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ABSTRACT 
 

The culture media optimization is an inevitable part of upstream process development in therapeutic monoclonal 
antibodies (mAbs) production. The quality by design (QbD) approach defines the assured quality of the final 
product through the development stage. An important step in QbD is determination of the main quality 
attributes. During the media optimization, some of the main quality attributes such as glycosylation pattern, 
charge variants, aggregates, and low-molecular-weight species could be significantly altered. Here, we provide  
an overview of how cell culture medium components affect the main quality attributes of the mAbs. Knowing  
the relationship between the culture media components and the main quality attributes could be successfully 
utilized for rational optimization of mammalian cell culture media for industrial mAbs production.  
DOI: 10.18869/acadpub.ibj.21.3.131 
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INTRODUCTION 

 

rocess development is a state-of-the-art method 

to establish a manufacturing line in 

biopharmaceuticals. Although a significant shift 

in productivity is the main goal of process 

development, achieving appropriate quality attributes is 

also of great concern
[1]

. Quality by design (QbD) is a 

new approach to develop and to manufacture 

pharmaceutical products. QbD guarantees product 

quality and ensures that a consistent product with 

preferred quality attributes is generated
[2,3]

. Regulatory 

agencies encourage its application in the manufacture 

of all new pharmaceuticals containing biological 

products
[2-4]

.  

The cell line and its recombinant DNA construct, 

culture media, and process conditions are three 

important parameters that influence recombinant 

protein quality properties in the manufacture of 

biopharmaceuticals. The culture media and the control 

of process conditions are very important in process 

development
[5,6]

. In fact, the cell metabolism directly 

depends on the culture conditions, including the pH
[7]

, 

the temperature
[8]

, the oxygen tension
[7]

, the CO2 

amount in the culture broth
[9]

, and also the mode of 

processing, i.e., perfusion or fed-batch mode
[10]

. 

Diverse metabolic outcomes states that result from 

modifications in these culture parameters might 

produce proteins with altered quality attributes.  

Many review articles have been published in this  

field with a focus on the cell line
[11-13]

 and cell  

culture parameters
[14,15]

. Moreover, with  concentration 

on the regulation of certain media constituents and  

by supplementing the medium with specific co-factors, 

the glycosylation profile
[15]

, the charge variants
[16]

,  

the aggregation amount
[17,18]

 and the level of  

low-molecular-weight (LMW) variants
[19]

 can be 

controlled. 

At this time, monoclonal antibodies (mAbs) are the 

main products in the pipeline of the biopharmaceutical 

industry. Numerous studies have reported different 

impacts of glycosylation, charge variants, aggregates, 

and fragments on the biological activity and 

pharmacokinetics
[20-23]

. The purpose of this review is to 
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discuss the main quality attributes of mAbs that can be 

changed directly by culture conditions, and to review 

the culture conditions and culture media components 

that affect these attributes. 

 

Glycosylation 
 

Importance  

Glycosylation is a complicated process of the 

attachment of oligosaccharides to the polypeptide 

backbone of a protein, which occurs in the 

endoplasmic reticulum and Golgi apparatus. There are 

two main kinds of glycosylation
[24]

: asparagine (Asn)-

linked glycosylation or N-linked glycosylation, and 

serine/threonine-O-linked glycosylation. In mAbs, the 

Asn-linked glycosylation is the most common
[25]

. The 

N-glycans are linked to the two conserved Asn 

residues (Asn 297) in the CH2 domain of the Fc 

region
[26]

. The presence or absence of certain 

oligosaccharides can affect mAb stability
[27]

, in vivo 

efficacy
[27-29]

, antibody-dependent cell-mediated 

cytotoxicity (ADCC)
[27,30]

, complement-dependent 

cytotoxicity (CDC) activities
[31]

, pharmacokinetics
[22]

, 

clearance rate
[1]

, and immunogenicity
[1,32]

. Hence, the 

precise control of glycosylation of mAbs is critical.  

 

2-2-N-glycosylation types 

In the endoplasmic reticulum, the oligosaccharide 

chain is attached to the protein backbone and 

consequently forms an oligomannose species through a 

series of enzymatic reactions. In mammalian cells, the 

glycoprotein undergoes further processing in the 

Golgi
[14,27]

. N-glycans can be classified into three 

groups, which have a shared core comprising two N-

acetylglucoseamine (GlcNAc) residues and three 

mannose types in a branched form (Fig. 1). The 

different groups are: 

1) The high-mannose (HM) type that comprises only 

mannose residues attached to the core. While the 

HM amount on the endogenous human IgG is 

usually very low, the HM amount of the 

recombinant mAbs can range from 1% to ≥20%. 

Due to the quicker serum clearance rate of HM 

glycans compared to other Fc-glycans, the 

pharmacokinetic properties of these mAbs are 

affected
[33,34]

. Additionally, the HM glycoforms 

are concomitant with enhanced ADCC 

activity
[34,35]

. Therefore, the HM amount of mAbs 

can be considered to be an important quality 

attribute in the production process.  

2) The complex type containing different kinds of 

monosaccharide in their antennal region (Fig. 2). 

Galactose amount may influence CDC, and the 

sialylation amount may influence functionality or 

inflammatory characteristics
[15]

. The lack of core-

fucosylation results in enhanced ADCC
[7]

. For 

instance, non-fucosylated mAbs display fiftyfold 

to thousandfold higher efficacy than their 

fucosylated counterparts
[30]

. 

3) The hybrid type, which has properties from both 

HM and complex types attached to the core. 

 

Glycosylation during cell culture 

It is understood that differences in the N-linked 

glycan profile can take place during the mAb 

production process
[7,36]

. The cell culture conditions 

containing culture media elements, the accessibility of 

the nucleotide sugar substrates, the expression amounts 

of the enzymes involved in the attachment, and the 

transformation of carbohydrate structures determine 

the amount of antennarity and sialylation
[14]

. 

Manganese plays an important role in the 

glycosylation pathway
[15,37,38]

. As a  co-factor  of many 

 
 

 

 
 

Fig. 1. The schematic representation of the composition of different groups of N-glycans containing high mannose, complex, and 

hybrid types. 
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Fig. 2. The schematic representation of major N-linked glycoforms of mAb therapeutics. G0: asialo, agalactose, biantennary 

complex (common core [Man3GlcNAc2] with terminal two GlcNAc residues), G0F: asialo, agalactose, biantennary complex, core 

substituted with fucose, G1: asialo, mono-galactosylated, biantennary complex, G1F: asialo, mono-galactosylated, biantennary 

complex, core substituted with fucose, G2F: asialo, galactosylated, biantennary complex, core substituted with fucose. G, galactose; S, 

sialo (sialic acid) 

 

 

enzymes, manganese controls the glycosylation 

profile
[38]

. It has been shown that increased nucleotide-

sugar precursors levels, comprising UDP (uridine 

diphosphate)-Hex, UDP-HexNAc, and cytidine 

monophosphate-sialic acid, enhance the glycosylation 

of mAbs
[39]

. 

It has been shown that the glucose limitation in 

culture medium can lead to a reduced UDP GlcNAc 

availability
[40]

 which in turn  results in glycosylation 

heterogeneity
[41]

. In a Chinese hamster ovary (CHO) 

cell culture experiment, it was seen that the amount of 

non-glycosylated antibody was correlated to the extent 

of time the cells deprived of glucose
[42]

. In a different 

study in fed-batch culture mode, with the human cell 

line rF2N78, it has been shown that due to the lack of 

glucose in the feed, nearly 44% of the product was 

aglycosylated. No aglycosylated antibody was 

expressed when glucose was fed throughout the 

culture
[43]

. There are reports that glucose and glutamine 

(Gln) concentrations below 1 mM were harmful to 

glycosylation
[29,44,45]

. Also, variations in other cell 

culture conditions such as dissolved oxygen, bioreactor 

pH, ammonia, and shear stress, have been shown to 

affect the glycosylation of therapeutic mAbs. Their 

terminal galactosylation may be affected by such 

variations
[14]

. The variable presence of terminal 

galactose residues leads to the heterogeneity of 

Rituximab glycosylation
[15,46]

. The effect of Rituximab 
terminal galactose residues on CDC activity originates 

from the involvement of galactose residues in the 

binding of Rituximab to complement C1q
[46]

. 

Therefore, the agalactose form of Rituximab is 

considered as a serious impurity. 

 

Analytical methods for the detection of mAb 

glycosylation  
Several analytical methods are used to analyze 

glycosylation. Some of those are nuclear magnetic 

resonance, mass spectrometry, high performance liquid 

chromatography (HPLC), and capillary electrophoresis 

(CE). The most frequently used quantitative tools to 

analyze glycosylation are HPLC and CE. HPLC is used 

either with fluorescence detection
[47-49]

 or with pulsed 

amperometric detection
[50,51]

 and CE with a laser-

induced fluorescence detector for various 

fluorescently-labelled glycans
[52]

. In HPLC-based 

methods, in the first step, glycans are released by 

chemical or enzymatic methods. The second step is the 

separation of the released glycans and the sample 

clean-up for the elimination of salts or denaturants. 

Labelling with appropriate reagents is done to improve 

detection. Then chromatographic techniques are used 

to separate the released, purified, and labelled or 

unlabelled glycans
[53]

. The common separation-based 

techniques that are used for the characterization of 

mAb glycoproteins are reverse-phase HPLC, 

hydrophilic interaction chromatography, and high-
performance anion-exchange chromatography (Fig. 3).  
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Fig. 3. Workflow of glycan profiling, hydrophilic interaction chromatography (HILIC ), reverse-phase chromatography (RP), weak 

anion exchange chromatography (WAX), mass spectrometry (MS), and fluorescence detector (FD). G0: asialo, agalactose, biantennary 

complex (common core [Man3GlcNAc2] with terminal two GlcNAc residues), G0F: asialo, agalactose, biantennary complex, core 

substituted with fucose, G1: asialo, mono-galactosylated, biantennary complex, G1F: asialo, mono-galactosylated, biantennary 

complex, core substituted with fucose, G2F: asialo, galactosylated, biantennary complex, core substituted with fucose. G, galactose 

 

 

Charge variants  

Recombinant mAbs undergo chemical degradation 

through diverse mechanisms comprising deamidation, 

oxidation, isomerization, and fragmentation that result 

in several charge variants and heterogeneity formation, 

consequently modifying their pI values
[20]

. 

 

Importance  

The analysis of charge heterogeneity in the mAbs 

characterization is essential because it provides 

significant information about product quality and 

stability
[54]

. Charge variants with a relatively lower pI 

are mentioned as acidic variants, while charge variants 

with a relatively higher pI are mentioned as basic 

variants (Fig. 4). Charge variants may significantly 

influence the in vitro and in vivo properties of 

antibodies. It has been revealed that they can change 

the binding to proteins or cell membrane targets, 

thereby affecting the tissue penetration, tissue 

distribution, and pharmacokinetics of the 

antibodies
[20,55-58]

. There is enough evidence in the 

literature to recommend that the existence of acidic 

species variants on mAbs can at least have an effect on 

the resulting protein’s efficacy and function
[59-61]

. The 

impacts of the charge variants depend highly on the 

nature, site, and the amount of post-translational 

modifications that cause the acidic and basic variants’ 

formation
[62]

. Therefore, mAb charge variant levels 

must be controlled exactly. At present, little 

information is available on the control of these variants 

using process parameters. 
 

Charge variants types 

Main species  

The main peak of charge variant chromatograms 

usually contains species with three kinds of usual post-

translational modifications: (1) Cyclization of the N-

terminal Gln to pyroGlu, (2) elimination of the heavy 

chain C-terminal lysine (Lys), and (3) glycosylation of 

the conserved Asn residue in the CH2 domain with 

neutral oligosaccharides. At the time of analysis, most 

of the antibodies comprised N-terminal pyroGlu 

instead of the original Gln, and therefore elute as the 

main peak
[63,64]

. Antibodies without any C-terminal 

Lys are typically observed in the main species
[63-67]

. 

The preserved Asn residue in the CH2 domain is 

glycosylated. The core-fucosylated complex bi-

antennary structures with zero, one, or two terminal 

galactose residues are the main glycoforms of 

recombinant mAbs from mammalian cell cultures
[68]

.  

 

Acidic species 

Charge variants with a relatively lower pI are termed 

acidic variants. Table 1 summarizes the central reasons 

for the formation of acidic species. The major cause of 

acidic  species formation,  which  has  been extensively  
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Fig. 4. The cation exchange chromatogram representing 

different charge variants containing acidic, main, and basic 

peaks. The chromatogram is related to a homemade monoclonal 

antibody. 

 
 

reported, is deamidation of Asn residues. Deamidation 

happens both in the variable domains, particularly 

complementarity-determining regions, as well as in the 

constant domains. Deamidation of Asn residues in the 

complementarity-determining regions always leads to 

the acidic species formation
[63,69-73]

. 

 

Basic species 

Charge variants with a relatively higher pI are basic 

variants. Table 1 summarizes the main reasons for the 

basic species generation. The major cause for the 

generation of basic species is incomplete removal of  

C-terminal Lys. Due to the further positive charges, 

mAbs with heavy chain C-terminal Lys are more basic 

than the main species
[20,63-65,68,74-78]

. 

 

Charge variants during cell culture 

The culture temperature displays important effects on 

mAb charge variants’ distribution
[79]

. Reducing the 

temperature and accelerating the temperature shift time 

considerably decrease the acidic charge variant 

amount
[61]

. In a study, Zhang et al.
[79]

 showed that 

decreasing the culture temperature enhanced the Lys 

variant amount, which can be the main reason for the 

increased basic variant amount, also they showed that 

cultivations at sub-physiological temperatures in both 

batch and fed-batch culture modes reduced the mAb 

acidic variant levels, but the basic ones were enhanced. 

It can be related to the reduction of carboxypeptidase B 

transcription level. However, the mechanism by which 

a temperature downshift decreases the acidic charge 

variants’ level has not been clarified yet.  

There was a straight correlation between the proline 

amidation level and the basic peak level. Kaschak  

et al.
[54]

 observed that the proline amidation was 

sensitive to copper ion concentration in the culture 

medium during cell culture. They showed that a higher 

Cu
2+

 ion concentration results  in  the higher level of  

proline amidation. They also showed that if the copper 

concentration increases and the zinc concentration 

decreases in a chemically defined medium, the level of 

C-terminal Lys variants will enhance
[16]

. Deamidation 

modification in target mAb is decreased
  

by glycerol 

and sodium chloride
[80]

 and increased by iron 

concentration enhancment
[81]

. Increase in the sodium 

butyrate concentration in CHO cell culture medium 

enhances mAbs basic charge variants
[82]

. Moreover, it 

has been found that the supplementation of mammalian 

cell culture media with the bioflavonoid chemical 

family can decrease acidic species of recombinant 

mAbs
[83]

. 

 

 
                             Table 1. The modifications that form acidic variants 

Number Acidic variants Basic variants 

1 Deamidation N-terminal Glu 

2 Non-classical disulfide linkage Isomerization of Asp 

3 Trisulfide bonds Met oxidation 

4 Glycation C-terminal Lys 

5 High mannose Incomplete disulfide bonds 

6 Sialic acid Amidation 

7 Thiosulfide modification Succinimide 

8 Cysteinylation Mutation from Ser to Arg 

9 Non-reduced species Aggregates 

10 Reduced disulfide bonds Fragments 

11 Modification by maleuric acid Aglycosylation 

12 Fragments Incomplete removal of leader sequence 
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Analytical methods for the detection of mAb charge 

variants 

Several methods are used to detect charge  

variants of  recombinant  mAbs.  These include  

isoelectric focusing gel electrophoresis
[71,74,84]

, 

capillary isoelectric focusing electrophoresis
[76,85]

,  

and cation
[71,74,76,85-87] 

and anion
[84,87] 

exchange 

chromatography. 
 

Fragmentation and aggregation 

Importance  

Protein aggregation and fragmentation may lead to 

immunogenicity, loss of biological activity, and other 

side-effects
[88-92]

. These modifications are host cell 

line, clone, and process-dependent
[15,93]

.  
 

Fragmentation  

Fragmentation is a common type of degradation  and 

can be attributed to the disruption of a covalent peptide 

bond. It may take place spontaneously or by enzymatic 

reaction
[92]

. To evaluate the purity and integrity of the 

target protein, it is necessary to monitor the mAbs 

fragmentation as a critical quality attribute. The 

fragmentation pattern of mAb denotes a fingerprint of 

stability and production consistency. 
 

Aggregation  

In the manufacture of therapeutic proteins, 

aggregation is a common problem. Protein aggregates 

can be categorized in several ways, including 

soluble/insoluble, covalent/non-covalent, reversible/ 

non-reversible, and native/denatured
[18,94,95]

. These 

structural changes are significant because they can 

cause a loss of activity of the intact proteins. 

Furthermore, aggregation and misfolding can induce a 

new epitope presentation, leading to an adverse 

immune response
[88,96]

. The control and avoidance of 

aggregation in the manufacturing process are needed 

because aggregates  affect drug performance and 

safety
[97,98]

.  
 

Aggregate formation during mAb manufacturing 

processes 

Physicochemical stresses, such as changes in the 

osmolality and pH of the medium, or changes in the 

culture temperature, protein concentration, oxygen and 

shear forces can aggregate the secreted proteins
[94,99]

. 

Stresses to the protein, such as freezing contact with 

air, or interactions with metal surfaces, may lead to 

undesired post-translational modification, which result 

in aggregates formation. Mechanical stresses may lead 

to protein aggregation
[100-102]

. Osmolytes in the form of 

small organic components, such as sugars, polyols, and 

amino acids help as chemical chaperones to stabilize 

proteins and stop aggregation
[103-105]

.  

Fragmentation during cell culture 

Fragmentation may occur because of the action of 

proteases released by cells into the cell culture 

supernatant during the protein production 

process
[89,106,107]

. According to several reports, the 

culture media components have different effects on 

product fragmentation. Trace elements, including 

manganese, zinc, and cobalt, decrease LMW 

formation
[108]

, while copper increases the LMW 

formation
[19,90]

. Also, other media components, such as 

EDTA
[19,90,108]

 and cysteine
[17]

 decrease product 

fragmentation. 

 

Aggregation during cell culture 

The control of the produced aggregates level during 

the cell culture process is possible. This control is 

accomplished by carefully choosing the proper cell  

line and improving cell culture conditions, such as 

media components that affect media osmolality and 

conductivity, feeding strategy, temperature, and 

pH
[109]

. A lower quantity of aggregates in the secreted 

protein was observed when media pH and osmolarity 

were increased in cells cultured in a hollow fibre 

bioreactor
[110]

. Cromwell et al.
[18]

 studied the effect of 

cell culture temperature on aggregate formation during 

the culture. They indicated that the higher levels of 

aggregates were observed when the protein was held in 

the culture medium at a high temperature for a longer 

time. Different effects of media components on product 

aggregation have been reported. Different reducing and 

oxidizing substances containing glutathione, cysteine, 

and copper decrease the protein aggregate formation in 

CHO cell culture harvests
[17]

. Sodium chloride also 

decreases the aggregate amount
[111]

.  

 

Analytical methods for the detection of fragmentation 

and aggregation of mAbs 

The analytical methods used to detect fragmentation 

and aggregation can be divided into two groups based 

on their separation mode: (1) The methods in which the 

separation is based on the size of the molecule, such as 

size-exclusion chromatography, sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis, and CE 

with SDS. (2) The methods in which the separation is 

based on the chemistry of amino acid side chains  such 

as cation exchange chromatography. While the 

mentioned methods are usually used to monitor and 

quantify protein fragmentation and aggregation, the 

identification of the exact cleavage site is performed 

using mass spectrometry
[112,113]

.  

Here, we explained the main quality attributes of 

recombinant mAbs, which can be altered during cell 

culture media optimization. In cell culture media 

optimization, the challenge is to increase the yield with 
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the desired quality of the product by the addition of 

appropriate components at the correct concentration. 

Published data show that quality engineering could be 

performed by media design which is a rational strategy 

to considerably control the main quality attributes and 

function of mAbs. Therefore, to reach a recombinant 

mAb with the desired quality, the analysis of main 

quality attributes by appropriate analytical methods 

during the process development is necessary and 

inevitable. 
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