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INTRODUCTION

At the 2019 annual meeting for American Society of Neural Therapy and Repair (ASNTR) a
special panel assembled to discuss the future of neurotrophic factor delivery in Parkinson’s disease
(PD), particularly those factors belonging to the Glial cell line-derived neurotrophic factor family
of ligands (GFLs; GDNF and Neurturin). The panel consisted of representatives from academia,
industry, and non-profit organizations with primary backgrounds in neurology or neurosurgery
and the impetus for the assembly was data from the a recent GDNF clinical trial (Whone A. et al.,
2019; Whone A. L. et al., 2019) that utilized an enhanced method of protein infusion to facilitate
improved spread of GDNF. Despite preclinical success, this trial, as all previously published trials,
failed to demonstrate clinical efficacy (Whone A. L. et al., 2019), leaving the field wondering if there
is a future for these neurotrophic factors in PD (Kirkeby and Barker, 2019). This opinion piece will
summarize the discussion and the overarching recommendations from the meeting.

RECENT RESULTS FROM GDNF TRIALS

Over the last few decades there have been numerous clinical trials utilizing central delivery of
GDNF or neurturin via direct protein infusion or overexpression using viral vector-based gene
therapy (Merola et al., 2010) with the latest trial reporting dosing of the first patient in September
2020 [Brain Neurotherapy Bio; adeno-associated virus (AAV)-GDNF]. Despite preliminary reports
of efficacy in the open-label phase of trials, placebo-controlled studies have failed to replicate any
favorable outcomes (e.g., Marks et al., 2008, 2010). Although the reasons behind these apparent
failures are unknown, one of the issues may be lack of sufficient target engagement—either via
poor diffusion in protein delivery trials (Salvatore et al., 2006) or poor transduction in viral vector
trials (Bartus et al., 2011). To that end, the most recent trial rationalized that improving delivery
with convection enhanced delivery (CED) might overcome the limitation of insufficient putamenal
and nigral drug coverage and achieve improvements in motor function (Whone A. et al., 2019).
Regrettably, the results from this trial closely resembled those seen in previous trials—improved
18F-DOPA uptake in the absence of clinical improvements. Here, we discuss what additional
potential inadequacies have confounded various clinical trials and whether any rational hope
remains in regard to utilizing this family of growth factors in the treatment of PD.
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LOST IN TRANSLATION

The most obvious question that remains is whether neurotrophic

factors such as GDNF truly hold disease modifying potential for

PD. A wealth of preclinical data supports the notion that GDNF

may prevent or retard nigrostriatal degeneration. Moreover,
preclinical and human clinical data clearly indicate that GFLs are,

in fact, CNS dopaminergic trophic factors. Therefore, treatment
with GFLs should promote survival of striatal dopamine (DA)
innervation and thereby improve the motor symptoms of PD. So
why have clinical trials utilizing this approach largely failed?

One key aspect of GDNF and similar factors is that the
therapeutic mode of action is not fully defined, and that the
degenerating PD brain may be resistant to the neuroprotective
potential of these proteins. The lack of clarity on GDNF’s
mechanism of action may be causing issues in appropriate model
selection for preclinical therapeutic testing. For instance, GDNF
preclinical data is largely based on acute, toxin-induced models–
such as 6-hydroxydopamine andMPTP.While administration of
GDNF under these settings have provided both neuroprotection
and neurorestoration, the same claims of GDNF efficacy have
not been substantiated in other models of PD—such as in alpha-
synuclein (α-syn) overexpression models (Decressac et al., 2011).
In fact, work in the AAV α-syn overexpression model shows that
GDNF exhibits no neuroprotective effect (Decressac et al., 2011).

There is some controversy as to the cause of this resistance
to neuroprotection. On one hand, the lack of GDNF-induced
beneficial effects in the α-syn model has been argued to be due
to the downregulation of Nurr1 and its downstream product,
the GDNF receptor component receptor tyrosine kinase (RET)
(Decressac et al., 2012), although other groups have failed to
reproduce the downregulation of Nurr1. Importantly, some key
caveats to α-syn overexpression models lie in the finding that
α-syn mRNA is in fact decreased in PD and few have reported
changes in Nurr1 and RET in human disease (Chu et al., 2006;
Su et al., 2017). Moreover, this and other α-syn models of
PD overexpress α-syn by 4–10 times normally seen in human
studies. Although animal models provide valuable insight into
certain disease processes, it is clear that the PD field suffers
from a lack of clinically-predictive animal models that faithfully
recapitulate all key aspects of parkinsonian neurodegeneration
and disease progression. Thus, until we have models more
encompassing of the etiopathological features of PD, future
reports of preclinical efficacy, or the lack thereof, must be
interpreted with caution.

In regard to translation, it is also important to note that
the chief risk-factor in PD is age (Collier et al., 2011), yet a
majority of preclinical studies have largely neglected this crucial
variable. However, it is clear that age alters the local environment,
and confers impediments in delivery modalities such as viral
vector transduction (Polinski et al., 2016), amongst others. In
addition, many intracellular processes change with aging. Thus,
performing the preclinical experimentation in models whose age
corresponds to that of the average human patient is as important
as choosing the model with the most appropriate pathological
insult. Nonetheless, it is important to note that GDNF retains
at least some function with advanced age as intraputamenal

infusion into aged monkeys reduces age-related motoric deficits
(Maswood et al., 2002).

Another equally important variable is disease duration. It is
well-known that PD patients with longer duration of disease have
more disease related complications, and such patients are the
target for surgical experimental therapeutics for valid reasons of
clinical morbidity. However, this variable introduces a critical
barrier to translating animal studies to humans as animal studies
do not recapitulate the longevity of disease duration as they are
cost prohibitive. Also, in the open label studies as well as in
the blinded placebo controlled studies, the average age of onset
of disease was much younger than the average age (<50) of
onset of PD (Gill et al., 2003; Slevin et al., 2005; Lang et al.,
2006). This younger age of onset for PD represents a unique
subpopulation as has been recognized by many contemporary
researchers (Mehanna and Jankovic, 2019; Espay et al., 2020).
This raises the important question if such younger onset patients
are the best candidates and if they are indeed chosen based on
preclinical age equivalency, then, the GDNF intervention must
be performed much earlier in the course of their illness (the
mean duration of illness was 10 years in these studies). This
raises important ethical issues of risk vs. benefits in early onset
PD subjects from invasive neurosurgical interventions. Early
onset PD patients have a slower disease progression trajectory
and so are treated effectively with pharmacotherapy during this
“honeymoon” period that lasts well over 5 years. Yet, based on
preclinical testing data, treating these patients earlier within 5
years of disease onset may be the best possible use of GDNF.
The only possible ethical solution to this conundrum is to
reduce the risks of the neurosurgical intervention. Developing
less invasive and more safe methods for intracranial delivery of
either GDNF protein or GDNF delivery vectors will allow testing
such therapies in early disease in such younger patients with
ethical equipoise.

HAVE WE PERFORMED THE RIGHT

CLINICAL TRIAL?

One question in the neurotrophic factor field has always been
that of the timing of neurotrophic factor administration. Studies
that utilized toxin-induced models clearly demonstrated that
GDNF must be administered prior to, or during the insult,
in order to achieve efficacy. Administration later may enhance
the dopaminergic tone of nigral neurons, but does not provide
neuroprotection (Mandel et al., 1997, 1999; Salvatore et al.,
2004; Manfredsson et al., 2009a). There is clear evidence from
human trials that GFLs can induce DA dendritic sprouting
(Love et al., 2005; Kordower et al., 2013) or F-dopa uptake
(Gill et al., 2003; Whone A. L. et al., 2019). Therefore,
if the theorem that increasing striatal DA should confer
therapeutic benefit is correct, then it may be that GFLs are
biologically effective but have not reached a necessary threshold
of striatal DA regeneration to achieve this benefit. Intervention
at earlier stages of disease when more of the nigrostriatal DA
pathway is intact or has not undergone plastic changes due to
ongoing degeneration, should give GFLs a greater opportunity
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to reach this threshold of striatal regeneration to provide
clinical benefit.

Nevertheless, during the early days of neurotrophic factor
delivery, questions regarding the integrity of the nigrostriatal
system during disease progression remained. It was not until
recently that histopathological characterization by Kordower
et al. clearly delineated the significant degree of nigrostriatal
denervation during the years immediately following diagnosis
(Kordower et al., 2013). Thus, the GFL clinical trials to date
targeting late stage patients in Hoehn & Yahr stage 3–4 (where
reports have been available) clinical trials are seemingly at odds
with the preclinical studies administering the intervention when
the nigrostriatal system is mostly intact. To that fact, how many
times have we heard variations on the statement “you cannot save
what is no longer there”? Thus, the only way to reconcile the field
is to test the neuroprotective potential of GDNF and neurturin in
early stage patients. During our discussion, it was proposed that
the quintessential clinical trial would be performed in patients
with unilateral onset, prior to contralateral progression. This,
of course, yet again brings up the question about patient safety
and advocacy.

SAFETY OF GFLs

Following diagnosis, PD progresses slowly on average, and
pharmacological restoration of the dopaminergic tone in the
caudate/putamen (e.g., with Sinemet) provides a fairly lengthy
“honeymoon period.” Thus, performing a rather complex
neurosurgical procedure at a time shortly following diagnosis
is not to be taken lightly. This provides an ethical dilemma
whereby a clinician is faced with a patient that will maintain
acceptable quality of life for some time, yet the disease will
progress relentlessly albeit asymmetrically. At this point, how
can you justify the testing of an invasive therapeutic paradigm
that remains unproven in PD? Neurosurgical experience and
advances would support lowering intervention thresholds.
Safety data from a wealth of procedures with an indwelling
lead/cannula–such as deep brain stimulation (DBS) where a
number of anatomical locations, including deep structures, have
been targeted—support the lower thresholds as a relatively
low rate of serious adverse events are now reported (Budman
et al., 2018). In line with DBS safety, striatal intraparenchymal
fetal mesencephalic transplantation has demonstrated that the
neurosurgical procedure itself is very safe (Lindvall, 2015).
Still, despite all the current improvements with stereotactic
neurosurgical techniques, one can argue that the risks of a
neurosurgical intervention do not match up with the risks
associated with currently effective pharmacotherapy in early
stages of PD. Therefore, the justification to perform such a
procedure must provide disproportionately high benefit to the
risks or the risks themselves must get mitigated via the use of less
invasive methods of delivery.

Moreover, even if currently optimized surgical methods are
used with the least possible adverse events, there are still open
questions as to the safety of GDNF itself. Although all indications
from preclinical research into neurotrophic factors belonging to

this family of proteins suggest that GDNF is safe, perhaps the
most compelling data comes from the long-term safety profile
of Neurturin, GDNF and other gene therapy-based candidates in
human clinical trials (Tenenbaum and Humbert-Claude, 2017;
Chu et al., 2020). Nevertheless, there could be consequences
of long-term activity with the possibility that secondary issues
such as aberrant sprouting of neurons (Georgievska et al., 2002)
may lead to a new set of symptoms. Certainly, the use of a
clinical approach that allows for cessation of protein delivery (i.e.,
cannulation/pump infusion, or regulated vectors) would provide
a safetymechanismwhereby treatment could be halted in the case
of an adverse event.

DISEASE DIAGNOSIS AND TRACKING OF

PROGRESSION

Most panelists agreed that GFL delivery could be clinically
therapeutic if treatment were initiated earlier in disease
progression for PD patients. However, even if all clinicians
would agree that the delivery of GFLs was of a similar risk to
pharmacological treatment (an agreement that is not in place
at present), it is currently impossible to reliably detect very
early PD (Rizzo et al., 2016). Despite being easily recognized
in the public eye, PD is a rather complex disorder, and early
diagnosis is not unequivocal (Berg et al., 2018). In fact, a
diagnosis of early PD is extremely uncertain, especially when
performed outside of a specialty movement disorders Center of
Excellence. For instance, other neurodegenerative disorders such
as multiple system atrophy (Krismer and Wenning, 2017) and
progressive supranuclear palsy (Owolabi, 2013) can often times
be misdiagnosed as PD early in the course of disease (Tolosa
et al., 2006). This is obviously a complication that makes clinical
trial design for early PD increasingly complex. Along the same
lines, diseasemodifying clinical trials in PD, especially early in the
disease, are hampered by the fact that there are no good metrics
whereby one can measure progression without very large sample
sizes or utilizing exceptionally long trial periods. Moreover,
trials thus far have been powered to detect improvement in the
Unified Parkinson Disease Rating Scale (UPDRS) when perhaps
we should be looking for stabilization in decline. Finally, PD
is also an extremely heterogenous disorder: Progression rates
vary widely, there is heterogeneity in the predominant symptom
(e.g., tremor-dominant vs. gait/balance-dominant) that may not
respond the same to GDNF, or may not be homogeneous
enough for current progression markers (like UPDRS), to detect
changes, Thus, as crucial as future biomarkers are in PD for
earlier definitive diagnosis (Parnetti et al., 2019) and to track
progression, they will be equally important to enable definitive
clinical trials in early disease. Such a shift in treatment paradigms
would have the greatest impact for PD in the immediate future.

ALTERNATIVES TO GFLs

Although GDNF and neurturin undoubtedly has undergone
the highest scrutiny of all potential trophic factors in PD,
there are alternatives worth mentioning. Damage to the
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striatum results in increased astrocytic production of ciliary
neurotrophic factor (CNTF), which belongs to the interleukin-
6 family of neuropoietic cytokines. CNTF signaling occurs
via a variety of heteroreceptors complexes following binding
to CNTF receptor alpha (CNTFRα) (Schuster et al., 2003).
Although the exact signaling mechanism is unknown, increased
CNTF can protect DA neurons from toxicity, both via
direct interaction with neurons as well as by reducing the
inflammatory potential of microglia (Hagg and Varon, 1993;
Nam et al., 2015; Baek et al., 2018). The closely related trophic
factors mesencephalic astrocyte-derived neurotrophic factor
(MANF) (Petrova et al., 2003) and cerebral/conserved dopamine
neurotrophic factor (CDNF) (Lindholm et al., 2007) similarly
provide neuroprotection in various animal models of PD
(Airavaara et al., 2012). The exactmode of action of these proteins
is unknown, although neuroprotection seems to be, at least in
part, conferred via modulation of endoplasmic reticulum stress
and autophagy (Zhang et al., 2018). A clinical trial is currently
ongoing (ClinicalTrials.gov Identifier: NCT03775538) assessing
the safety of putamenal delivery of CDNF (Huttunen and Saarma,
2019) and anecdotal reports suggests that the treatment has been
well-tolerated. Finally, small molecule GDNF family receptor
(GFR) agonists are being investigated as a potential alternative to
the invasive neurosurgical approach otherwise required (Ivanova
et al., 2018). However, GFR receptors are heavily expressed in
organs throughout the body [The Human Protein Atlas (Uhlen
et al., 2015)]. For example, an intracerebroventricularly delivered
GDNF trial was halted due to side-effects (Nutt et al., 2003) which
is likely due to GDNF’s actions in hypothalamus (Manfredsson
et al., 2009b). Thus, GDNF administration for PD likely requires
site-specific putamenal delivery rendering this strategy the rare
case where intraparenchymal delivery is more advantageous than
a global small molecule paradigm. Nonetheless, regardless of the
therapeutic modality one chooses, the same critical GFL safety
factors discussed above apply.

CONCLUSIONS

In summary, the panel participants, as well as the audience,
expressed cautious optimism for the future of neurotrophic
factors, maintaining that GDNF remains a highly promising
target in the treatment of PD progression. The preclinical data
remain strong, and we simply may not have unleashed the full
potential of these proteins, because they have thus not been
properly delivered and tested in the context of human disease
at feasible points of intervention. Surely, recent improvements
such as enhanced vector biodistribution (Kanaan et al., 2017;
Davidsson et al., 2019) and less invasive delivery techniques
such as focused ultrasound-assisted delivery (Noroozian et al.,
2019), are moving us closer to the reinvention of clinical
trials. Nevertheless, the path forward is not clear cut, and
with current means at our disposal, the execution of early
stage clinical trials may not be feasible. It is very possible that
the repeated failure to find positive GFL-based clinical trial
outcomes mar the field and effectively prohibit future trials
from being proposed due lack of financial interests and/or
negative public perception. What will the threshold be for
investing in new and redesigned trials that are likely to be more
expensive than those in the past? In essence, the future of GFL
treatment to intervene in the progression of PD symptoms is
dependent on significant improvements to preclinical models,
improvements to clinical striatal delivery methods, discovery
of alternate less invasive methods, improvements to very early
PD diagnosis, and especially improvements to PD clinical
trial design that would facilitate the prosecution of conclusive
clinical trials.
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