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Integrated nano-opto-electro-mechanical sensor
for spectrometry and nanometrology
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Spectrometry is widely used for the characterization of materials, tissues, and gases, and the

need for size and cost scaling is driving the development of mini and microspectrometers.

While nanophotonic devices provide narrowband filtering that can be used for spectrometry,

their practical application has been hampered by the difficulty of integrating tuning and

read-out structures. Here, a nano-opto-electro-mechanical system is presented where the

three functionalities of transduction, actuation, and detection are integrated, resulting in a

high-resolution spectrometer with a micrometer-scale footprint. The system consists of an

electromechanically tunable double-membrane photonic crystal cavity with an integrated

quantum dot photodiode. Using this structure, we demonstrate a resonance modulation

spectroscopy technique that provides subpicometer wavelength resolution. We show its

application in the measurement of narrow gas absorption lines and in the interrogation of

fiber Bragg gratings. We also explore its operation as displacement-to-photocurrent trans-

ducer, demonstrating optomechanical displacement sensing with integrated photocurrent

read-out.
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The increasing demand for optical sensing solutions,
including e.g., Raman, fluorescence, and absorption spec-
troscopy, is driving a large effort toward the miniaturiza-

tion and integration of spectrometers, which has resulted in a
range of mini and microspectrometers1–9. Most schemes employ
diffraction for the spectral discrimination, which inevitably brings
a trade-off between size and resolution. Integrated spectrometer
implementations10–15 are mostly based on arrays of filter ele-
ments, which limit the resolution, and rely on external detectors,
resulting in a much increased packaging complexity and cost. In
principle, the combination of a tuneable optical cavity and a
photodetector can lead to an extremely compact spectrometer,
particularly if the detector is integrated inside the cavity16,17.
However, for many applications, high resolution is needed under
a wide range of incident angles and over a wide spectral range.
This can only be achieved by a wavelength-scale cavity combining
low optical loss, wide free-spectral range (FSR), and large tune-
ability. So far, tuneable microcavity detectors have achieved
limited resolution17 and spectral range16. Nano-optomechanical
structures, such as photonic crystal (PhC) cavities18,19 and micro-
ring resonators20–23, combine high spectral resolution and large
optomechanical coupling, resulting in exquisite sensitivity to
nanoscale mechanical motion24. This interaction between optical
and mechanical degrees of freedom can be used to transduce pm-
scale mechanical displacements into wavelength shifts and vice
versa. It potentially opens the way to a new generation of ultra-
compact optical sensors, particularly spectrometers, if the
required control and read-out can be integrated with the sensing
part. The device presented in this paper integrates the tuning,
sensing, and read-out within a footprint of only 15 × 15 μm2 and
provides high-resolution spectra even under a large numerical
aperture (NA) illumination, when operated as a tunable filter

(spectrometer). We further show that wavemeter measurements
of a single laser line or an absorption dip in a broad background
are possible with a precision three orders of magnitude better
than the optical cavity linewidth. Finally, we demonstrate dis-
placement sensing in the same device, using a fixed laser line as
input and integrated detection to transduce the thermal motion of
the structure.

Results
Device design. Figure 1 shows the nano-opto-electro-mechanical
system (NOEMS) we employ. Our approach (Fig. 1a) is based on
an electromechanically tuneable, double-membrane PhCs25–27,
and a low-absorption active material (quantum dots (QDs)). Two
identical cavities in the two parallel membranes are evanescently
coupled so that the two degenerate cavity modes split into
combined symmetric (S) and an antisymmetric (As) modes. The
resonant wavelengths strongly depend on the separation d
between the membranes, as shown in the simulated tuning curves
of Fig. 1b. In the range of d~200 nm, the optical angular fre-
quency shift per displacement Gω = ∂ω/∂x is in the range of 2π ×
37 GHz nm−1 (∂λ/∂x = 0.2 nm per nm)27. The lower part of the
upper membrane and the upper part of the lower membrane are
doped in order to form a p-i-n diode. The distance between the
membranes can be controlled by using electrostatic actuation
provided by a reverse bias voltage VT across the p-i-n diode.
Compared to in-plane capacitive tuning28–30, vertical-actuation
offers larger capacitance, resulting in more efficient actuation and
smaller footprint. Moreover, it enables the actuation and sensing
of out-of-plane motion that is relevant for most nanometrology
applications, such as atomic force microscopy. The upper mem-
brane is configured as another p-i-n diode, the n-layer being
common to both diodes, see Fig. 1a. A layer of InAs QDs,
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Fig. 1 Overview of the sensor design. a Sketch of the device with electrical contacts and a visible cross-section with p- (blue) and n- (red) doped layers.
QDs are located in the middle of the top membrane. Sensor actuation is possible by applying a reverse bias voltage (VT) to the tuning diode (on the right
side), whereas the read-out is done by measuring the photocurrent from the photodiode (left side). b, Simulated optical mode wavelength dependence on
the membrane separation for two modes that are symmetric (S) or antisymmetric (As) with respect to the out-of-plane direction. c False-colored SEM
image of a typical device (top view) with contact pads to both sensing and actuation diodes. d Zoom-in SEM image showing the active part of the sensor: a
four-arm bridge of dimensions 16 × 12 μm containing a photonic crystal cavity suspended above a fixed photonic crystal membrane. Inset: SEM image of the
patterned L3 cavity design modified for high Q factor and large free-spectral range in a double-membrane structure. Optimization was done by displacing
horizontally outwards and reducing the radius of six holes (green) and displacing four holes vertically (red)
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absorbing in the resonant wavelength range, is grown at the
center of the upper membrane. The modal absorption, and
thereby the detector efficiency and the cavity loss, can be adjusted
by controlling the density of the QDs. We chose the dot density
so that the absorption contribution to the cavity loss does not
limit the Q factor. We estimate the modal absorption31 to
be αmod = 2.41 cm−1, corresponding to an absorption-limited
quality factor (Qabs) of 6.8 × 104. The PhC cavities are
modified L3 or H0 cavities where the position and size of the
holes close to the cavity center have been optimized to achieve at
the same time a high quality factor and a wide spectral separation
(Methods).

Resonant detection. To demonstrate the resonant detection
functionality, light from a tuneable laser is coupled into the cavity
from the top with a fixed bias on the actuation junction (Fig. 2a, b
for the antisymmetric and the symmetric mode, respectively). The
photocurrent spectrum shows the cavity resonance, apart from a
non-resonant background, and is a result of cavity-enhanced
absorption. An experimental cavity linewidth for a symmetric
fundamental PhC mode as narrow as 76 pm (QS = 1.7 × 104) was
obtained utilizing the optimized cavity design from Fig. 1d

(inset), while corresponding antisymmetric mode is slightly
wider, with a linewidth of 132 pm (QAs = 9.9 × 103). Such narrow
linewidth corresponds to an order of magnitude improvement
over previous reports in resonant cavity detectors17. We further
investigate the tuneability. As for this particular design, the
symmetric cavity mode is located close to the antisymmetric band
edge, with several nearby peaks, we consider the antisymmetric
mode in the following. As shown in Fig. 2c, blue-tuning of such
mode by as much as 30 nm is obtained for a small applied voltage
of 5.6 V, corresponding well to the simulated membrane tuning
until the pull-in limit (1/3 of the original distance) inherent to
capacitive tuning32. The tuning range can be extended to 40–50
nm if the initial membrane separation in the design is reduced by
a factor of two (from 240 to 120 nm), and even further if
actuation beyond pull-in is realized33. The mode used in Fig. 2c is
the fundamental antisymmetric mode of a H0 cavity optimized
for high FSR, where we define FSR as the maximum wavelength
range for which there is only the mode of interest. Large FSR in
this case comes at a price of a larger linewidth of 0.7 nm (Qexp =
1.9 × 103). The device maps the combination of the incident
spectral power density S(ω) and inter-membrane distance d into a
photocurrent signal Iφ dð Þ ¼ R

R1
�1 S ωð ÞLcav d;ωð Þdω, where R is

the responsivity (AW−1) and Lcav (d, ω) the normalized spectral
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Fig. 2 μ-spectrometer measurements. a, b A photocurrent spectrum of the fundamental antisymmetric (symmetric) mode of the three missing holes cavity
(L3) modified for high Q factor in double membrane, with a linewidth of 132 pm (76 pm) and a Q factor of QAs~9900 (QS~17,000) is shown in blue (red).
Data was taken by measuring the photocurrent while a tuneable laser (Pin= 125 μW) was swept across the cavity mode. c Color-coded photocurrent
spectra (Pin= 25 μW) showing the fundamental antisymmetric optical modes of an optimized H0 cavity spectrally tuned over 30 nm (x axis) by increasing
the reverse tuning bias VT from 0 to 5.6 V (y axis) without reaching pull-in. The tuning range is approximately equal to one free spectral range in this case.
d Data traces of photocurrent collected by voltage-tuning the optical mode (fundamental antisymmetric mode of the L3 cavity) over a fixed laser
wavelength, then changing the laser wavelength by 1 nm and continuing the voltage tuning. The laser power was coupled into the cavity from top through a
0.45 NA objective, with the power incident on the sample being 12.5 μW. The scale on the bottom axis in the figure is obtained from a piecewise linear fit of
the voltages at the maximum photocurrent versus wavelength. The cavity linewidth provides a spectral resolution of ~200 pm, and the FSR of ~13 nm is
limited by the crossing with another cavity mode. The decrease in responsivity with decreasing inter-membrane distance (decreasing wavelength) is
attributed to an asymmetry in membrane thickness, the upper membrane being 15 nm thicker46
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shape of the cavity resonance, which is centered at frequency ω0

(d). It can therefore be operated to sense either the spectrum of
the incident radiation or the mechanical displacement by
recording the photocurrent. In the spectrometer mode, the input
spectral power density S(ω) is measured by actuating the
membrane separation, d = d(VT), and for displacement sensing,
the membrane separation d can be deduced from the
resonance frequency. The spectrometer operation is demon-
strated for a cavity mode where both Q and FSR are sufficiently
high (Fig. 2d), which is the case for the fundamental antisym-
metric mode (Y1-As) of the modified L3 cavity, with a calculated
Q = 1.2 × 104 and FSR = 13 nm. For a number of fixed laser
frequencies, a voltage sweep is made across the resonances. Peak
positions were taken as calibration points, with which the voltage
scale (top) was converted to the wavelength scale (bottom) in
Fig. 2d.

The peak photodiode responsivity for the data in Fig. 2d is
R~3 × 10−3 AW−1 (Methods). It is limited by the small
absorptance (ηa = 0.1), which can be increased by increasing the
dot density without a large influence on the Q, as well as
unoptimized coupling efficiency (ηc = 0.03) that can be improved
using a side-coupling scheme. The cavity photocurrent peak
(Fig. 2b) is superimposed on a non-resonant background caused
by light that is directly absorbed in the top membrane. The
limited stray light rejection ratio (typically 10–20 dB), may be
detrimental when a small spectral feature must be measured on a
broad background.

Resonance modulation spectroscopy. We introduce a resonance
modulation spectroscopy scheme, which can at the same time
suppress the effect of background absorption and dramatically
increase the spectral peak position resolution. It is based on the
small size and built-in actuation functionality of our NOEMS,
which enables modulating the mode resonant wavelength at
frequencies up to the MHz range. Applying a small modulation to
the tuning voltage as VT ¼ VDC þ VAC cos 2πfmtð Þ, the cavity
frequency ωcav is modulated around its central value ω0 (VDC)
and the photocurrent δIfmφ at frequency fm, as measured using a

lock-in amplifier (Fig. 3a), becomes:

δIfmφ ω0 d0ð Þð Þ ¼ R δd
Z1

�1

∂Lcav d;ωð Þ
∂d

S ωð Þdω

¼ R δωm

Z1

�1

∂Lcav ω0;ωð Þ
∂ω0

S ωð Þdω;
ð1Þ

where δωm ¼ Gωδd is the frequency modulation depth (which we
assume much smaller than the optical linewidth). Note that Lcav is
assumed to be a Lorentzian Lcavðω� ω0Þ of constant width, so
that ∂Lcav=∂ω0 ¼ �∂Lcav=∂ω. In the limit where S(ω) is much
narrower than the cavity linewidth, δIfmφ ω0ð Þ is proportional to
the derivative of the cavity resonance lineshape. In the opposite
limit of a slowly varying input spectrum, δIfmφ ω0ð Þ is proportional
to the derivative of the input spectrum dS

dω

��
ω0

as immediately
follows from integrating Eq. (1) by parts. The output signal
therefore exclusively results from spectral features at the mode
frequency and any spectrally flat background is rejected. The
principle is demonstrated experimentally for a narrow laser line
in Fig. 3b, showing a large improvement of the rejection ratio,
from 10 to 27 dB, with values up to 30 dB measured in other
devices. The sign-changing lineshape of the ac photocurrent
amplitude also lends itself to the generation of an error signal for
feedback-based stabilization. Similarly to frequency34 and wave-
length35 modulation methods, the resonance modulation scheme
allows measuring the position of spectral lines with resolution
much better than the linewidth—but it can be applied much
more widely as it does not require a modulation of the source.
From the slope of the derivative curve at the zero crossing (inset
Fig. 3b), the voltage–wavelength relation and the measured noise,
we calculate a spectral resolution of 100 fmHz−1/2 (Methods),
limited by the drift of the cavity resonance during the measure-
ment time. This long-term drift, which produces resonant
wavelength shifts in the pm-range over timescales of tens of
seconds, is likely related to the adsorption of residual gases on the
surface and in the holes of the PhC and temperature drifts. The
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Fig. 3 Resonance modulation spectroscopy. a Sketch of the circuit used for resonance modulation spectroscopy. On the tuning probe input (right side), a
modulated signal (VAC) at frequency f coming from the lock-in is superimposed on a tuneable DC voltage (VDC). On the detector output (left side), the
photocurrent (Iph) produces a voltage drop on a load resistor (RL) and its in-phase component (X-channel) and its phase (φ) at the frequency (f) are
measured by the lock-in amplifier. b Comparison of a laser line recorded using two operation modes of the sensor: spectrometer mode described earlier
(red dots) and resonance modulation mode (blue dots). Both measurements were performed simultaneously, by sweeping the tuning voltage and reading
the photocurrent DC value (red) and the in-phase component measured by the lock-in amplifier (blue), using a load resistor RL= 30 kΩ. Since the blue
curve is proportional to the derivative of the red curve, the constant background is eliminated. The cavity is modulated with VAC= 5mVpp at f= 608 Hz,
and excited at a fixed laser frequency of 1322 nm (the power incident on the sample is estimated to be 125 μW); Inset: zoom-in of the zero crossing in the
resonance modulation mode
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intrinsic resolution, as limited by the electrical noise in the read-
out, is estimated to be ∼2 fmHz−1/2.

Despite the relatively limited spectral range (up to 30 nm with
the present devices, Fig. 2c), these very compact microspectrom-
eters can be employed to monitor specific spectral lines for
sensing applications, with outstanding resolution. In order to
show their potential in real-world applications, two experiments
requiring a high-resolution spectral measurement were con-
ducted: the read-out of a narrow absorption line in transmission
(Fig. 4a), and the interrogation of a fiber Bragg grating (FBG) in
reflection (Fig. 4b). For the measurement of the absorption line in
a broad spectrum, the background rejection provided by the
resonance modulation scheme is essential. The experiment is
demonstrated in Fig. 4a, where a hydrofluoric acid absorption line
is detected, despite the fact that its linewidth (16 pm) is about 15
times narrower than the cavity linewidth used in this experiment
(250 pm). The high peak position resolving power of our device
also makes it useful for the read-out of temperature, index or
pressure sensors based on spectral peak position determination.
An example of a FBG peak (λB = 1314.823 nm, δλB = 100 pm)
read-out in reflection is presented in Fig. 4b, with a wavelength
resolution (as calculated from the lock-in noise) of 0.9 pmHz−1/2.
Without changing the tuning voltage (VT), a range of ~500 pm
can be covered, and with the tuning it can be extended to ~20 nm.
Both resolution and spectral range are comparable to commercial
implementations36, but they are here obtained with a much
smaller footprint (optically active part 15 × 15 μm compared to
approximately cm scale device). The peak position was monitored
in time with the NOEMS sensor, and small detunings ~1 pm
induced by a short pulse of convective heating (ΔT~ 0.1 K) were
succesfully detected (right inset in Fig. 4b). We note that our
spectrometer enables the read-out of sensors with very high
resolution using a broad spectral source, releasing the need for
expensive tuneable lasers. The current implementation can be
extended to read a multiplexed input with the use of multiple
cavities connected by on-chip waveguides, for multispectral
nanometrology applications.

Displacement sensing. To demonstrate the motion sensor
functionality, displacement fluctuations due to the Brownian
thermal motion of the upper membrane were measured through
the photocurrent, which directly monitors the intracavity field. A
laser, red-detuned from a high-Q cavity mode (Fig. 5b), is cou-
pled into the cavity and the photocurrent spectrum is measured
by an electronic spectrum analyzer (ESA), see Fig. 5a. Transduced
thermal motion of the fundamental flexural mode of the top
membrane with a frequency ΩM/2π = 2.2 MHz and quality factor
QM ≈ 1400 is observed, see Fig. 5c. The observed resonant fluc-
tuations can be converted to a displacement spectral density Sxx
(Fig. 5c, right axis) by equating them to the thermal variance
<xth2> = kBT/meffΩM

2, with T = 297 K and meff = 50 pg, obtained
from finite element method (FEM) simulations (inset in Fig. 5c)
37. The measurement imprecision is estimated to be 100 fmHz−1/
2 and is presently limited by the pick-up electrical noise in the
measurement setup, which produces the noise floor in Fig. 5c. It
could be improved to below 1 fmHz−1/2 by optimizing the con-
nection between device and amplifier and increasing the
efficiency.

Discussion
In summary, we have presented the concept of an integrated
nanophotonic sensor that embodies the unique features of direct
wavelength/displacement detection via photocurrent, and inde-
pendent voltage control of the optical and mechanical properties
of the structure via electrostatic actuation. We demonstrated a
high-resolution microspectrometer and proved displacement
sensing capabilities on a single device based on coupled PhC
membranes. Furthermore, we introduce a resonance modulation
spectroscopy method, exploiting the electromechanical control of
the mode wavelength to reject stray light and increase the spectral
resolution well beyond the cavity linewidth. Owing to the ultra-
compact size (15 × 15 μm2) of the sensing element, this platform
opens the way for mass production of multipurpose high-
resolution sensors with embedded read-out. As examples of their
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Fig. 4 Applications of resonance modulation spectroscopy. a Gas sensing demonstration, where an HF absorption line at 1312.591 nm is measured in
transmission using the resonance modulation scheme previously described. Voltage was translated into wavelength using a calibration curve obtained from
independent PL cavity mode tuning data. A superluminescent diode (SLED) fiber-coupled to an HF gas cell (at p= 50 Torr), and filtered with a 12 nm wide
1310 nm band pass filter is used for excitation. A filter is needed to isolate a single absorption line, and a single cavity mode; inset: optical spectrum analyzer
(OSA) spectrum of the SLED with the HF cell inserted, showing the same absorption line. b Wavemeter measurement of a FBG resonance in reflection
performed using the resonance modulation scheme. A SLED is connected to the first input of a 2 × 2 fiber beam-splitter with the FBG on one of the outputs,
and the second input (reflection) is coupled to the cavity through a NA= 0.45 objective (Pin≈ 1.6 μW). The FBG peak (100 pm wide) is read by sweeping a
cavity mode (δλc= 237 pm, δVc= 270mV), having a sensitivity (slope at zero crossing) of SI= 3.53 nA V−1. The noise measured at the zero crossing is
δInoise= 3.6 pA Hz−1/2 that translates to a peak wavelength uncertainty of δλnoise= (δInoise/SI) × (δλc /δVc)= 0.9 pmHz−1/2. Inset left: the OSA spectrum of
the FBG filter in reflection. Inset right: detuning of the FBG peak (left axis) and corresponding temperature shift (right axis) over a period of 120 s measured
using the cavity sensor. The peak visible at t= 10 s is induced by convective heating from a heat-gun 50 cm away from the FBG. The current signal (lock-in
output) is translated to displacement (Δλ) using the slope SI. The FBG temperature sensitivity is taken to be δλB/δT= 8.5 pm K−1 (specified by the
manufacturer)
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potential, we present the measurement of a narrow (16 pm) gas
absorption line and the interrogation of a FBG with sub-pm
resolution. The sensor concept can be easily applied to other
material systems to cover different wavelength ranges (from the
visible to the mid-infrared), and further developed for application
in temperature, refractive index, and electrical field sensing. The
III–V semiconductor platform used for the device could be fur-
ther exploited to integrate the light source, opening the way to
fully integrated optical and optomechanical sensors requiring no
external optical connections.

Methods
Sample structure. The sample was epitaxially grown by molecular beam epitaxy
and consists of two GaAs slabs with nominal thicknesses of 170 nm (bottom) and
185 nm (top), separated by a 240 nm thick sacrificial Al0.7Ga0.3As layer. A 1.5 μm
thick Al0.7Ga0.3As bottom sacrificial layer separates the membranes from the
undoped (001) GaAs substrate. QDs (areal density 70 QDs per μm2, with ground-
state absorption centered at 1310 nm at room temperature) are grown in the
middle of the upper slab in a Stranski–Krastanov growth process. The upper 70-
nm-thick part of both membranes was p-doped, while the bottom 70-nm-thick
part of the top membrane was n-doped (pupper = 1.5 × 1018 cm−3, n = plower = 2 ×
1018 cm−3).

Fabrication process and tolerances. The fabrication process begins with defining
the vias for the contact pads for the two diodes of the device in two optical
lithography steps followed by selective wet and dry etching steps to reach the
bottom p- and the middle n-layer. In the p-via lithography step, four flexible arm
bridges, which determine the stiffness of the top membrane, are also defined. To
prevent the stress-induced buckling of the bridge, stress-release structures38 were
implemented (Fig. 1d). No arms are etched in the lower membrane, making it
mechanically much less compliant than the upper one. In the third optical litho-
graphy step, contact pads for all three doped layers are defined and metals are
evaporated. After a lift-off step, 400 nm of Si3N4 is deposited on the sample (hard
mask), ZEP resist is spun, and electron-beam lithography (EBL) at 30 kV is per-
formed to define the PhC pattern. After development, the PhC pattern is trans-
ferred onto the hard mask using RIE (reactive ion etching) with CHF3. Resist is
then removed with oxygen plasma, and the PhC pattern is imprinted as an array of
holes in both membranes using a Cl2-based inductively coupled plasma (ICP)
etching step. Release of the free-standing structure is done by selective wet etching
of the sacrificial layer using a cold (1 °C) HCl solution. To prevent membrane
stiction due to capillary forces, supercritical drying in CO2 is employed. Finally, the
hard mask is removed by isotropic O2-CF4 plasma dry etching. The spectral
position of the cavities was aligned to the peak of the QDs absorption spectrum by

lithographic tuning of the PhC lattice constant. The QD inhomogeneous broad-
ening (50 nm full width at half maximum in the present sample) could be further
increased to reduce the impact of possible QD-cavity spectral misalignment and
achieve a wide spectral photocurrent response. The cavity mode position is
observed to fluctuate from device to device in a given process in a range of 5 nm
due to various fabrication imperfections: buckling of the top membrane due to
residual stress; alteration of the thickness of the top membrane during the dry and
wet etchings steps (<10 nm); changes in the hole radii with respect to design (<10
nm) and roughness along the hole edges during the ICP etching of the holes;
deviations in the lattice constant and position of the holes as determined by the
precision of the EBL (<2 nm). Most of these issues lead to the spectral shift of the
modes and/or to a change of the intensity of one of the two types of modes (S or
As). The Q factor of the resonances is especially influenced by the ICP etching, hole
shape, and roughness, making it the most critical step. We note that all these
tolerances are related to the quality of the fabrication process, which could be
substantially improved using industrial nanofabrication equipment.

PhC cavity design. The light sensing double-membrane PhC cavity was designed
to ensure small size (V ∝ λ3), high Q, and large FSR, by modifying standard L3
(with three holes missing in the hexagonal PhC39) and H0 (holes displaced around
a position in the lattice40) designs. In the design of the L3 cavity used in the
experiment in Figs. 2a, b, d, 3, 4 and 5, the position and the radii of the closest six
holes in the x-direction (displacements s1/a = 0.3, s2/a = 0.225, s3/a = 0.1; radii r1 =
r2 = r3 = 0.6 × r, with r/a= 0.306, the radius of the holes in the PhC and a the lattice
parameter), and the position of the four holes in the y-direction (h1/a = 0.05) were
optimized, providing a simulated Q factor of Qcold = 4.4 × 104 for the fundamental
symmetric mode (Y1-S) in a cavity without the absorber and a mode spacing of Δλ
= 24 nm (from 3D FEM simulations). In the case of the fundamental symmetric
mode (Y1-S), the experimental result mentioned in the main text (Fig. 2b), pro-
vides the Q factor of Qexp = 1.7 × 104. The absorption losses were estimated to give
Qabs ≈ 6.8 × 104. We attribute the additional loss to scattering losses, patterning
errors, and other fabrication imperfections: Qfabr = (1/Qexp − 1/Qcold − 1/Qabs)−1 =
4.7 × 104. The H0 cavity used for the experiment in Fig. 2c was designed for
increased FSR by optimizing the position and radius of four holes. For a triangular
lattice with r/a = 0.33 and parameters sx = 0.15, sy = 0.06, and radii, rx/r = 0.7 and ry/
r = 0.75, a simulated mode spacing of Δλ = 30 nm and Q factor of 1.8 × 104 were
obtained.

Responsivity and coupling efficiency. The peak responsivity is given by R = (e/
hν)ηcηaηi (e elementary charge, h Planck constant, ν light frequency, ηc coupling
efficiency of light into the cavity mode, ηa fraction of cavity photons absorbed by
the QDs, ηi internal efficiency of converting absorbed photons into collected
electrons and holes). The internal efficiency is estimated to be close to 1, as we did
not observe any change of photocurrent with applied reverse bias on the detector
junction, indicating that carriers are efficiently extracted from the QDs. The
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current responsivity is limited by ηa and ηc. The absorption and thereby ηa, which is
given by ηa =Qexp/Qabs, can be increased by increasing the QD density and number
of QD layers, until the point when the absorption losses are comparable to the
scattering losses, analogous to designs of Fabry Perot resonant cavity-enhanced
photodetectors41. The free-space coupling currently employed is expected to
have a low efficiency ηc (3% in the main text) due to the mismatch between the
k-vector distribution of the incident field and the one of the cavity mode. The L3
design can be optimized to reach free-space coupling efficiencies up to 15%
while maintaining a high Q42, and with grating couplers cavity coupling efficiencies
of 20% have been obtained43. It is known that coupling with on-chip waveguides
can be very efficient (>50%44,45). Preliminary results of simulations show that
similar coupling efficiencies can be expected when coupling waveguides to
double-membrane cavities.

Experimental setup. Light from a tuneable laser (Santec TSL-510) was coupled
into the cavity from the top through a ×50 objective (NA = 0.45). All laser powers
indicated in the main text are values incident on the sample. The two diodes were
connected using two adjustable RF probes. In Figs. 2 and 3, the photocurrent was
measured as a voltage drop on a 30 kΩ load resistor (R in Fig. 1a). For the mea-
surements in Figs. 4 and 5, the photocurrent was amplified using a transimpedance
amplifier (A = 5 × 105 V A−1). All measurements were performed at room tem-
perature. The thermal noise measurements in Fig. 5 were performed under vacuum
conditions (p < 10−4 mbar) to suppress viscous air damping.

Wavelength resolution in the resonance modulation scheme. The wavelength
resolution in Fig. 3b is determined by measuring the current noise in the read-out
when laser is on resonance with the cavity, δInoise = 50 pAHz−1/2 (measured
using the lock-in-amplifier) and the slope of the derivative curve at the zero
crossing SI = 5 μAV−1, from which we calculate the voltage accuracy to be
δVT = δInoise/SI = 10 μVHz−1/2. With the mode wavelength tuning rate being 10
nmV−1, this voltage accuracy can be translated into to a (peak position) resolution
of 100 fm when measured in 1 Hz bandwidth, a value 3 orders of magnitude
smaller than the linewidth. As mentioned in the main text, this value is limited by
the long-term drift of the cavity resonance. The fundamental noise limit, in the case
where no drift is present, would be determined by the thermal noise of the load
resistor (~0.7 pA Hz−1/2), corresponding to a potential wavelength resolution of ∼2
fmHz−1/2, while the photon shot noise (~10 fA Hz−1/2) is negligible.

Data availability. All relevant data is available from the corresponding author
upon reasonable request.
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