate with a suggestion of post-genomic acceleration after

2001 (Figure 5).

The incremental distribution (Figure 5) follows the same general

shape as the cumulative one (Figure 4) but also shows differences.

Chief of these are the absolute numbers. Taking the 2010 time

point as an example, this means that by 2010, ,2,500 targets had

been published in patents but, during that same year, ,1,000

proteins had new data published. If the line was to be extrapolated

beyond 2010 it would converge towards the 2012 figure in row 12

from Table 1. The incremental plots also look lumpy where the

smaller per-year numbers show stochastic deviations. This is

because they are derived from only 100s of documents published

in any year, compared to the cumulative plot where 1000s of

documents smooth the protein growth curve. In the context of

shape, it is important to appreciate the difference between the

plots. As a hypothetical example, if the global compounds-to-

targets fell in 2011 but 20% of the targets published in that year

were novel, the accumulated 2011 protein total would show a rise.

Figure 2. Patent office document counts. The light blue and orange plots are data from WIPO IP Statistics Data Centre [50]. These were selected
as total world-wide patent applications for all categories (orange WO all, but divided by 10 for scaling) or the technology category pharmaceuticals
(blue WO pharma). The other two plots were generated using the Espacenet advanced search interface [51]. With the selection of the IPC code C07D
the red line is the total and the green line added a selection for ‘‘university OR institute’’ in the applicant field. For 2010 the numbers retrieved were
47,884 for C07D, 1,189 of these with ‘‘institute’’ and 2,366 with ‘‘university’’.
doi:10.1371/journal.pone.0077142.g002

Figure 3. Average compounds-per-document by year from
patents (red) and journals (blue).
doi:10.1371/journal.pone.0077142.g003

Figure 4. Cumulative targets. These are the additive totals up to
each year, for proteins specified in patents (red) and journals (blue)
from all species.
doi:10.1371/journal.pone.0077142.g004
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Note also that Table 1 extends the cumulative target numbers up

to the end of 2012 and non-redundantly merges IDs between the

two sources. These give 1,987 human proteins from journals and

patents, with an equivalent figure from all species as 4,628.

Single institution analysis for compounds and targets
As a complement to interrogating the entire data set we can also

follow institutional entities across time to reveal details that can be

submerged in aggregated data. We chose GSK because, as

informative precedent, they have declared the internal statistics of

their post-merger target portfolio consolidation exercise [32]. This

gave a figure of 328 unique proteins and the surprisingly low total

of 37 late-stage active projects in common between GlaxoWel-

come and SmithKline Beecham after merging in 2000. The

inferences we can make from this published external target data

are obviously predicated on internal capacity and priorities.

Analogous figures from other companies are rare but the Pfizer

annual report from 2006 declared 400 internal projects. However,

this dropped to 350 by the following year and, by 2010, was

quoted in a different form as 374 projects in both research and

development [33]. The plots of targets vs. time and compounds vs.

time for GlaxoSmithKline, including the pre-merger entities, are

shown (Figures 6 and 7).

The data in Figure 7 indicates a lower count for GSK ,100

targets for 2010 but showing a steady rise over two decades.

However, this increase may be more apparent than real if the

scope of cross-screening has broadened. This appears to be the

case for the spike in 2008. Inspection indicates this arises from a

small number of patents and papers that included panel screening

data against a large number of kinases. On the other hand,

external publication would under-count newer target research

projects that have not yet generating patent filings. The compound

output (Figure 6) tracks the target number but, in parallel with the

output from all institutions (Figure 1) appears to flatten out after

2004.

Target Ranking
From cumulative data we have produced a ranking of proteins

vs. compounds. As expected, intensively pursued primary drug

targets appear towards the top of the list (e.g. F10 was top-ranked

with 42,869 compounds) [29]. In this work we extend the

approach by resolving this ranking across time (Table 2).

Inspection of Table 2 reveals a ‘‘yo-yo’’ effect as the relative

ranking changes by year. For example, the pole position swaps

between renin (1991–1994), then thrombin (1996–1999) followed

by Factor X (2000–2003) but all three had dropped outside the

top-ten by 2009. Analogously, CNR1 first makes it in to the top-

ten for 2004, climbs to the pole position by 2008, along with the

paralogue CNR2 in second place. It should be noted that many of

the proteins appearing at the top of these rankings have not yet

become the targets of approved drugs.

Tracking Individual Targets
A more detailed analysis of the published activity against

individual targets can be done by comparing the associated

compound outputs by year. We selected six proteases that either,

have had drugs against them approved in the last few years, or

have candidates in clinical development, together with one non-

target protease as a control. Proteases were selected because of the

possibility to track MW changes that may be associated with

inhibitor progression for this enzyme class. Four of them are

colour-coded in Table 2, where shifts in their relative rankings can

be seen. We extended this idea to plot the numbers of compounds

Figure 5. Year-on-year target counts. Each total represents the
target proteins specified in the patents (red) and journals (blue)
published in that year.
doi:10.1371/journal.pone.0077142.g005

Figure 6. Compounds published by GlaxoSmithKline. Counts by
year in patents (red) and journals (blue).
doi:10.1371/journal.pone.0077142.g006

Figure 7. GlaxoSmithKline human targets counts. As extracted
from patents (red) and journals (blue) published by year.
doi:10.1371/journal.pone.0077142.g007
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for patents and papers. This is analogous to the analysis of total

outputs (Fig. 1), but for a single target. We sought to corroborate

possible interpretations via specific PubMed queries. For example,

the query ‘‘dpp iv inhibitors’’ gave 1,583 abstracts. Adding

‘‘diabetes’’ drops this to 1,012 and restricting to the category

‘‘clinical trials’’ drops this further to 302. While ‘‘dpp iv inhibitors’’

returns some false-positives it is possible to pick up papers

describing inhibitors as early as 1994. By 1998 their potential use

in diabetes was declared in a review article. Consequently, from

1999 to 2003 the PubMed count of ‘‘dppiv + inhibitors + diabetes’’

climbed to 5,7,12 and 39, respectively. For interpretation of

timelines from PubMed (or other documents) a ‘‘frame shifting’’

effect needs to be considered. This is because, in competitive

intelligence terms, both patent and journal publications are after

the fact by several years or more. It should also be noted that these

basic literature queries are not completely specific (e.g. not all

clinical trials mention inhibitor and reviews of clinical trials are

counted along with individual reports). Nonetheless, as we show

below, they can generate an interpretable profile. We are thus in a

position to compare the three parallel time course for compounds,

MW and literature, as shown for DPPIV as the first example

(Figure 8).

The compound pattern for DPPIV (Figure 8A) is dominated by

a surge from 2003. This continues for patents and papers,

approximately in parallel, until a decline in 2007–2008. Note also

there is a baseline of published compounds for over a decade

before 2003. An explanation is that enzyme inhibitors were being

investigated as mechanistic probes before the target hypothesis was

established, or at least became ‘‘loud and clear’’ in the1998 review.

While the first completed clinical trial report was published 2002

there were earlier disclosures of DPPIV inhibitors entering

development. It seems likely that this competitive awareness of

target progression and concomitant de-risking induced the surge of

follow-on activities that had climbed to 3000 compounds (i.e. at

least ,50 patents) in 2005. The intensity of output around this

successful target (reflected in the area under the curve of Figure 8A)

is related not only to the approval of no less than four glyptins but

also with others in clinical trials. The ‘‘frame shifting’’ effect

discussed above implies the first patent filings for these lie within

the peak outputs from 2003 to 2009. Because DPPIV has an

exopeptidase funnel-shaped substrate pocket rather that an

extended endopeptidase binding cleft, the MW of the published

inhibitors is close to that of the early generation of cyclic dipeptides

(with the exception of a set of large substrate derivatives published

in 1998). Thus the average falls to ,200 but then rises to ,400

(Figure 8B) and is close to the 407 for sitagliptin. Note that by the

time sitagliptin had been approved by the FDA as first-in-class in

2006, the total numbers of compounds were already declining.

The analogous set of results for renin (Figure 9) show different

profiles to DPPIV and thus require alternative explanations. The

most notable features are that the journal publications are

distinctly biphasic and, to an extent, this is also mirrored by the

compound output with the same minimum around the year 2000.

A clue to the observed biphasic pattern lies in the key statement

from a 2001 review ‘‘all renin inhibitor development programs

have been closed’’ [34]. Some of these closures were related to the

Table 2. Ranking of the top-ten targets by year.

rank 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

1 REN REN REN REN TACR1 F2 F2 F2 F2 F10

2 ALOX5 TBXA2R ELA2 ELA2 PTGS2 EGFR TACR1 F10 F10 F2

3 ELA2 ALOX5 SRD5A1 ALOX5 PTGS1 TACR1 F10 TACR1 MMP1 MMP1

4 TBXA2R ELA2 PTAFR PTAFR LTB4R F10 ELA2 MMP1 TACR1 MMP13

5 PTAFR LTB4R LTB4R F2 ALOX5 TACR2 EGFR MAPK14 EGFR KDR

6 AKR1A1 C5AR1 ALOX5 TACR1 EGFR EDNRA DRD4 MMP13 MMP9 MAPK14

7 EGFR ELA1 SRD5A2 SRD5A1 EDNRA REN TACR2 EGFR ELA2 EGFR

8 LTB4R EGFR ELA1 EGFR ELA2 EDNRB EDNRB MET TACR2 MMP9

9 CA2 CTSG TACR1 TACR2 SRD5A1 F7 EDNRA TACR2 MMP13 TACR1

10 SRD5A1 PTAFR F2 ADRA1A REN DRD4 MMP1 MMP9 MC1R MMP2

cont.

rank 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

1 F10 F10 F10 KDR KDR CNR1 CNR1 CNR1 CNR1 CNR2

2 KDR F2 EGFR F10 F10 DRD3 HRH3 CNR2 HSD11B1 CNR1

3 F2 MAPK14 KDR CNR1 MAPK14 DRD2 CNR2 REN CNR2 EDG1

4 MMP1 KDR F2 SRC CNR1 KDR DRD2 BACE1 HRH3 JAK2

5 TEK MMP13 MAPK14 MMP13 PPARA CNR2 DRD3 CTSD JAK2 KCNH2

6 MMP13 MMP1 ADORA2A TRPV1 F2 F10 KDR DRD2 JAK3 JAK3

7 CCR3 DRD3 CCR3 MAPK14 TRPV1 REN OPRM1 HRH3 OPRM1 HTR6

8 NPY5R CRHR1 MMP13 PPARA PPARG HTR2C PPARA BDKRB1 PIK3CG PDE10A

9 MMP9 NPY5R CRHR1 MC4R CNR2 HTR2A HTR6 OPRM1 GCK PDE5A

10 MMP2 CTSS PPARA HTR2A MMP13 BACE1 MC4R HTR6 JAK1 HSD11B1

Human protein identifiers, as HNC approved symbols ranked in order of the number of compounds linked to them in patents and papers over 20 years. For the targets
marked in bold a more detailed longitudinal analysis is presented in a later section.
doi:10.1371/journal.pone.0077142.t002
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clinical failure reports in the early 1990s preceded by the 1991–

1993 compound output phase (Figure 9A). But from this activity

trough, the pick-up in clinical trial reports may be related to the

progression of aliskiren (Figure 9C). Here again, the early

intelligence effect probably resulted in the 2005–2009 follow-on

patenting surge (similar in magnitude to that for DPPIV in

Figure 9A) but the corresponding publication increase is displaced

by approximately one year. For this target we do see a distinct fall

in average MW by ,200 (Figure 9C). As summarised in the

Figure 8. Time courses for DPPIV (UniProt P27487). (A) Shows
the number of compounds (vertical axis) linked to individual proteins
from patents (red) and journal articles (blue). (B) Is the average MW for
compounds (vertical axis) each year from patents (red) and journal
articles (blue). Missing points are years where no documents were
extracted. (C) Shows queries in PubMed. Abstracts returned by ‘‘dpp iv
inhibitors’’ are plotted by year (blue bars). The red bars are clinical trial
reports. The arrowed time points are as follows: 1994 early dipeptide
inhibitors [52], 1998 the first review related to diabetes therapy [53],
2002 the first clinical trial results [54], and in 2006 the approval of
sitagliptin.
doi:10.1371/journal.pone.0077142.g008

Figure 9. Time courses for renin (REN, UniProt P00797). The
horizontal axes and line labels are the same for Figure 8 except for the
vertical scales. (A) Shows the number of compounds linked to renin. (B)
Shows the average MW for compounds. (C) shows queries in PubMed
(in this case ‘‘renin inhibitors’’ needed to be constrained as a phrase
query to preclude ‘‘renin-angiotensin system’’ false positives). The
arrowed time point is the 2007 FDA approval of aliskiren.
doi:10.1371/journal.pone.0077142.g009
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Wikipedia entry [35], renin inhibitors have passed through three

distinct inhibitor design generations of I) peptide analogues, II)

peptide mimetics, and III) non-peptidic small molecules. Thus, our

post-1991 results are predominantly capturing the third generation

within which aliskiren has a MW of 552.

The next two targets are coagulation serine proteases with a

long history of biological inhibitor investigations but the develop-

ment of small-molecule direct inhibitors as clinical candidates is

more recent. The time courses for thrombin are shown in

Figure 10. In contrast to the sharper peaks for DPPIV or renin,

thrombin shows a sustained output for over 15 years. The

displacement of the three peaks for journals by approximately

two years with respect to the patent output peaks, suggests this

could be a patent-then-publish effect. This protease also shows a

higher proportion of structures from papers although this is still

well below the patent output. As noted in the legend to Figure 10C

the publication profile cannot be made specific for small-molecule

only inhibitors without manual curation, but there does seem to be

a peak after the initial first-in-class clinical phase I progression of

ximelagatran (CID 9574101) in 2003 [36]. By the time dabigatran

(CID 9578572) was approved in 2008 [37], the numbers of

patented inhibitors had noticeably declined (Figure 10A). Note

also that, subsequent to the publication of some 1991 patents on

large peptide inhibitors, the average MW stays close to ,500 with

the clinical pro-drugs ximelagatran and dabigatran coming in at

474 and 472 respectively.

The next target, Factor X (strictly Xa, Figure 11) shows a

similar extended profile to thrombin but covers more compounds.

The large compound numbers are reflected in the high ranking of

both targets (Table 2) which can be attributed to both their

chemical tractability and ‘‘popularity’’. However, compared to

thrombin. F10 shows the highest peak output concentrated

between 2000 and 2006. This precedes the first clinical trials for

rivaroxaban in 2005 but this was approved for certain indications

for Europe in 2008 before the FDA in 2011 (CID 9875401) [38].

Here also, the literature profile specificity is confounded by early

work on biological inhibitors, such as tick anticoagulant peptide

(rTAP) and recombinant antistasin (rATS) heparinoids, as well as

clinical trials for injectable agents. Nonetheless, the extraction of

compounds from 1994 onwards (and inspection of selected titles)

indicates the majority of the later papers are describing orally

administered direct Xa inhibitors. The extended rise in patent

compounds could be related to the first PDB structure in 2003 and

consequent structure-aided design including inhibitor co-crystalli-

sation.

There is an overall similarity of pattern between both these

coagulation protease targets that could have a causative basis.

Beyond postulating this to be simply coincidental (i.e. via many

organisations working on them over similar time periods) there is

another explanation that has already been pointed out from

consideration of their cumulative ranking and compounds-in-

common [29]. This can be termed parologous coupling where lead

compounds directed against either as primary target are cross-

screened for specificity against homologous human enzymes as a

matter of course (some compounds may even have been pursued

as dual inhibitors but not a high proportion). This effect may have

also caused the average MW to converge at ,500 (Figures 10B

and 11B) but rivaroxaban comes in below this with a MW of 436.

We examined the parologous coupling effect further by

extracting data for trypsin (PRSS1, EGID 6544). While it was

not possible to specifically identify small-molecule inhibitors via

PubMed, the output profile is shown below in Figure 12. While

trypsin is a drug target for pancreatitis, no recent major efforts in

development of specific low-MW inhibitors have been reported.

However, it remains a significant ‘‘target’’ in the compound-to-

protein mapping sense because, as classical serine protease

mechanistic exemplar, it is widely used in specificity cross-

screening not only for thrombin and F10 but also other

Figure 10. Time course for thrombin (F2, UniProt P00734). The
horizontal axes and line labels are the same for Figure 8 except for the
vertical scales. (A) Shows compounds linked to thrombin. (B) shows
average MW for compounds. (C) Shows queries in PubMed for
inhibitors and clinical trials (but the pre-2003 and some subsequent
results are associated with hirudin analogues and other non-small
molecule inhibitors). The arrowed timelines are the approval of atroban
as an injectable in 2000, the first clinical trial of an oral inhibitor,
ximelagatran, in 2003 and the FDA approval of dabigatran in 2008.
doi:10.1371/journal.pone.0077142.g010
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coagulation protease targets. The three significant output peaks in

Figure 12 would seem to support this. There is also an implication

of parallel tracking, for example the 2002 peak is close to the

maximum output associated with F10 (Figure 11A).

The profiles for the second aspartyl protease in this set, BACE1,

look very different to the targets described so far (Figure 13). Much

of the difference is due to BACE1 being a younger target since the

protein was only identified in 1999 (although a consensus on the

target concept for DPPIV in diabetes only emerged a couple of

years before this) [39]. This ‘‘starting gun’’ effect for effectively

synchronous target validation by independent groups, followed

quickly by the first PDB structure by 2000, could be causatively

related to the rapid rise in compound output starting in 2004.

Uniquely, we see a distinct drop in average MW from the peptide

analogues published in the early papers down to inhibitor leads in

the 400–500 range by the time patent publications had taken off in

2005 (i.e. the peptidomimetic-to-small-molecule shift). The only

clinical candidates with declared structures and reported phase I

results are LY2811376 (but progression was halted) and AZD3839

from 2011 and 2012 respectively (CID 60210951, CID 44251605)

[40,41]. These come below the patented lead average MW at 433

and 320, respectively.

We chose to add BACE2 to the target examples because it

exemplifies a special case of the parologous relationship (Figure 14).

The pattern runs approximately parallel to BACE1 but shows a

strong rise in 2010. Analogous to the situation with thrombin and

F10 the BACE2 compound profile would be expected to represent

specificity cross-screening but in this case BACE2 had no prior

Figure 11. Time courses for Factor X (F10, UniProt P00742). The
horizontal axes and line labels are the same as for Figure 8 except for
the vertical scales. (A) Shows compounds linked to F10. (B) shows
average MW for compounds. (C) Shows queries in PubMed for
inhibitors and clinical trials the results are associated with heparin
analogues and other non-small molecule inhibitors. The arrowed
timelines are for the first PDB structure in 1993 and first clinical trials
of direct inhibitors in 2005.
doi:10.1371/journal.pone.0077142.g011

Figure 12. Time courses for Trypsin (PRSS1, UniProt P07477).
The horizontal axes and line labels are the same for Figure 8 except for
the vertical scales. (A) Shows compounds linked to Trypsin. (B) shows
average MW for compounds.
doi:10.1371/journal.pone.0077142.g012
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history of being a drug target and therefore has no inhibitor

matches in PubMed. However, this situation changed abruptly in

2011 when BACE2 was declared as potential drug target for

diabetes in a paper with Roche co-authors [42]. Unsurprisingly,

Roche patents specifying BACE2 inhibitors for diabetes first

appeared in 2010 and have produced the strong upward spike as

this enzyme transitions from cross-screening to a primary target

(Figure 13A) [43].

Discussion

As far as we can determine this is the first time a large global

decrease has been reported in terms of target-associated chemistry

from patents. It thus deserves interpretive comment even if the

correlations we might consider cannot establish causality. How-

ever, reports of declining research output have indirect precedents

(i.e. not derived from compound counts per se). The first is the

description of an enterprise chemical data integration system that

included a chart in which WIPO medicinal chemistry patents

showed a plateau from 2004 to 2010 [26]. The second was a

detailed analysis of chemical properties in patents from 18

pharmaceutical companies that reported a decline in targets from

2006 to 2010 compared to the preceding five years [27]. The trend

of the slower and more linear increase for journal compound

output in Figure 1 parallels that recently reported for Journal of

Medicinal Chemistry that includes a subset of the same data used here

Figure 13. Time courses for BACE1 (UniProt P56817). The
horizontal axes and line labels are the same for Figure 8 except for the
vertical scales. (A) Shows compounds linked to BACE1. Note here the
profile for papers looks low because it was plotted on the same scale as
used for patents. (B) shows average MW for compounds. (C) Shows
queries in PubMed for BACE1 inhibitors; those before 1999 are spurious
because, at default settings, gene name queries record back-mappings,
in this case investigations on inhibiting beta-secretase activity where
the MeSH system added the BACE1 gene term retrospectively. The
arrowed timelines are for the identification of BACE1 in 1999 and first
PDB structure in 2000.
doi:10.1371/journal.pone.0077142.g013

Figure 14. Time courses for BACE2 (UniProt Q9Y5Z0). The
horizontal axes and line labels are the same for Figure 8 except for the
vertical scales. (A) Shows compounds linked to BACE2. (B) shows
average MW for compounds. There are no specific inhibitor publications
retrieved with PubMed queries.
doi:10.1371/journal.pone.0077142.g014
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from MCD [28]. This was recorded over a longer time span but is

more discontinuous being derived from a single journal.

Our patent office data corroborates the fall in SAR-linked

output. Because we have recorded a concomitant rise on a per-

document basis this infers the number of patents has fallen faster

than compounds. The equivalent output from papers has not

declined, suggesting that drug discovery operations have continued

to publish structures, including those derived from earlier patents.

Queries in PubMed that included both an affiliation from a large

pharmaceutical company and a major medicinal chemistry

journals (results not shown) suggested a slowdown for papers in

the last five years but not as pronounced as that for patents in

Figure 2. Because the ratio of structures in patents to papers is

,4:1 we might expect that medicinal chemistry journal output is

being sustained in the face of a patenting decrease. While there is

an obvious parallel between the declines in research compounds

and new drug approvals it should be noted that the two outputs

are separated by up to 10 years. In addition, NMEs per-year

began their downward inflection approximately in 1997–1998

whereas our results show that research output began to fall

between 2005 and 2006. The implied contraction in medicinal

chemistry productivity is counter-intuitive in two respects. The

first is that it coincides with technical advances that would have

been predicted to sustain or even exceed the acceleration seen

between 2000 and 2005 [44]. The second is that a bibliometric

analysis of papers, genes and diseases suggests that the academic

research activity, upon which innovations in drug discovery are

largely predicated, continues to show an upward trend [45].

While consideration of all possible causative factors is outside

the scope of this work it could be speculated that the dominant

causal effect on global output is mergers and acquisition activity

(M&A) among pharmaceutical companies. The consequences of

this include target portfolio consolidations and the combining of

screening collections. This also reduces the number of large units

competing in the production of medicinal chemistry IP. A second

related factor is less scientists engaged in generating output.

Support for the former is provided by the deduction that NME

output is directly related to the number of companies [1] and for

the latter, a report that US pharmaceutical companies are

estimated to have lost 300,000 jobs since 2000 [46]. There are

other plausible contributory factors where finding corroborative

data is difficult but nonetheless deserve comment. Firstly, patent

filing and maintenance costs will have risen at approximately the

same rate as compound numbers. Therefore part of the decrease

could simply be due to companies, quasi-synchronously, reducing

their applications to control costs. While this happened for novel

sequence filings over the period of 1995–2000, we are neither

aware any of data source against which this hypothesis could be

explicitly tested for chemical patenting nor any reports that might

support it. Similarly, it is difficult to test the hypothesis of resource

switching from ‘‘R’’ to ‘‘D’’ as a response to declining NCE

approvals. Our data certainly infer the shrinking of ‘‘R’’ but there

are no obvious metrics delineating a concomitant expansion of

‘‘D’’. A third possible factor, a shift in the small-molecule:biolo-

gicals ratio in favour of the latter is supported by declared

development portfolio changes in recent years but, here again,

proving a causative coupling is difficult.

Despite the ‘‘glass-half-empty’’ implications, the decline in

compound output per se need not be interpreted entirely in

negative terms. Specifically, our analysis implies nothing about the

overall quality of this still very large pool of lead-like compounds

from which the drug candidates of the future have been, and are

being, selected. For example, some of the decline could be

attributed to the ‘‘better than the Beatles’’ problem where the

historically success of older drugs means that research efforts are

more innovative in being re-directed away from the easy targets

towards a smaller pool of newer and less chemically tractable ones

[5]. Another factor that could be filtering down the numbers is the

steady improvement of compound quality through advances in in

vitro and in silico physicochemical profiling [47]. It should also be

noted that the global productivity peak we observed for 2004–

2005 should now be feeding through to clinical development and

could thus result in an increase in NCEs over the next few years.

While it may be too early to tell, there has been a notable rise in

2011 FDA approvals that appears to be sustained for 2012 [48,49].

In contrast to compounds the sustained increase we observe for

targets presents a more optimistic picture. This indicates that over

3500 proteins from patents and papers now have chemical

modulation data and ,100 new ones are added each year. In

addition, SAR results for over 800 have appeared in patents, each

year, from 2006 to 2010. If a restriction to human-only proteins

had been applied the numbers would be approximately halved but

the distributions are essentially the same (data not shown). While

this shows the drug discovery community found new proteins to

test small-molecules against at a steady rate over the last 20 years,

the recent flattening out infers the collective capacity to may be

reaching a maximum, possibly limited by the same factors

described for compounds. However, as previously pointed out,

there are two principal confounding factors [29]. The first is that

the majority of effort is focused on a small number of targets (e.g.

those in Table 2). The second is that a general increase in

paralogue and orthologue cross-screening for specificity testing

produces an apparent increase in compound-to-protein data

mappings, whereas the number of primary targets being pursued

(i.e. roughly equivalent to project counts in pharmaceutical

companies) is much lower.

The analysis for GSK cannot be taken as average representation

of all individual large R&D organisations but nonetheless provides

an informative example. The results exhibit stochastic effects

because extractions from smaller numbers of documents can

fluctuate significantly on a yearly basis rather than showing a

smooth aggregate output. Nevertheless, the discernible trends

seem to mirror those we observe overall. Due to factors such as

proteins in common between therapeutic areas, project counts per

se may be higher than primary targets. There are other

confounding effects such as where protein complexes are the

experimental targets or projects based on black-box phenotypic

screening. Nevertheless, such figures as we present, not only

suggest the larger pharmaceutical companies were actively

screening between 200 and 300 proteins but also that this has

shrunk over the last five years.

Tracking individual proteins across time provides a level of

resolution for target-specific trends that, as far as we can establish,

is unique. Three aspects of our results surprised us. The first was

the intensity of ‘‘follow on’’ signals where global outputs jumped

by two-fold or more within a year. The second was the

pronounced differences in patterns, for example the biphasic one

for renin, a long broad spread for thrombin and the late but strong

peak for BACE1. While it is difficult to prove causality for

correlations some likely factors are part and parcel of competitive

intelligence. They are thus openly acknowledged as signals for

progression and de-risking of particular target/disease combina-

tions. We have indicated some that are discernible in the literature,

such as the first protein-ligand structures, major validation reviews,

successful Phase 1 studies and first-in-class approvals. A third

aspect was also striking. This was that all four target examples

(with the obvious exception of BACE2) had all significantly

declined in terms of compound numbers by 2010. As a specific
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example, while it would be an exaggeration to say the community

had ‘‘given up’’ on Factor X inhibitor research, patenting has

clearly fallen precipitously. The inference here is that, by the time

the global development pipeline output for a popular target

becomes crowded with clinical candidates, there remains little

commercial justification for further research efforts to produce an

n-th in class drug.

The generation of new detailed insights into the processes of

drug discovery has inherent utility for guiding its practitioners.

There are clearly options to extend our interrogation, for example

profiling an extended range of molecular properties (e.g. scaffolds)

for individual targets against time, as well as selected target

groupings (e.g. proteases by mechanistic class). However, by

definition, such analyses are retrospective, so the question arises as

to how this can be exploited predictively. In our opinion there is

valuable scope for rational extrapolation based on the types of

results we have described. This is certainly the case for hypothesis

testing in what could be termed molecular competitive intelli-

gence. For example, one of the most pressing needs is in the area

of target validation. In this regard we have observed that a steady

collective decline in compounds for a target can be an indicator of

success (i.e. declining commercial opportunity), intractability or

failure (i.e. a consensus de-validation). While it is not always

obvious which of these outcomes is most likely, there are cases

where a comparative retrospective analysis may provide clues. For

example, early compound-chemotype-target profiles from early

patents could be connected and tracked through to Phase II and

III outcomes. Further analysis and prediction of how drug

discovery operates based on the data it actually generates will be

important as this global undertaking adapts to the challenges and

opportunities of the future.

Methods

The databases used have been described in detail elsewhere

([29] and references therein) but a short outline is as follows. The

GVKBIO Medicinal Chemistry Database (MCD) is populated via

large-scale expert extraction of structure-activity relationships

(SAR) from a set of 120 medicinal chemistry journals. These

predominantly report results of drug discovery research and are

selected on the basis of a high per-issue yield of extractable SAR.

The Target Class Databases (TCD) are populated analogously to

except that the relationships are extracted from patents covering

the target classes of kinases, GPCRs, proteases, nuclear hormone

receptors, ion-channels, transporters, lipases, phosphatases, oxi-

doreductases and transferases. Because of their numerical domi-

nance in our compound-to-protein results it is important to

understand the SAR extraction capping rules. The consistent

application of these across the large patent corpus is essential for

the consistency of our results. Exemplified structures linked to

targets via quantitative assays, typically IC50 or Ki values, have no

extraction limit. If the linked data is ranged (e.g. binned between

0.01 and 0.1 uM) extraction is capped at 500 examples. In cases

where activity is only qualitatively specified (e.g. using a star rating)

extraction is limited to 100 structures.

Data in MCD and TCD is predominantly from the larger

pharmaceutical companies. However, there is a long tail of

hundreds of smaller commercial entities who also publish papers

and patent [7]. Academic output is also captured and, for the

selected high SAR-content journals, curators make no distinction

(other than recording the institutional affiliation as metadata)

between papers reporting drug discovery, mechanistic enzymolo-

gy, chemical biology or other bioactive chemistry domains.

Queries for this work were carried out using SQL via the

GOSTAR database schema. This integrates MCD and TCD with

other databases and is instantiated both at GVKBIO and

internally (with some customisation) at AstraZeneca. Compounds

were counted via an internal identifier for unique structures. These

were split between papers and patents using the appropriate table

join in MCD and TCD, respectively. These tables were also used

to select year-on-year and cumulative (year X to year Y) time

points based on the publication date of the documents from which

the structures were extracted. Targets were counted via their

distinct Entrez Gene IDs but these could also be restricted by

species.
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