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CARNOSINE: ACID BUFFER, ANTIOXIDANT
AND AID TO MUSCLE CONTRACTION
β-Alanine is a rate-limiting precursor for
synthesis of the dipeptide carnosine
(β-alanyl-L-histidine), which is produced within
and stored in high concentrations in skeletal
muscle, heart and olfactory receptor
neurons.1 2 β-Alanine supplementation has
been shown to boost the carnosine content of
skeletal muscle.3 This reflects the fact that the
Km of carnosine synthase for β-alanine (in
excess of 1 mM) is far higher than the
β-alanine content of tissues; its Km for histidine
is two orders of magnitude lower, such that
intracellular histidine levels are not rate-
limiting for carnosine synthesis.3 β-alanine is
produced in the liver during catabolism of
uracil; after its release to plasma, it can be
transported into tissues that require it for car-
nosine synthesis. Plasma levels of β-alanine also
increase when carnosine is ingested in flesh
foods; particularly in humans, carnosinase
activity in plasma rapidly cleaves carnosine to
its precursors β-alanine and histidine.4 The pKa

of the imidazole ring of carnosine is 6.83,
which makes it an ideal physiological buffer for
tissues when glycolytic production of lactic acid
is high.3 (The pKa of free histidine’s imidazole
ring is around 6, so converting histidine to car-
nosine makes it a more effective buffer.) Most
studies with supplemental β-alanine have
focused on skeletal muscle and athletic per-
formance; many studies have concluded that
β-alanine supplementation can both boost
muscle carnosine content and aid perform-
ance in high-intensity anaerobic workouts in
which lactic acid is generated, presumably by
preventing counterproductive reductions in
intracellular pH.3 The fact that carnosine con-
centrations in fast-twitch muscles are higher
than those in slow-twitch muscles is consistent
with this paradigm.
Carnosine also has versatile antioxidant

activity, likewise reflecting the properties of its
imidazole ring. This can serve efficiently as an
electron donor, preventing lipid peroxidation;
it also quenches singlet oxygen and interacts
with superoxide in a way that stabilises it.5 6

Like histidine, carnosine can chelate copper
and iron, and this chelation prevents these
ions from catalysing Fenton chemistry, hence
blocking production of hydroxyl radicals.5

Moreover, carnosine-copper complexes
possess superoxide dismutase activity.7 Further,
carnosine binds covalently to reactive degrad-
ation products of peroxidised lipids, prevent-
ing them from reacting with other cellular
targets.8

Carnosine may also function in skeletal
muscle and heart to amplify the impact of
cytoplasmic calcium on muscular contrac-
tion.9 10 It seems to do so by sensitising the
contractile apparatus to free calcium; some,
but not all, studies suggest that it also can
upregulate calcium release from the sarco-
plasmic reticulum.

BOOSTING CARDIAC CARNOSINE AS A
STRATEGY FOR CARDIOPROTECTION
Cardiac muscle manufactures carnosine and
related derivatives of histidine; most of these
are N-acetylated.11 12 The intracellular levels of
these histidine derivatives in cardiac muscle is
about 10 mM, likely reflecting a key need for
their buffering activity when oxygen availability
fails to meet the need for ATP production and
glycolytic lactic acid production compensatorily
increases. Moreover, the versatile antioxidant
activity of carnosine and related histidine com-
pounds produced in the heart also seems likely
to be cardioprotective.13 14 Indeed, exogenous
carnosine has been shown to protect cardiac
tissue from ischaemia-reperfusion damage, and
is also protective for doxorubicin-induced car-
diomyopathy.15–21 Further, the procontractile
impact of carnosine would be of potential
value in congestive failure.
It is reasonable to suspect that supplemen-

tal β-alanine would boost cardiac stores of car-
nosine and N-acetylcarnosine, although
studies documenting this do not appear to be
available. This follows from the fact that the
Km for β-alanine of carnosine synthetase—
known to be expressed in cardiac muscle,
albeit at a lower level than in skeletal
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muscle22—is above 1 mM; although it is difficult to find
studies that have measured heart β-alanine levels, the
level of other free amino acids in the heart is in the low
micromolar range.23 Moreover, β-alanine released by the
liver or supplied from the diet should have access to car-
diomyocytes, since it is carried across membranes by the
taurine transporter, vital for cardiac function.24 25 Given
carnosine’s antioxidant, acid-buffering and procontrac-
tile activities, dietary measures that boost cardiac levels of
carnosine and N-acetylcarnosine could be expected to be
protective in disorders such as myocardial infarction,
angina and congestive failure; however, the extent to
which this would be of clinical significance remains to be
clarified. With respect to the acid-buffering activity of car-
nosine and its derivatives, it is pertinent to note that the
clinical utility of carnitine in cardiac ischaemia may be
largely attributable to its ability to promote mitochondrial
oxidation of pyruvate, hence lessening glycolytic gener-
ation of lactic acid.26

To date, clinical studies evaluating the utility of
supplemental β-alanine or carnosine in cardiac disorders
appear to be lacking. However, dietary β-alanine presup-
plementation in rats subsequently subjected to 45 min
of left main coronary occlusion was found to be asso-
ciated with a 57% reduction in infarct size to risk area
ratio.27 Although the authors attributed this effect to
moderate taurine depletion of the heart induced by
the high β-alanine intake (3% in drinking water), they
did not consider the possible role of carnosine and
N-acetylcarnosine in this phenomenon.

OROTATE AS A CARNOSINE PRECURSOR
Of possible pertinence is an intriguing literature docu-
menting that supplemental magnesium orotate is clinic-
ally useful in congestive failure and angina.28–31 In
particular, a placebo-controlled study evaluating magne-
sium orotate (6 g daily for 1 month, 3 g daily for
11 months) in patients with severe congestive failure,
reported a 75.7% survival rate in the orotate treated
patients, as opposed to 51.5% survival in those receiving
placebo (p<0.05).31 Orotates are also beneficial in a
hamster model of inherited cardiomyopathy.32 The
explanation typically offered for the utility of this agent
in cardiac conditions is that the stressed heart benefits
from an increased pool of pyrimidine nucleotides; oral
orotate is taken up by the liver and is converted to
uridine, some of which reaches the plasma and can be
taken up by cardiac tissue.28 33 The magnesium in this
complex is also thought to benefit the failing heart.34

But why pyrimidines should be so beneficial to the heart
has never been clear. This explanation is somewhat

difficult to square with the observation that orotic acid
supplementation only transiently and modestly increases
the pyrimidine pool in the heart, yet it aids contractile
recovery after global ischaemia and prevents loss of
adenine nucleotides.33 Perhaps the difficulty in explain-
ing the basis of orotate’s protective activity has resulted
in this important research receiving less attention than it
deserves.
As an alternative or additional explanation, it should

be noted that absorbed orotate is ultimately converted
to β-alanine. After orotate is employed in uridine synthe-
sis in the liver,33 35 uridine is eventually broken down to
yield free uracil. The catabolism of uracil involves its suc-
cessive conversion to dihydrouracil, β-ureidopropionate
and β-alanine.36 37 This β-alanine can then serve as a
precursor for synthesis of carnosine in the skeletal
muscle, the brain and the heart38 (see figure 1). Hence,
supplementation with mineral orotates or orotic acid
may represent a practical strategy for boosting the level
of carnosine and carnosine derivatives within the body.
Moreover, orotate may be viewed as a ‘delayed release’
form of β-alanine that may be better tolerated than
β-alanine itself. Ingestion of β-alanine in doses greater
than 800 mg at one time is often associated with ‘pins
and needles’ paraesthesias that can last for about an
hour, coinciding with an elevation of plasma β-alanine;
the basis of this effect is obscure.3 39 Orotate supplemen-
tation, even in very high doses, does not seem to be
attended by this problem, likely because the evolution of
β-alanine proceeds gradually after orotate ingestion
(timed-release β-alanine preparations can also be used
to cope with this problem40).
These considerations suggest that supplemental

β-alanine should be evaluated in experimental and clinical
cardiac disorders, and that the role of carnosine in the
documented protective effects of orotates in such condi-
tions should be assessed. Also, since the heart makes a
range of histidine derivatives other than carnosine, it
would be interesting to know whether supplemental histi-
dine might impact the cardiac level of some of these.
Intriguingly, there is recent evidence that supplemental
histidine may be beneficial in metabolic syndrome.41
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