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Nowadays, the biomolecular assay platforms built-up based on bead counting

technologies have emerged to be powerful tools for the sensitive and high-throughput

detection of disease biomarkers. In this mini-review, we classified the bead counting

technologies into statistical counting platforms and digital counting platforms. The design

principles, the readout strategies, as well as the pros and cons of these platforms are

introduced in detail. Finally, we point out that the digital bead counting technologies

will lead the future trend for the absolute quantification of critical biomarkers, and the

integration of new signal amplification approaches and routine optical/clinical instruments

may provide new opportunities in building-up easily accessible digital assay platforms.
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INTRODUCTION

Motivated by the growing demand for rapid and precise analysis of critical biomarkers (e.g.,
disease-associated nucleic acids and proteins), particle-based biomolecular assays and particle
counting technologies have significantly enlarged the toolbox for bioanalysis (Rödiger et al.,
2014). A lot of efforts have been devoted to the nanoparticle counting-based assays. For example,
the nanoparticle counting strategies based on total internal reflection fluorescence microscopy
(TIRFM) and dark field microscopy have been successfully applied for the sensitive detection
of biomarkers (Ma et al., 2016, 2019; Qi et al., 2018). Compared with nanoparticles, micro-
sized beads, especially magnetic beads have exhibited the potential to be adopted in broader
application scenarios. In this review, we mainly focus on the particle-counting technologies which
allow the precise readout of the target-induced fluorescence signals accumulated on microbeads.
Generally, we classified this area into two categories (Scheme 1). One is the statistical counting,
in which the target molecules are concentrated on the beads that act as the reaction carriers
for fluorescent signal amplification and transduction, and the quantification of target molecules
is achieved by counting/measuring the total fluorescent signals loaded on the beads. The other
one is the digital counting strategy, in which each bead carries only one or none target molecule
following Poisson distribution. Thus, after the single target-initiated fluorescence generation, the
absolute number of the target biomolecules can be achieved by digitally counting the number of
fluorescence carriers (e.g., beads). Regarding the precision and convenience of the biomolecular
assays, bead counting strategies are superior to the homogeneous sensing strategies in two aspects.
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SCHEME 1 | Flow diagram illustration of bead counting-based technologies.

On the one hand, in the bead counting methods, the

target biomolecule (such as nucleic acids, proteins, and
antibodies/antigens)-induced response signals are anchored on

the beads, which can get rid of the interference by separating the
beads from the complex sample matrix. On the other hand, the

commercially available and easily synthetic beads are solid and

stable, which can be applied as satisfying microreactors for multi-
step reactions. For example, compared with the emulsions used

as microreactors in classical digital assays (e.g., droplet digital

PCR, abbreviated as ddPCR), the bead-based digital assays are
steady and facile due to the avoidance of using fragile emulsion
droplets. Therefore, it is believed that the prosperity of the bead-
counting technologies will lead to the more precise detection of
critical biomarkers.

BEADS-BASED STRATEGIES FOR THE
DETECTION OF BIOMOLECULES

Beads-Based Statistical Counting
Strategies for the Detection of
Biomolecules
In the statistical counting strategies, the fluorescence signals
are accumulated on the beads via target-induced reactions.
Therefore, the fluorescence intensity statistically collected from
a large population of beads can reflect the concentration
information of the target molecules. It should be noted that in
such strategies, the concentration of target can only be obtained
by substituting the experimental data into the standard curve
established by a gradient of standard samples with known
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concentrations. Basically, there are two representative types of
statistical bead counting strategies: the solid-state planar arrays
and the liquid-state suspension arrays, both of which have been
applied widely in the detection of disease-related biomolecules
(Parsa et al., 2018; Vafajoo et al., 2018). In the solid-state
planar arrays, the beads are attached to a solid substrate after
target capturing and fluorescence signal accumulation, and the
fluorescence signals of the beads are monitored after the washing
procedure (Sukhanova and Nabiev, 2008). As to the suspension
arrays, after introducing the target-associate fluorescent tags onto
the beads, the beads are monitored one by one when they
pass through the laser beam without any separation procedure
(Leng et al., 2015).

Solid-State Planar Bead Arrays
Generally, in the planar bead arrays, the target-specific
fluorescence reporters are immobilized on the beads, which
are then deposited onto a solid substrate or into microwells
(Rödiger et al., 2014). Then, the beads carrying fluorescent
signals are captured using an imaging system (e.g., a fluorescence
microscope). In the following steps, the fluorescence images
are processed and annotated by professional software for
target quantification.

One of the most prominent planar bead strategies is the
optical fiber microwell array described by Walt’s group (Gorris
et al., 2007; Walt, 2010). In this working principle, the target-
specific beads are distributed into the microwells generated
by hydrofluoric acid etching on an optical imaging fiber.
After removing the extra beads and solutions, the fluorescence
intensity of the beads is collected by an imaging system.
Therefore, the amount of target can be reflected by the
fluorescence signals specifically accumulated on the beads.
Benefiting from the versatile design, not only nucleic acid but also
protein can be sensitively analyzed with this array.

Zhu and Trau (2015) presented a gel planar array chip for
high-throughput and multi-analyte bead-based immunoassays.
The chip is fabricated on a glass slide by using polyacrylamide
gel and polyethylene glycol (PEG) gel. The resulting chip consists
of a number of polyacrylamide gel units for the immobilization
of beads, and each gel unit is surrounded with a PEG ring
to confine the sample within the microarrays. Consequently,
the on-bead immunoreaction was confined in the microarrays.
After the immunoreaction with the Alexa Flour labeled detection
antibody, the target-specific fluorescent beads are monitored
with a fluorescence microscope, and the target can be quantified
by recording the total fluorescence signal loaded on the beads.
In this method, the detection limits below the physiological
threshold level for cancer diagnosis was achieved.

The Koh group developed a microhole planar array fabricated
in PDMS (poly-dimethylsiloxane), where each microhole was
designed to trap a single bead that functionalized with probe
antibodies (Han et al., 2015). The beads were coded with
quantum dots (QDs) of two different colors. After the specific
immunoreactions on the surface of the QDs-encoded beads,
multiple target proteins can be recognized by identifying the
beads in the microholes with their precision x and y coordinates
recorded, and then quantified by analyzing the fluorescence

signals of QDs-embedded beads with photolithography. In this
design, as low as 1 ng/mL target can be detected.

Liquid-State Suspension Bead Arrays
Although planar arrays play an important role in ultrasensitive
bioanalysis, limitations on the quality of its results, binding
rates, decoding speed, and overall flexibility still exist (Wilson
et al., 2006; Leng et al., 2015). Fortunately, a series of liquid-
state suspension bead assay strategies relying on monitoring
free beads have been proposed for the efficient analysis of
biomarkers, which may solve the challenges. Typically, the flow
cytometric methods that count the suspending beads carrying
varied fluorescence signals individually seems to be the most
dominant. Flow cytometric is a versatile technology for the rapid
interrogation of individual cells or beads in a one-by-one fashion
(Adan et al., 2017). It can simultaneously measure the light
scattering and the fluorescence intensity of individual beads in a
fluid stream when they pass through the laser beam (Wilkerson,
2012). By statistically processing the fluorescence data collected
from the suspension beads, the target biomarkers that induce the
fluorescence accumulation on the beads can be quantified. This
working schememakes the flow cytometer (FCM) a powerful tool
for the analysis of disease biomarkers in biomedical research and
clinical diagnosis.

One of the most commonly used FCM systems is the Luminex
family, a well-established platform using multiple kinds of
fluorophores to encode a panel of beads (∼5.5µm polystyrene
beads) (Nolan et al., 2006). In this system, each bead group
corresponds to a specific target biomolecule. With more than one
solid-state laser equipped on the FCM, the beads with different
fluorescence colors and intensities are counted one by one in the
liquid flow and decoded by the detectors. In this way, multiple
targets can be analyzed simultaneously by using fluorescence-
encoded beads (Dunbar, 2006; Chou et al., 2012).

Despite the high-throughput monitoring of disease
biomarkers, higher detection sensitivity is always desired in
the clinical diagnosis. In this regard, a series of on-bead signal
amplification strategies have been reported to improve the
sensitivity of the liquid-state suspension bead-based assays. For
example, hybridization chain reaction (HCR) (Dirks and Pierce,
2004) is one of the most effective enzyme-free amplification
strategies that have been integrated with the liquid-state bead-
based sensitive detection of biomarkers (Ren et al., 2013). In these
designs, the mute trigger of HCR is anchored on the beads. Only
in the presence of target molecules, the trigger can be activated
to initiate a cascade hybridization reaction of two metastable
hairpin probes (Zhang et al., 2015). By labeling the fluorophore
molecules on the hairpin probes, a lot of nicked double-stranded
DNA (dsDNA) structures with fluorescent signals are enriched
on the beads. With the help of the efficient HCR, even a low
concentration of target molecule can induce an observable
fluorescence signal that can be sensed and quantitively analyzed
by FCM. Catalyzed hairpin assembly (CHA) is another mature
nonenzymatic nucleic acid amplification strategy (Yin et al.,
2008; Li et al., 2011). In CHA, a single-stranded DNA (ssDNA) is
required as the catalyst to trigger the strand exchange reactions
of two hairpin probes and initiate the cycling of CHA circuits.
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In greater detail, the ssDNA catalyst can interact with a toehold
on one of the hairpin probes (H1) and open the hairpin to
expose a new ssDNA. And the newly exposed ssDNA can
hybridize with a toehold on another hairpin probe (H2) and
trigger the strand-exchange process. With the displacement,
the free catalyst can participate in subsequent reaction cycles.
In this way, lots of H1:H2 duplexes are formed even at the low
level of target concentration without using the enzymes. As an
enzyme-free strategy, the efficient CHA can be integrated with
the bead-FCM system for the sensitive detection of biomarkers
(Jung et al., 2016). And the system could be of use in analytical
and diagnostic applications.

Compared with the enzyme-free amplification methods, the
enzyme-involved amplification strategies are more effective.
Terminal deoxynucleotidyl transferase (TdT) is a template-
independent DNA polymerase that catalyzes the repetitive
sequential addition of deoxynucleotides (dNTP) at the 3′-OH
group of a DNA (Liu et al., 2014; Wang et al., 2017). Taking
benefit of this intriguing property of TdT, effective signal
amplification can be achieved without complicated probe design,
which greatly simplifies the assay. Considering this, a set of
high-sensitive strategies have been reported for both nucleic
acid and protein sensing by conducting the target molecule-
initiated TdT extension on the surface of beads (Fan et al.,
2018; Zhu et al., 2018). After immobilizing fluorescent molecules
on the product of target-initiated TdT extension, the beads
with different fluorescence intensity are interrogated, and then
statistically analyzed by FCM. In this way, as low as 5 fM nucleic
acid and 0.5 pg/mL protein can be analyzed.

In conclusion, both the solid-state planar bead arrays and
liquid-state suspension bead arrays can provide satisfying
biomarker analyzing performance. To further improve the
sensitivity of the bead-based statistical counting strategies,
developing more efficient signal amplification methods and
applying more sensitive fluorescence instruments are two most
promising ways.

Beads-Based Digital Counting Strategies
for the Detection of Disease Biomarkers
The statistical bead counting strategies have allowed the
sensitive andmultiplex detection of disease-related biomolecules,
however, a standard curve is inevitable. In this consideration, the
most precise and promising way of quantifying the biomolecules
is to count their absolute number in a digital manner (Walt,
2013; Gooding and Gaus, 2016). In digital bioassays, the
sample solution containing target molecules is divided into a
great deal of separate microreactors. According to the Poisson
distribution, the microreactors will be of one or none target
biomolecules and ultimately show either positive or negative
binary signal readout (Zhang and Noji, 2017). In this way, the
target biomolecules can be digitally reflected by the number of
positive microreactors. Compared with the statistical counting
assays, the digital counting bioassays are able to provide the
absolute number of target molecules without using a standard
curve, expelling a series of interfering factors. Due to such
advantages, the sensitivity of digital counting bioassay is reported
to be much higher than that of the statistical counting assays.

BEAMing Platform
The ddPCR (e.g., Bio-Rad QX-100/QX-200) is the most mature
digital counting bioassay, which has already been commercialized
(Hindson et al., 2011; Pinheiro et al., 2012). It enables the absolute
digital quantification of targetmolecules without the requirement
of external/internal standard and is extremely suitable for precise
quantification of low-abundance nucleic acids. Different from
ddPCR which adopts pure emulsion droplets as the independent
microreactors, BEAMing (Dressman et al., 2003) is developed
depending on four principal components (beads, emulsion,
amplification, magnetics, Figure 1). In BEAMing, a single
target molecule and a single magnetic bead are simultaneously
encapsulated in one drop of emulsion (Diehl et al., 2006;
Chen et al., 2018). After the polymerase chain reaction (PCR)
or loop-mediated isothermal amplification (LAMP) process on
the beads inside the emulsions, the emulsions are broken
and the beads are purified with the assistance of magnetic
separation. After then, the number of variant DNA molecules
in the population is analyzed by counting the fluorescence-
positive beads using FCM. Nevertheless, in the principle
of BEAMing, only the microemulsions containing both a
target molecule and a bead can lead to the positive signal
readout. Therefore, false negatives may occur when the nucleic
acid target and bead are not encapsulated in one emulsion
simultaneously. It should also be noted that the fragile emulsion
reaction is prone to be affected by many factors to bring
misleading results.

Single Molecule Arrays (Simoa)
Another prominent digital platform is the Simoa, which was
firstly proposed by the Walt group (Rissin et al., 2010; Cohen
and Walt, 2017). In the principle of Simoa, individual beads
(∼2.7µm paramagnetic beads) bound with either none or
one target molecule are seeded into femtoliter-volume well
arrays (Figure 1). Assisted by an enzyme-catalyzed fluorogenic
reaction, the detection of the target is converted to counting
the number of positive microwells that contain the beads
with the target molecule (Song et al., 2013). As a result, the
subfemtomolar level of target biomolecules can be detected
by the Simoa system. However, the sensitivity of Simoa is
impeded by the low loading efficiency of beads, in which
just about 5% of the total beads can be sampled into the
microwells and analyzed (Cohen et al., 2020). To overcome this
barrier, recently, the dropcast Simoa (dSimoa) system for the
ultrasensitive protein detection by single molecule counting with
a higher sampling efficiency is proposed (Wu et al., 2020). In
this approach, instead of loading the beads into the microwells,
the beads are simply dropcast onto a microscope slide for
single molecule counting. Therefore, the sampling efficiency is
dramatically improved.

As a conclusion, the ultrahigh sensitive quantification of
disease-biomolecules can be achieved by introducing bead-
based digital counting strategies, which is with great promise to
offer even the absolute number of target molecules in complex
biological samples. Therefore, compared with the statistical
counting strategies, the bead-based digital counting strategies are
more precise and sensitive.
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PERSPECTIVE

Although the digital assay strategies, including ddPCR,
BEAMing, and Simoa have shown the future trend of biomarker

analysis, we anticipate that the development of new bead-based
digital platforms with commonly accessible equipment, simple
operation, and wide applicability is of great significance for
the prevalence of digital assays. Considering the advantages

FIGURE 1 | Schematic illustration of 2-well-recognized digital bead counting bioassay technologies. Reproduced with permission from Dressman et al. (2003).

Copyright 2003, National Academy of Sciences (BEAMing). Reproduced with permission from Rissin et al. (2010). Copyright 2010, Nature Publishing Group (Simoa).

FIGURE 2 | Perspective on the digital counting platform: the integration of single molecule-initiated signal amplification strategies and conventional instruments (e.g.,

flow cytometer) may lead the future trend of digital assay technologies. Reproduced with permission from Fan et al. (2020). Copyright 2020, The Royal Society of

Chemistry.
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of bead-based approaches and the superior of digital counting
assays, our group has developed a new digital platform based
on the single molecule-initiated signal amplification that can
illuminate a single bead for the ultrasensitive detection of
biomolecules (dFlowSeim, Fan et al., 2020). In this scheme
(Figure 2), according to the principle of the digital assay,
one or none target molecule is immobilized on each bead
(∼2.8µm paramagnetic beads), and then an on-bead single
molecule-actuated nucleic acid amplification is rationally
designed to make sure that sufficient numbers of fluorescent
molecules are gathered on the single bead to make it bright
enough for FCM or fluorescence microscope sensing. As
a result, the beads carrying one target will be identified as
positive ones while the beads without capturing a target
are identified as negative. Then the number of positive and
negative beads can be facilely counted by the versatile FCM
or fluorescence microscope to achieve the digital analysis of
target biomolecules. The digital platform based on the single
molecule-initiated signal amplification-illuminated beads has
wide applicability. In the first place, FCM and fluorescence
microscope are widely equipped and easily accessible in
hospitals and ordinary biolabs. Then, this bead-based digital
platform is emulsion-free, so unlike the BEAMing system, the
digital analysis of target biomolecules can be achieved without
the complicated emulsion-generation and emulsion-broken
procedures. Additionally, it is a promising approach to achieve
multiplexed biomolecule detection by encoding each kind of
target molecules in a digital manner because the FCM is able to
clearly discriminate the beads of varied sizes. As to the proposed
digital platform, the efficiency of single molecule-initiated signal
amplification is the key point for the enrichment of sufficient
fluorescent molecules to illuminate the single bead. Therefore, it

is predicted that with the development of high-efficient on-bead
signal amplification strategies, the sensitivity, applicability,
and flexibility of the bead-based digital platform will be
significantly improved.

CONCLUSION

In this mini-review, a series of bead counting strategies, including
statistical counting and digital counting for the analysis of
disease-related biomolecules have been summarized. The design
principles and advantages of the most popular bead counting-
based assays have been described and discussed in detail. Finally,
we point out that the digital assay will lead the future trend
of the bead counting-based bioassays and the integration of
routine instruments and emerging on-bead signal amplification
technologies will broaden the way of digital assays.
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