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Abstract

Background: Human cryptococcal infections have been associated with bird droppings as a likely source of infection.
Studies toward the local and global epidemiology of Cryptococcus spp. have been hampered by the lack of rapid,
discriminatory, and exchangeable molecular typing methods.

Methodology/Principal Findings: We selected nine microsatellite markers for high-resolution fingerprinting from the
genome of C. neoformans var. grubii. This panel of markers was applied to a collection of clinical (n = 122) and environmental
(n = 68; from pigeon guano) C. neoformans var. grubii isolates from Cuba. All markers proved to be polymorphic. The
average number of alleles per marker was 9 (range 5–51). A total of 104 genotypes could be distinguished. The
discriminatory power of this panel of markers was 0.993. Multiple clusters of related genotypes could be discriminated that
differed in only one or two microsatellite markers. These clusters were assigned as microsatellite complexes. The majority of
environmental isolates (.70%) fell into 1 microsatellite complex containing only few clinical isolates (49 environmental
versus 2 clinical). Clinical isolates were segregated over multiple microsatellite complexes.

Conclusions/Significance: A large genotypic variation exists in C. neoformans var. grubii. The genotypic segregation
between clinical and environmental isolates from pigeon guano suggests additional source(s) of human cryptococcal
infections. The selected panel of microsatellite markers is an excellent tool to study the epidemiology of C. neoformans var.
grubii.
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Introduction

Cryptococcosis ranks as one of the three common life-

threatening opportunistic infections in persons with AIDS [1].

Global estimates indicate more than 900,000 annual cases, causing

an estimated 624,700 deaths [2]. Other patient groups with

impaired T-cell function have an up to 6% lifetime risk of

developing clinically manifest cryptococcosis [3]. Seventy species

belonging to the genus Cryptococcus have been described, but only

members of the C. neoformans complex are mostly associated with

human infections. This species complex has been considered to

contain two pathogenic species: C. neoformans involving the varieties

neoformans (serotype D) and grubii (serotype A), and C. gattii

(serotypes B and C) [4–7]. Six monophyletic lineages have been

identified that also may represent species [4,5,8] as well as some

hybrids [9–12].

In the Caribbean the disease appears to be not very common

with an estimated 7800 patients and 4300 casualties reported

annually [2]. In Cuba the disease was first reported in the early

1950s [13]. Since then sporadic cases of cryptococcosis were

associated with alcoholism, organ transplants and immunological

disorders. Since the first cases of AIDS in Cuba in 1986, the

number of patients infected by this fungus has increased over the

years. The annual number of infected individuals ranged from 8 to

15 cases per year [14] while a study of 211 serial autopsies of

patients with HIV/AIDS infection in Cuba over a period of 10

years, showed that systemic or central nervous system cryptococ-

cosis was a serious and common disorder in 29% of cases [15]. Up

to now all clinical isolates from patients in Cuba have been

identified as C. neoformans var. grubii [16].

Multiple molecular typing methods have been described to

study the epidemiology of C. neoformans complex. The most

commonly used approaches to date involve AFLP, PCR

fingerprinting and or PCR-RFLP approaches as well as mating-

and/or serotype-specific PCRs [17–23]. These techniques have

proven useful to discriminate between the different sero- and

mating types but have not been shown to be very useful for

discrimination within specific C. neoformans complex members and

varieties. Multi-locus sequence typing (MLST) has been applied to

collections of C. neoformans and C. gattii from various origins
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[5,24,25] but this technique is laborious, has a long turn-around

time and is associated with significant costs. Microsatellites are

increasingly popular molecular typing targets since they provide

cost-effective genotyping with fast turn-around times. On a

theoretical basis, and, as has been shown for other fungi,

molecular typing by using microsatellites is more discriminatory

than by using MLST [26]. Like MLST data, microsatellite typing

data is transportable and exchangeable [27]. Here we describe the

use of a 9-marker microsatellite panel consisting of 3 dinucleotide

repeat markers, 3 trinucleotide repeat markers and 3 tetranucle-

otide repeat markers. Each panel of 3 markers was amplified using

a multiplex multicolor PCR approach. Amplified products were

analyzed on a high resolution capillary electrophoresis platform

allowing precise determination of repeat numbers in each marker.

We applied this panel to a collection of clinical and environmental

C. neoformans var. grubii isolates from Cuba. Part of this work was

presented at the 46th Interscience Conference on Antimicrobial

Agents and Chemotherapy (ICAAC), San Francisco, 2006, Abstr.

M904.

Materials and Methods

Ethics Statement
This research was approved by the Institutional Scientific and

Ethical Committee of the Instituto Pedro Kouri, Havana, Cuba.

All data were analyzed anonymously.

Isolates
A total of 190 clinical and environmental Cryptococcus isolates

from the collection of the mycology laboratory at the Tropical

Medicine Institute ‘‘Pedro Kourı́’’, were included in the study.

Clinical strains (n = 122) were collected between 1987 and 2007,

the large majority (91%) of isolates were from cerebrospinal fluid.

The remaining isolates were from urine, blood, tissue biopsy and

bronchoalveolar lavage samples. For ,70% of all clinical isolates,

information about the origin of the patients was available. Most

patients (,65%) were from Havana City. The remaining patients

inhabited almost every province of Cuba (Figure 1). Approxi-

mately 77% of all patients were HIV positive. All clinical isolates

were from different patients. Environmental isolates (n = 68) were

isolated from pigeon guano collected in the period 1998 to 2007

from well distributed locations across Cuba (Figure 1). In case an

environmental sample yielded multiple different colony morphol-

ogies suspected of being Cryptococcus, these were analyzed

separately.

Species identification was initially performed by standard

mycological methods [28] and confirmed with a commercial

identification system (Auxacolor 2; Bio-Rad, Marnes-la-Coquette,

France) as well as by using AFLP analysis.

DNA Isolation
A suspension of freshly grown cells was prepared in lysis buffer

(Roche Diagnostics, Almere, The Netherlands) and subjected to

mechanical lysis in a MagNA Lyser for 30 s at 6500 rpm (Roche

Diagnostics). Next, DNA was purified using a MagNAPure LC

instrument in combination with a MagNAPure LC DNA Isolation

Kit III as recommended (Roche Diagnostics). DNA yield and

purity were estimated by UV absorbance measurements.

Microsatellite Analysis
Candidate short tandem repeat markers were identified in the

available genomic sequences from the H99 strain using the

Tandem Repeats Finder software [29]. A 9 marker microsatellite

panel consisting of 3 dinucleotide repeat markers, 3 trinucleotide

repeat markers and 3 tetranucleotide repeat markers was selected

from the candidate markers using previously described criteria

[30]. PCR amplification primers for each of the markers are

according to Table 1. Three subpanels (CNA2, CNA3 and CNA4

respectively) of 3 markers each were amplified using a multicolor

multiplex PCR approach. Within each panel, one of the

amplification primers carried a fluorescent label consisting of

either FAM (6-carboxyfluorescein), HEX (hexachlorofluorescein)

or TET (tetrachlorofluorescein). In addition to the amplification

primers, each 50 ml amplification reaction contained approxi-

mately 1 ng of genomic DNA, 1 U FastStart Taq DNA

polymerase (Roche diagnostics), 2 mM MgCl2 and 0.2 mM

dNTP’s in 1x reaction buffer (Roche diagnostics). The amplifica-

tion profile consisted of a 10 min denaturation/activation step

followed by 35 cycles of 94uC for 30 s, 60uC for 30 s and 72uC for

1 min. After an additional 10 min incubation at 72uC, the

reactions were cooled to room temperature.

AFLP Analysis
Approximately 50 ng of genomic DNA was subjected to a

combined restriction-ligation procedure containing 5 pmol of

EcoR I adapter, 50 pmol Mse I adapter, 2 U of EcoR I (New

England Biolabs, Beverly, MA, USA), 2 U of Mse I (New England

Biolabs) and 1 U of T4 DNA ligase (Promega, Leiden, The

Netherlands) in a total volume of 20 ml of 1x reaction buffer for

1 hour at 20uC. Next, the mixture was diluted five times with

10 mM Tris/HCl pH 8.3 buffer. Adapters were made by mixing

equimolar amounts of complementary oligonucleotides (59-

CTCGTAGACTGCGTACC-39 and 59-AATTGGTACGCAG-

TC-39 for EcoR I; 59-GACGATGAGTCCTGAC-39 and 59-

TAGTCAGGACTCAT–39 for Mse I) and heating to 95uC,

subsequently followed by cooling slowly to ambient temperature.

One microliter of the diluted restriction-ligation mixture was used

for amplification in a volume of 25 ml under the following

conditions: 1 mM EcoR I primer with two selective residues (59-

Flu-GTAGACTGCGTACCCGTAC-39), 1 mM MseI primer

with one selective residues (59-GATGAGTCCTGACTAAG-39),

0.2 mM each dNTP and 1 U of Taq DNA polymerase (Roche

Diagnostics) in 1x reaction buffer containing 1.5 mM MgCl2.

Amplification was done as follows. After an initial denaturation

step for 4 min at 94uC in the first 20 cycles a touch down

procedure was applied: 15 s denaturation at 94uC; 15 s annealing

at 66uC with the temperature for each successive cycle lowered by

0.5uC and 1 min of extension at 72uC. Cycling was then

continued for further 30 cycles with an annealing temperature of

56uC. After completion of the cycles an additional incubation at

72uC for 10 min was performed before the reactions were cooled

to room temperature. The amplicons were then combined with

the ET400-R size standard (GE Healthcare, Diegem, Belgium)

and analyzed on a MegaBACE 500 automated DNA platform

(GE Healthcare), according to the manufacturer’s instructions.

Capillary Electrophoresis
Following amplification, the reaction products were diluted 10-

fold with distilled water. One ml of diluted products was combined

with 0.25 ml of ET-ROX 550 size marker and 8.75 ml of distilled

water. After a 1 min denaturation step at 94uC, the samples were

quickly cooled to room temperature and injected onto a

MegaBACE 500 automated DNA analysis platform equipped

with a 48 capillary array as recommended by the manufacturer

(GE Healthcare). Electropherograms were analyzed using Frag-

ment Profiler 1.2 software (GE Healthcare). Assignment of repeat

numbers was relative to the results obtained using the H99 strain,

which was used as a control strain in all experiments. According to

C. neoformans var grubii Types
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Figure 1. Origin of samples and relationships between genotypes. A: Map of Cuba. Colored dots indicate provinces from which clinical and/
or environmental samples were available. B: Minimum spanning tree (MST) based on a multistate categorical analysis representing the genotypes of
190 C. neoformans var. grubii isolates from Cuba. Each circle represents a unique genotype. The size of the circle corresponds to the number of
isolates with that genotype. Genotypes are linked to their closest relative. Numbers and connecting lines correspond to the number of different
markers between genotypes. Genotypes with identical colors and connected by a shaded background are part of a microsatellite complex (MC). In
yellow are unique genotypes that are not part of a MC. C: Same as B, but now showing cross-links between all genotypes that differ in no more than 2
markers. D: Same MST as in B, but now showing genotypes obtained from clinical and environmental samples.
doi:10.1371/journal.pone.0009124.g001

C. neoformans var grubii Types
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the genomic sequence, the genotype of the H99 strain was 27-20-

20-57-17-14-55-19-16 for markers 2A-2B-2C-3A-3B-3C-4A-4B-

4C respectively.

Data Analysis
Typing data was imported into BioNumerics v5.0 software

(Applied Maths, Sint-Martens-Latem, Belgium). Microsatellite

data was analyzed using the multistate categorical similarity

coefficient. Microsatellite complexes (MC’s) were defined as

groups of 2 or more genotypes differing by a maximum of 2

markers. AFLP data was analyzed by UPGMA clustering using

the Pearson correlation coefficient.

Results

A selection of 9 microsatellite markers was made from genomic

sequences from Cryptococcus neoformans var. grubii strain H99. All

markers proved to be polymorphic displaying a minimum of 5 and

up to 51 different alleles per marker (Table 1). The specificity of

the markers was tested by including C. neoformans var. neoformans

isolates (serotype D) as well as C. gattii isolates (serotype B). None of

these isolates yielded amplification products confirming the

specificity of these primers for C. neoformans var. grubii.

In Table 2, the discriminatory power for each of the individual

markers, panels and entire set of markers were calculated. When

all markers are combined, the nine marker microsatellite panel

yielded a discriminatory power of greater than 0.993. With this

collection of 190 isolates, 104 different genotypes could be

discriminated. The AFLP analysis confirmed that all isolates were

C. neoformans var. grubii (not shown) in line with previous

observations [16]. This panel of markers thus provides a highly

discriminatory typing assay for C. neoformans var. grubii. The

relationship between the different genotypes is illustrated in

Figure 1. Within the large diversity of genotypes, complexes of

closely related genotypes are recognized and indicated as

microsatellite complexes (MC’s). Within the MC’s most of the

genotypic variation is the result from variations in few microsat-

ellite markers (Table 3). The most discriminatory marker was

marker CNA4a. Elimination of this marker from the dataset

resulted in a reduction of the number of different genotypes by

approximately 50%, but did not affect the distribution of the

isolates over the different MC’s nor did it affect the segregation

between the different MC’s (results not shown). Eleven MC’s are

recognized containing up to 51 isolates each. Nine further

genotypes (from 18 isolates) were observed that did not belong

to a microsatellite complex, bringing the total number of different

genogroups to 20. Four MC’s (MC1-MC4) were the most

prevalent and contain more than 70% of all isolates.

Not all markers yielded a PCR product with all of the isolates,

especially markers CNA3a scored negative on a substantial part

(85%) of the isolates. When a negative result was obtained, the

particular marker was reamplified in a monoplex PCR reaction.

When still negative, the marker was scored as ‘‘0’’. Exclusion of

marker CNA3a from the microsatellite panel did not influence the

clustering of the isolates over the different MC’s (not shown).

The distribution of the clinical and environmental isolates over

the different MC’s is shown in Table 4. Very interestingly, MC1

contained a large majority of isolates from environmental origin

(.96% from pigeon guano) and only few human clinical isolates.

This difference was highly significant (p,0,001). Though small in

size, MC9 also exclusively contained isolates from environmental

origin . The non environmental MC’s were all found in HIV

positive patients with one exception: MC6 contained 3 isolates and

those were obtained from HIV negative patients.

The temporal distribution of the largest MC’s with clinical

isolates showed their presence over prolonged periods of time since

Table 1. Basic characteristics of the selected microsatellite markers.

Panel Marker Chr: position
Repeat
unit

Labeled primer
sequence (59-39)

Unlabeled primer
sequence (59-39)*

Conc.
(mM)

No. alleles
(range)

CNA2 CNA2A 11: 389201–389350 CT FAM- CGAGGTCATGTTGTGAGTCC GTGACCGTCTCGTTCTTCTCA 0.3 15 (10–60)

CNA2B 9: 191563–191711 TG HEX- TCGTCAACGATGCAAGTCTC GGGCCTGGGAAATAGGTAGA 0.3 6 (8–21)

CNA2C 10: 307773–306912 TA TET- AGAAGCACATGGGGAAAGG GCGCAGTTTGAAGATGAGAA 1.0 16 (8–44)

CNA3 CNA3A 11: 1281429–12814716 CTA FAM- ACCCCCTGCCCATCATA GCACAGGCATAAAGCTAAGTGTGA 0.3 9 (19–69)

CNA3B 4: 339525–339664 TCT HEX- TGGGGATATCGATTCCTTCTC GATTGGTATGGGAAGCGTTG 0.3 5 (5–17)

CNA3C 7: 285123–285270 CCA TET- TGGAAGAGGATGGAGCGTAT GCATAGTTTATCGTTTTCTCTTTTC 0.3 10 (8–38)

CNA4 CNA4A 5: 233120–233445 TTAT FAM- CGTCGAAGACTGCACAAAAA GTTCTGTATGACAGGTCGCAAA 1.0 51 (15–119)

CNA4B 4: 1021855–1022020 ATCC HEX- CGGATGAGATGGAAAGAAGG GTGCGTCTGTCAAAAGATTGC 0.3 10 (5–25)

CNA4C 14: 131866–132031 TATT TET- AGATGTCCTGGCGATGTTG GAGGAGCAAGCAATCAAACC 0.3 11 (1–18)

*The underlined residue(s) are not a match to the genomic sequence. These were introduced to minimize the formation of minus A peaks, a well known PCR artifact that
may complicate interpretation of the results [34].

doi:10.1371/journal.pone.0009124.t001

Table 2. Overview of the discriminatory power of the
individual markers, panels of markers and the entire set of
markers. Calculated values are based on the Simpson’s index
of diversity and are expressed in a value of ‘D’ [35].

Marker D Panel D Set D

CNA2a 0.842 CNA2 0.906 CNA 0.993

CNA2b 0.789

CNA2c 0.828

CNA3a 0.282 CNA3 0.868

CNA3b 0.618

CNA3c 0.819

CNA4a 0.972 CNA4 0.992

CNA4b 0.712

CNA4c 0.688

doi:10.1371/journal.pone.0009124.t002

C. neoformans var grubii Types
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they were found repeatedly since the early years of the study and

thus have been present for almost 2 decades.

Discussion

A 9-marker microsatellite panel is described for high resolution

sub typing of C. neoformans var. grubii isolates, one of the members

of the C. neoformans complex, in particular serotype A isolates. This

panel of markers provides a highly discriminatory panel allowing

excellent discrimination between isolates from various origins. The

numerical typing result allows easy storage into global databases as

well as portability of the results.

From the results, it is obvious that certain genotypes appear to

be more closely related to each other than to other genotypes.

MC’s were arbitrarily defined by genotypes differing in up to 2

microsatellite markers from each other. Within each MC, the

amount of variation is attributable to only one or two

microsatellite markers as the likely result of instability of these

specific markers. This mostly involved the markers CNA2a,

CNA2c and CNA4a. Not surprisingly, these are among the most

discriminatory markers from the entire set (Table 2). Likewise,

within an MC, there was very limited to no variation in the less

discriminatory markers (Table 3). The difference between the

MC’s is attributable to multiple microsatellite markers ($3

markers difference). Although MC1 and MC2 could be connected

to each other by sequential genotypes differing in only 2

microsatellite markers, there appears to be no close relationship

between these MC’s (Figure 1C; Table 3) and these were therefore

considered to reflect different unrelated MC’s.

One marker that was selected from the H99 genome (CNA3a)

did not yield an amplification product in 85% of all tested isolates.

This could be the result of an actual deletion of this locus in the

genome from these isolates or it could be the result of one or more

sequence polymorphisms underneath either of the two amplifica-

tion primers. Alternatively, the size of the amplified fragment

could be beyond the reach of the size marker on the capillary

electrophoresis runs. This was not further investigated. Whether or

not this observation is specific for the Cuban population of C.

neoformans var. grubii, which may very well be explained by the

geopolitical isolation of this country, remains to be established.

In our study, the large majority of environmental isolates from

pigeon droppings co-clustered in one MC (MC1) containing only

very few isolates from human clinical samples. This MC was

widespread in multiple environmental locations across Cuba. Vice

versa, several of the other MC’s predominantly contained isolates

from human clinical samples and only few from environmental

origin. Possibly, isolates from MC1 are more adapted to the

pigeon host and may be less pathogenic for humans. Several MC’s

were identified that contained only clinical isolates and were never

found in environmental samples which suggests the presence of

additional niches of C. neoformans var. grubii that may cause human

infections. One MC was identified (MC6) containing only isolates

Table 3. Signature profiles of the 4 most prevalent microsatellite complexes and the reference isolate H99 upon whose genome
the selection of markers was made.

CNA2a CNA2b CNA2c CNA3a CNA3b CNA3c CNA4a CNA4b CNA4c

MC1 53–60 11 9 0 13 35–38 85–108 8 5

MC2 11 8 22–25 0 14 16 30–37 8 5

MC3 10 12 10 0 14 14 66–78 6 9–11

MC4 12 10 8 0 5 8 103–119 5 1

H99 27 20 20 57 17 14 55 19 16

doi:10.1371/journal.pone.0009124.t003

Table 4. Distribution of isolates from clinical (including HIV status) or environmental origin over the 11 microsatellite complexes.

Complex Total number of isolates Env. Clin. HIV pos. HIV neg. HIV status unknown

MC1 51 49 2 2 0 0

MC2 32 2 30 16 6 8

MC3 39 2 37 27 9 1

MC4 14 0 14 14 0 0

MC5 8 2 6 5 0 1

MC6 3 0 3 0 3 0

MC7 9 5 4 4 0 0

MC8 4 1 3 3 0 0

MC9 3 3 0 0 0 0

MC10 2 0 2 1 1 0

MC11 7 0 7 4 1 2

other 18 4 14 9 5 0

Total 190 68 122 85 25 12

Env.: Environmental isolates; Clin.: Clinical isolates; pos.: positive; neg.: negative.
doi:10.1371/journal.pone.0009124.t004

C. neoformans var grubii Types
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from humans without HIV infection. This may indicate that this

particular genotype may be more virulent to humans but this

clearly needs more confirmation. However, despite careful

selection of multiple colonies from environmental samples, we

cannot rule out the possibility that there could have been a

sampling bias towards genotypes that are more abundantly present

in pigeon guano.

In this study, we used AFLP analysis for a dual purpose. Firstly

to confirm the identification of the isolates as C. neoformans var.

grubii, and secondly to validate the typing result of the

microsatellite analysis. The specific combination of restriction

enzymes and selective residues used here was reported before [17].

Interestingly, we found only limited genetic variation in this

collection of isolates. AFLP showed no segregation between the

isolates in MC1 and the majority of the other isolates (results not

shown). On the other hand, a relatively small number of clinical

isolates (11%) did indeed segregate into a separate AFLP cluster.

This subdivision is fully supported by the microsatellite data since

this AFLP cluster is recognized as a separate MC (MC4, Figure 1),

well separated from the other MC’s. Since AFLP analysis amplifies

fragments from multiple random locations in the genome, this may

point to relatively few or small genomic differences between MC1

isolates and the majority of the other isolates versus substantial

genomic differences between the majority of the isolates and those

from MC4. Probably, the discriminatory power of the AFLP

analysis can be increased by testing other combinations of

restriction enzymes and/or selective residues but this was not

attempted.

C. neoformans var. grubii has since long been associated with bird

droppings: according to the Centers for Disease Control and

Prevention, people with weakened immune systems should avoid

areas contaminated with bird droppings and contact with birds

[31]. However, this assumed link has received little attention using

molecular typing studies. Our results suggest that certain clinical

isolates may originate from additional ecological niche(s). This is

supported by recent evidence from Litvintseva et al. that

environmental isolates from pigeon excreta were less pathogenic

in a mouse model than isolates from human clinical samples [32].

In this prior work, neither AFLP nor MLST proved useful to

distinguish between these clinical and environmental isolates.

Instead, a retrotransposon based Southern blotting procedure

enabled them to distinguish between individual isolates with

identical AFLP/MLST genotypes. However, analysis of serial

cultures showed that the genotypes were not stable over time,

limiting the usefulness of this approach. In addition, the authors

did not report specific genotypes being associated with either

clinical or environmental isolates. Our results confirm the

superiority of this panel of microsatellite markers as molecular

typing targets for C. neoformans var. grubii and simultaneously allow

distinguishing between isolates from clinical and environmental

origin. The lack of temporal and spatial (east to west Cuba is

1000 km) variability suggest a clonal relationship between the

majority (.70%) of isolates from pigeon guano in Cuba. This too

may be explained by the isolated location of the country. In

contrast, most clinical cases were from Havana City and these

involved multiple different MC’s additionally suggesting the

presence of alternative sources for human infections.

The use of microsatellite markers in typing studies with C.

neoformans var. grubii was reported before. Hanafy et al. reported a

selection of 15 microsatellite markers for C. neoformans var. grubii of

which only 3 proved to be polymorphic [33]. The PCR products

were analyzed by agarose gel electrophoresis. This technique

suffers from insufficient resolution and does not allow use of the

full potential of microsatellite markers as molecular typing targets.

In summary, we have developed a novel approach for high

resolution molecular sub typing of C. neoformans var. grubii. This will

help the study of the global epidemiology of this opportunistic

pathogenic yeast. We also show that microsatellites are excellent

multilevel genotyping targets allowing recognition of individual

genotypes as well as clusters of related genotypes. The selected

microsatellite markers are sufficiently stable for use in long-term

longitudinal studies. Finally, our results point to additional sources

other than bird droppings as origin of human infections.
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