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ABSTRACT Adaptation of domesticated species to diverse agroclimatic regions has led to abundant trait diversity. However, the
resulting population structure and genetic heterogeneity confounds association mapping of adaptive traits. To address this challenge in
sorghum [Sorghum bicolor (L.) Moench]—a widely adapted cereal crop—we developed a nested association mapping (NAM) pop-
ulation using 10 diverse global lines crossed with an elite reference line RTx430. We characterized the population of 2214 recombinant
inbred lines at 90,000 SNPs using genotyping-by-sequencing. The population captures �70% of known global SNP variation in
sorghum, and 57,411 recombination events. Notably, recombination events were four- to fivefold enriched in coding sequences
and 59 untranslated regions of genes. To test the power of the NAM population for trait dissection, we conducted joint linkage
mapping for two major adaptive traits, flowering time and plant height. We precisely mapped several known genes for these two
traits, and identified several additional QTL. Considering all SNPs simultaneously, genetic variation accounted for 65% of flowering
time variance and 75% of plant height variance. Further, we directly compared NAM to genome-wide association mapping (using
panels of the same size) and found that flowering time and plant height QTL were more consistently identified with the NAM
population. Finally, for simulated QTL under strong selection in diversity panels, the power of QTL detection was up to three times
greater for NAM vs. association mapping with a diverse panel. These findings validate the NAM resource for trait mapping in sorghum,
and demonstrate the value of NAM for dissection of adaptive traits.
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MANY of the world’s major crop species have adapted to
diverse agroclimatic regions, resulting in abundant

natural variation for trait dissection and crop improvement
(Vavilov 2009; Meyer and Purugganan 2013; Olsen and
Wendel 2013). Genetic dissection of quantitative traits in
crop species provides valuable insights into plant biology

(Nordborg and Weigel 2008; Olsen and Wendel 2013), and
facilitates breeding of improved varieties (Bernardo 2010;
Cooper et al. 2014). To date most known quantitative trait loci
(QTL) for crop adaptive traits were identified using linkage
mapping with biparental recombinant inbred line (RIL) fami-
lies (Mickelbart et al. 2015). However, biparental mapping is
constrained by a lack of allelic diversity, which limits the char-
acterization of genetic architecture, and a lack of recombination
events, which limits the resolution of mapping (Myles et al.
2009). Genome-wide association studies (GWAS) capture
more allelic diversity and recombination events, but population
structure resulting from isolation or adaptation can lead to
spurious and synthetic associations (Platt et al. 2010; Brachi
et al. 2011). While statistical models with population structure
(Q) and kinship (K) terms [e.g., mixed linear models (MLM)]
should reduce false positives, they are also expected to have
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low power to detect causal variants that are associated with
population structure (i.e., they will increase false negatives)
(Bergelson and Roux 2010). Indeed, when MLM are used to
map QTL for adaptive traits like flowering time in rice (Huang
et al. 2010) or inflorescence architecture in sorghum (Morris
et al. 2013a), the resulting QTL are barely above the signifi-
cance threshold.

Multiparental linkage-association approaches have been
developed to combine the strengths of linkage andassociation
approaches, capturing more allelic diversity and recombina-
tion than biparental families, while avoiding the spurious
correlations typical of diverse association panels (Cavanagh
et al. 2008; Brachi et al. 2011). By crossing multiple lines
originating from different subpopulations, trait correlations
due to linkage disequilibrium (LD) are broken down, alleles
in repulsion phase between subpopulations are decoupled,
and allele frequencies are balanced (i.e., some rare alleles are
dropped while others are brought to moderate frequency).
The nested association mapping (NAM) design, which uses
multiple RIL families connected by a single common parent
(Yu et al. 2008), has been particularly successful for complex
trait dissection in maize (Buckler et al. 2009; Tian et al. 2011;
Li et al. 2015). Joint linkage (JL) mapping, in which QTL
terms are fit nested within families, helps distinguish allelic
series from linked genes (Buckler et al. 2009;Würschum et al.
2012). The power of QTL detection has been investigated for
NAM populations of different sizes (Yu et al. 2008), and for
different cross designs (Stich 2009; Klasen et al. 2012; Liu
et al. 2013). However, to our knowledge, no study has com-
pared mapping power between diverse association panels
and NAM populations of the same sample size (empirically
or with simulated traits), or determined if NAM is more
powerful for dissection of population-structured adaptive
traits.

Here, we characterize the genomic diversity, genetic prop-
erties, and mapping power of a sorghum NAM population.
Sorghumisadiverseandwidelyadaptedcereal cropgrownfor
food, forage, and biomass, which is known for its excellent
tolerance to drought and other environmental stressors
(National Research Council 1996). Sorghum originated in
tropical Africa (ca. 10,000–5000 B.P.), then diffused and
adapted globally over the past several thousand to several
hundred years, leading to strong population structure by
botanical race, geography, and farmer preference (Doggett
1988; Deu et al. 2006;Morris et al. 2013a). Diverse association
panels have been developed to represent global sorghum
germplasm (Deu et al. 2006; Casa et al. 2008; Upadhyaya
et al. 2009). These panels have been used for GWAS of several
traits, including some that are geographically structured and
thought to underlie adaptation (Morris et al. 2013a,b; Rhodes
et al. 2014; Lasky et al. 2015; Zhang et al. 2015). These studies
have highlighted the challenge of dissecting structured adap-
tive traits in diverse association panels (Morris et al. 2013a,b;
Lasky et al. 2015), similar to findings from other widely adap-
ted crops (Huang et al. 2010; Famoso et al. 2011; Zhao et al.
2011; Bouchet et al. 2013). The objectives of our study were

(i) to characterize the genetic properties of a sorghum NAM
population, (ii) to compare the power of QTL detection with
NAM vs. diversity panel GWAS for flowering time and plant
height, and (iii) to test the hypothesis that the NAM approach
improves power to dissect adaptive traits. We describe the
genetic properties of the sorghum NAM population, dissect
quantitative variation for flowering time and plant height,
and demonstrate via simulated QTL that NAM is more power-
ful than GWAS for dissecting traits subject to strong selection.

Materials and Methods

Population development

The sorghumNAM population was designed as a resource for
genetics and breeding, with 11 parents from the sorghum
association panel (Casa et al. 2008) chosen to capture impor-
tant breeding material and genetic subpopulations (Yu et al.
2013). The common parent, RTx430, is an elite pollinator
line that has beenwidely used in public and commercial breed-
ing programs in the U.S. (Miller 1984; Smith and Frederiksen
2000). Ten diverse founder lines were selected to represent
global sorghum diversity as alternate parents: Ajabsido,Macia,
P898012, SC1103, SC1345, SC265, SC283, SC35, SC971, and
Segaolane (Table 1) (Sotomayor-Rios et al. 1996; Rosenow
et al. 1997; Dahlberg et al. 1998; Rosenow 1999; ICRISAT
2000). Each of the alternate parents was crossed with the
common parent RTx430, and the progeny selfed to generate
F2 populations. From each F2,�250RILswere derived through
single-seed descent in Puerto Rico and Kansas to the F6 gener-
ation. The resulting NAM population consists of 10 RIL fami-
lies, each with ,250 RILs, sharing a common parent. Below,
when referring to an individual RIL family, we will use the
name of the alternate parent (e.g., the Ajabsido family).

Genotyping

For each NAMRIL, an F6 seedling was genotyped using ApeKI
genotyping-by-sequencing (GBS) (Elshire et al. 2011) as pre-
viously described (Morris et al. 2013a). In total, 2310 NAM
RILs were genotyped, 100 of which were genotyped twice as
technical replicates. To confirm the identity of the parent
lines, two seed-lots of each parent line were genotyped.
Ten individuals were genotyped from the Kansas State Univer-
sity (KSU) parental seed-lots, and two from seed-lots obtained
from U.S. Department of Agriculture (USDA) Germplasm Re-
sources Information Network (GRIN, http://www.ars-grin.
gov). Seven lanes of 384-multiplexed libraries were sequenced
on the Illumina HiSeq 2500 sequencing system (Kansas Uni-
versity Medical Center) using a high-output flowcell with
100 cycle single-end sequencing. These sequence data were
combined with published ApeKI-GBS sequence data from
3302 diverse accessions (DA3302) (Morris et al. 2013a; Lasky
et al. 2015) to call SNP genotypes, as follows. Reads were
trimmed, and genotypes were called and filtered (Supplemental
Material, File S1 and File S2) using TASSEL 5 GBS v2 Pipeline
(https://bitbucket.org/tasseladmin/tassel-5-source/wiki/
Tassel5GBSv2Pipeline) (Glaubitz et al. 2014). Among the
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1.5 billion reads, 7.6 million unique 64 bp tags (DNA se-
quence) were identified. Overall, 90% of unique tags aligned
to version 2.1 of the sorghum BTx623 reference genome
(Paterson et al. 2009; Goodstein et al. 2011). (Note, all gene
and QTL positions listed in this study are given in version 2.1
coordinates so may differ from the original published coordi-
nates.) Rawgenotypeswerefiltered for tag coverage (tag found
in .5% of taxa), minor allele frequency (MAF) (.0.03), and
single marker missing data (,0.8). After filtering, 90,441 SNPs
(90K_SNPs) were retained for further analysis of the NAMpop-
ulation (File S3) and 282,400 SNPs were retained for analysis
of the DA3302 (File S4).

Of the 39,441 annotated genes in the sorghum reference
genome (version 2.1), 22% were tagged by a SNP in the
gene, and 70% were tagged by a SNP within 10 kb. The
average SNP density was one SNP per 7500 bp. The physical
position of markers on version 1.4 and 2.1 of the sorghum
genome are provided in File S5. Missing genotypes in the
NAM RILs were imputed using the FSFHap Plugin (Swarts
et al. 2014) implemented in TASSEL 5, which corrects geno-
typing errors for inbred individuals in full-sib families. Miss-
ing genotypes in diverse accessions were imputed using
Beagle 4 (Browning and Browning 2013), which is more
accurate than FSFHap for diverse germplasm (Swarts et al.
2014). We removed 96RILs with.10% residual heterozygos-
ity, and retained 2214 RILs for further analyses (NAM2214).
The number of RIL per family ranged from 199 for the Ajabsido
family to 232 for the SC971 family.

Genomic analyses

Quantitative assignments of DA3302 genotypes to genetic
groups were computed with ADMIXTURE (Alexander et al.
2009). Based on cross-validation, we used four genetic
groups to describe the diverse accessions (File S6). To char-
acterize the diversity of the NAM population with respect to
global sorghum germplasm, we used principal component
analysis with the same number of lines coming from both
panels and shared good quality markers. We used a subset
of 60,864 SNPs (60K_SNPs) that were polymorphic in both
populations with MAF .0.01 in the diverse accessions and

MAF .0.03 in the NAM population. Principal component
axes were built using 2148 diverse accessions (DA2148), a
balanced subset of DA3302 including 537 accessions from
each genetic group, with the FactoMineR R package (Lê
et al. 2008). The NAM RILs were projected on these axes.
Identity-by-state (IBS) was evaluated among parents and
RILs using TASSEL 5 (Bradbury et al. 2007). Allelic fre-
quencies, MAF, residual (observed) heterozygosity (Ho),
and expected heterozygosity (He) were calculated using
the Hierfstat R package (Goudet 2005). The intensity of selec-
tion at each SNP in DA3302 was estimated using BayeScan
(Foll and Gaggiotti 2008). For the NAM population, marker
density, gene density andmonomorphism ratewere calculated
using a sliding window of 1 Mb with 500 kb steps. LD was
calculated as r2 using the models of Sved (1971) and Hill and
Weir (1988).

Genetic maps and recombination rates

Genetic maps were built for each individual family, as well as
for the whole NAM population, using CarthaGène (de Givry
et al. 2005) (File S7, File S8, and File S9). All markers
grouped according to the correct physical chromosomes
with LOD scores .15. In the first step, statistically robust
framework maps were built using an incremental insertion
procedure. Markers were retained only if the difference of
log-likelihood between maps was .3.0. Finally, markers
with LOD score.2.0 and 1.0 were inserted. For the composite
map, monomorphic markers within each population were set
to missing data. Genetic distances in centiMorgan (cM) were
calculated using Haldane’s mapping function (Haldane 1919).
The boundaries of the pericentromeric regions were estimated
from inflection points of the sigmoid curve created by plotting
genetic position vs. physical position. Using that definition,
20% of mapped markers were located in pericentromeric
regions. Chi squared tests for segregation distortion within,
and across, families were calculated using the R/qtl package
(Arends et al. 2010). Recombination rates were calculated
within and across families using the MareyMap R package
(Rezvoy et al. 2007), with a sliding window of 1 Mb and
500 kb steps.

Table 1 Description of the NAM parent lines

Name PI Origina Type Botanical Race (Working Group) Genetic Structureb

RTx430 655996 Texas A&M Pollinator parent — G = 0.65; C = 0.23; D = 0.08
SC283 533869 Tanzania Converted landrace Guinea (Conspicuum) K = 0.74; G = 0.26
SC1103 576434 Nigeria Converted landrace Guinea K = 0.49; D = 0.36
Segaolane 656023 Botswana Selected landrace Kafir K = 0.98
Macia 565121 ICRISAT Global variety Caudatum (Zerazera) C = 0.99
SC35 534133 Ethiopia Converted landrace Durra D = 0.97
Ajabsido 656015 Sudan Selected landrace Caudatum (Feterita) C = 0.50; D = 0.29; G = 0.21
SC971 656111 Puerto Rico Converted landrace Durra-Kafir K = 0.42; G = 0.4
SC265 533766 Burkina Faso Converted landrace Guinea (Conspicuum) G = 1
SC1345 597980 Mali Converted landrace Caudatum-Bicolor C = 0.85
P898012 656057 Purdue — C = 0.95
a Geographic origin for landrace-derived accessions, or breeding program origin for improved lines.
b Estimated admixture coefficients (G = Guinea, K = Kafir, D = Durra, C = Caudatum).
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Phenotypic data

Wephenotyped plant height for F6NAMRILs at two locations,
in western Kansas (Hays, KS, 38.8541�N 99.3385�W, semi-
arid climate), and eastern Kansas (Manhattan, KS, 39.2125�
N 96.5983�W, continental-humid climate) in 2014 (File S10,
File S11, and File S12). Plant height was estimated as the
mean of two representative plants per row, measured using a
barcoded ruler after physiological maturity. We also pheno-
typed flowering time in the Manhattan, KS, experiment.
Flowering time was defined as number of days until 50% of
plants were in anthesis. Families were each grown in a block,
and RILs were randomized within family. Each plot consisted
of a 3 m row with �45 plants. The corresponding planting
density was 200,000 plants per hectare—typical for commer-
cial production in this region. For comparison with the NAM
population, we used previously generated phenotypes (File
S13, File S14, File S15, and File S16) for two diverse associ-
ation panels of global germplasm (SAP340 and GRIN700),
which are subsets of the DA3302 described above. The first
panel, SAP340 (n = 340), consisted of accessions from the
sorghum association panel (Casa et al. 2008) for which flow-
ering time and plant height phenotypes were available
(Lubbock, TX, semi-arid climate; Weslaco, TX, continental-
humid climate) (Brown et al. 2006; Casa et al. 2008). The
SAP340 accessions included global breeding lines and trop-
ical landraces converted to short-stature and early maturity
(Casa et al. 2008; Morris et al. 2013a). The second panel,
GRIN700 (n = 700), consisted of global breeding lines and
landrace accessions for which flowering time data were
available in GRIN (scored 1–6 in Lubbock, TX in 2005)
(Kimber et al. 2013).

QTL mapping

To estimate the proportion of phenotypic variance explained
by genetic variation in the NAM population, we fitted a
random polygenic term considering all SNP simultaneously
by a Restricted Maximum Likelihood (REML) procedure
(y = Zu + e) (Yang et al. 2010) using an IBS kinship ma-
trix. To map QTL in the NAM population (NAM2214), we
used a JL model (Buckler et al. 2009; Tian et al. 2011) and a

multi-locus linear regression model (MLLM) (Giraud et al.
2014) adapted from Segura et al. (2012). The model can be
denoted as:

y ¼ Faþ
X

c
Mcbc þ e;

where y is the vector (N 3 1) of adjusted phenotypic means
for N RILs; F is a (N 3 P) matrix of 0 and 1 that linked each
RIL to the family it belonged, P being the number of families,
a is the vector (P 3 1) of family means; Mc is the vector of
genotypes of cofactor c that entered the model and bc its
effect; and e is the vector of residual effects. The adjusted
number of independent tests among the 90K_SNPs, Meff,
(Li and Ji 2005) was 4375 and the corresponding genome-
wide 5% Bonferroni threshold was E205. JL mapping was
performed using the forward-backward stepwise linear re-
gression fixed model implemented in the Stepwise Plugin of
TASSEL 5, with family as a cofactor. This has been shown to
be the most powerful procedure for JL mapping (Würschum
et al. 2012). The family main effect was fit first, and then
marker effects were selected to enter or leave the model based
on the E205 P-value calculated for the marginal F-test of that
term. For the MLLM model, a forward–backward stepwise
linear regression model was fit using family as a cofactor
(Giraud et al. 2014). The variance components were esti-
mated before each step and used to obtain generalized least-
square (GLS) effect size estimates and F-test P-values for
each SNP. The SNP with the most significant association
was added to the model as a cofactor for the next step,
and the P-values for all cofactors were re-estimated together
with the variance components. The forward regression was
stopped when genetic variation estimate divided by pheno-
typic variance was close to zero. After backward stepwise
regression, the variance components and P-values of all co-
factors were again re-estimated. We selected the best model
using the extended Bayesian information criterion. Loci of the
selected model that had P-values below the E205 threshold
were considered QTL. Note, the difference between JL and
MLLM is that JL uses a P-value threshold to include markers
in the model and calculate confidence intervals, while the

Figure 1 Principal component analysis of NAM
RILs in comparison to global diversity. NAM RILs
(n = 2214) were projected on axes built with
2148 accessions representing global diversity. The
first four axes are displayed: (A), 1–2; (B), 3–4, with
the proportion of variance explained by each axis
in parentheses. Each of the 10 diverse parents and
corresponding RILs are represented with a unique
color. Classification into four major botanical races
(Guinea, Kafir, Caudatum, and Durra) based on the
diverse parent is noted with symbols.
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MLLM stops when no more genetic variation is explained,
and re-estimates P-values for all markers that were not in-
cluded in the model using the final model.

TomapQTL in the diverse association panels (SAP340 and
GRIN700) (File S17, File S18, and File S19), GWAS were
performed using a forward–backward stepwise multi-locus
mixed model (MLMM) (Segura et al. 2012). The forward–
backward stepwise process is the same as described for MLLM
above. This model can be denoted as

y ¼ Qaþ
X

c
Mcbc þ Zuþ e;

where Q is the matrix of quantitative assignment of each line
to each of the first n21 (i.e., 3) genetic groups calculated with
ADMIXTURE; a is the vector genetic groups fixed effects; Mc is
the vector of genotypes of cofactor c that entered themodel, and
bc its effect; Z is a design matrix relating observations to poly-
genic effects; u is a vector of random polygenic effects with co-
variance matrix s2

gK (K being an IBS kinship matrix); and e is a
vector of residual effects. To distinguish this GWAS approach
fromGWAS in aNAMpopulation (e.g., Tian et al. 2011), wewill
use the term “diversity panel GWAS” (DP-GWAS) to refer to
GWAS in diverse association panels. For comparison of NAM

and DP-GWAS, we also carried out JL mapping with resampled
(nruns = 10) subsets of the NAM population (NAM340 and
NAM700, nRILs = 340 and 700) that were the same size as
SAP340 and GRIN700, respectively. For each NAM population
subset, we resampled 34 or 70 RILs per family (for NAM340
and NAM700, respectively), and then conducted JL mapping.
Given that LD extent in the NAM population was �2 cM (i.e.,
when pairwise marker distances were .2 cM, 90% of r2

values were,0.1) (Figure S1), QTL were considered shared
across methods/runs when colocalized in a 2 cM window.

Simulations and power estimation

To compare the power of QTL detection using NAM vs.
DP-GWAS, without any bias due to gene-environment inter-
actions (G3E), we investigated simulated traits. Genotyping
for the NAM population and the association panel were con-
ducted in different experiments using different sequencing
depth. This can explain part of nonoverlapping, high-quality
polymorphic markers between the two populations. As it
was difficult to distinguish monomorphic from bad quality
markers, for simulations (File S20) we used the subset
(60K_SNPs) that were good quality and polymorphic in
both the NAM population and DA2148 (File S21, File S22,

Figure 2 Genome-wide map of polymorphism and recombination in the NAM population. (A) Percentage of monomorphic markers (“Mono rate”) in
sliding windows of 5 Mb with 2.5 Mb steps. (B) The percentage of RIL with heterozygous genotypes (“Hetero rate”) after imputation, using a window
of 1 Mb and 500 kb steps. (C) Segregation distortion estimated as the percentage of RIL with RTx430 allele (“RTx430 rate”), using a window of
1 Mb and 500 kb steps. Horizontal dashed lines stand for 0.35 and 0.65 threshold for significant segregation distortion. (D) Recombination rate
[“Rec (cM/Mb)”] was calculated for the NAM population using the composite map, using a window of 1 Mb and 500 kb steps.
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File S23, File S24, File S25, File S26, File S27, File S28, and
FileS29). Most of the removed markers were rare in
DA2148 (75% had MAF ,0.01) and monomorphic in the
NAM (Figure S2). Given that these markers would not be
detected in association studies with high confidence, the
bias toward NAM for power estimation should be limited.
For simulation, 50 random samples of 50 SNPs were
assigned as QTL with additive effects following a geometric
series (Lande and Thompson 1990; Yu et al. 2008). The
genotypic value of each line (RIL or diverse line) was defined
as the sum of genotypic values across all loci. The entry-mean
heritability (h2) was set to either 0.4 or 0.7. Phenotypic
values of lines were obtained by adding normally distrib-
uted error to the genotypic values, such that the residual
variance was 60% (h2 = 0.4) or 30% (h2 = 0.7) of phe-
notypic variance.

Power was compared between a diverse association panel
(using MLMM) and the NAM population (using JL or MLLM).
The power was calculated for 50 independent runs, and then
averaged for each simulation scheme. First, we quantified
global power and power for different classes based on variance
explainedbytheQTL.Thevarianceexplainedwascalculatedas
pqb2, with p the frequency of allele 1, q the frequency of allele
2, and b the SNP effect. Second, we characterized QTL detec-
tion power for different classes of selection intensity inferred in
DA3302, defined by log10(Posterior Odds) .0.5 according to
BayeScan. In order to take into account the greater extent of
LD in the NAM2214 compared to the DA3302, a true positive
was counted (i) when a QTL at the same genetic position was
identified as significant in the final model, and (ii) when a QTL
in a window of 2 cM was identified as significant in the final
model. The false discovery rate (FDR) was calculated as the
number of independent positives at a distance (i) .0 cM or
(ii).2 cM from the closest QTL, divided by the total number
of positives.

Data availability

Sequencing data are available in the NCBI Sequence Read
Archive under project accession SRP095629. Other data are
available from Dryad Digital Repository (doi:10.5061/dryad.
gm073). Plant material: NAM RIL seeds will be submitted to
GRIN. Please contact corresponding author for availability.

Results and Discussion

Genetic diversity and structure of the NAM population

To evaluate the genetic diversity and structure of the NAM
population, we characterized 2214NAMRILs at 90,441 high-
quality GBS SNPs, which corresponds to an average density of
one SNP per 7.5 kb. Based on technical replicates, the gen-
otyping error rate was 0.001. Comparing the number of SNPs
discovered in the NAM population to the number of SNPs dis-
covered in global accessions (DA2148) (Lasky et al. 2015), we
estimate that the NAM population captures�70% of known
polymorphism (MAF ,0.01) in sorghum. To compare the

genetic structure of the NAM population to global acces-
sions, we built four PCA axes using lines from the global
accessions, and projected NAM RILs on those axes. As
expected, the global accessions were structured by botanical
race and geographic origin (Harlan and de Wet 1972;
Morris et al. 2013a), and the NAM families were clearly
clustered, capturing multiple axes of genetic variation (Fig-
ure 1). The similarity among full-sib RILs (0.85) was higher
than among half-sib RILs (0.75), as expected. Pairwise sim-
ilarity between the common parent RTx430 and each alter-
nate parent line ranged from 0.71 for SC1103 to 0.77 for
Ajabsido. Differences in pairwise similarity between the
common parent and each alternate parent led to variation
in monomorphism across the genome (Figure 2A and File
S30), and among families (ranging from 0.68 for Segaolane
to 0.78 for Ajabsido). Monomorphism rate in pericentro-
meric regions was similar to the rest of the genome (0.75
vs. 0.73).

The genetic structure and diversity of the NAM population
may be affected by unintentional selection during RIL devel-
opment, which can lead to increased residual heterozygosity
and segregation distortion (McMullen et al. 2009). Residual
heterozygosity in the NAM population was 0.019, close to
the expected value for F6 generation RILs (0.56 = 0.016).
Across the genome 95% percent of markers exhibited
heterozygosity ,0.035 (Figure 2B and File S31), suggesting
that balancing selection had little effect overall. Pericentro-
meric regions were enriched in high heterozygosity markers
(34% of markers with Ho . 0.035, vs. 20% of all markers)
suggesting that balancing selection did occur in these re-
gions. With respect to segregation distortion, the percentage
of alleles inherited from the common parent RTx430 (49%)
was close to the neutral expectation (50%), suggesting no
overall selection for or against common parent alleles. Still,
a substantial proportion of markers (15%) showed skewed
segregation, for either the common parent (7.8%), or alter-
nate parent (7.7%) allele (Figure 2C and File S32), suggest-
ing selection at some loci. No clear difference was observed
among families in terms of proportion of distorted markers,
and skewed chromosome regions were generally specific to
one or a few families. One region around theMa1-Dw2 locus
(�40–42 Mb on SBI-06), which harbors major effect loci for

Table 2 NAM composite map statistics

Family # RILs # Markers Length (cM) # CO Rec (cM/Mb)

Ajabsido 199 19,545 1538.7 5,739 2.34
Macia 228 21,531 1225.6 5,540 1.86
P898012 228 24,587 1273.6 5,657 1.93
SC1103 229 25,706 1208.5 5,699 1.84
SC1345 228 22,101 1257.6 5,713 1.91
SC265 220 22,749 1238.6 5,403 1.88
SC283 231 23,561 1284.9 6,036 1.95
SC35 201 23,400 1293.4 5,175 1.96
SC971 232 23,976 1384.1 6,308 2.10
Segaolane 218 28,906 1350.9 6,141 2.05
Composite 2214 90,441 1313.7 57,411 2.00
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maturity and height (Thurber et al. 2013), was skewed to-
ward RTx430 in eight of the 10 RIL families, suggesting
selection may have acted on this region. The genetic prop-
erties for each family and each chromosome are detailed in
File S29.

The genomic landscape of recombination

Recombination rates determine the resolution of QTL map-
ping, aswell as the probability that favorable alleles combine
during human and natural selection (Gaut et al. 2007;
McMullen et al. 2009). The NAM population captured
57,411 crossovers across 2214 RILs, which corresponds to
an average of two crossovers per gene (Figure 2D and File
S33). The size of the composite map was 1314 cM (Table 2)
(Note, the physical size of the version 2 genome was 658 Mb).
The average genome-wide recombination rate was 2.0 cM/Mb,
similar to previous estimates in sorghum (Mace et al. 2009).
Among families, the genome-wide recombination rate ranged
from 1.8 for SC1103 to 2.3 for Ajabsido. The number of cross-
overs per RIL was 24.9, or 2.5 per chromosome on average.
Several low recombination rate regions were associated with
high heterozygosity (Figure 2, A and D). The highest average
recombination rate was observed on SBI-01 (2.4 cM/Mb),
and the lowest on SBI-07 (1.8 cM/Mb). Crossover counts
per chromosomewere proportional to chromosome size, rang-
ing from �4800 for SBI-08, SBI-09, and SBI-10, to.7600 for
SBI-01. The recombination rate at each genome position was
similar across the NAM families (r = 0.74, P , 10216), as
has been observed in maize (Rodgers-Melnick et al. 2015).

The recombination map revealed major regional differ-
ences in recombination rates associated with chromosome
structure. Recombination was concentrated around chromo-
some ends (Figure 2D and File S34). Overall, 96% of the
variation in recombination rate could be explained by gene
content (r = 0.98) and 76% by the distance from the closest
telomere (r = 20.87) (Figure S3). The chromosome-scale
pattern of crossover events in the NAM population mirrors
historical recombination rates in global sorghum diversity
panels (Morris et al. 2013a), as well as the pattern of cross-
over events in experimental crosses in Arabidopsis (Marais
et al. 2004) and maize (Bauer et al. 2013; Rodgers-Melnick

et al. 2015). At a finer scale, the pattern of crossover events in
the sorghum NAMwas associated with gene structure. Cross-
over sites were generally in or close to genes (Figure 3A),
with 95% occurring,20 kb from a gene, and 54% occurring
within genes. The enrichment of crossovers in coding DNA
sequence and 59 untranslated regions was 4.0- and 4.6-fold,
respectively (Figure 3B). The prevalence of crossovers near
genes may be explained by the open chromatin (low DNA
methylation and compaction) near genes facilitating access
to recombination factors and chiasma formation (Saintenac
et al. 2011; Rodgers-Melnick et al. 2015). The substantial
enrichment of crossovers in and near genes should be useful
for mapping and breeding, especially if most trait variation is
due to variants located in, or just upstream of, genes, as has
been observed in maize (Li et al. 2012). Recombination rate
was positively correlated with monomorphism rate in all
families (1 Mb windows; r = 0.2, P , 10216), suggesting
that greater sequence identity promotes crossover formation.
This pattern was particularly pronounced in the Ajabsido fam-
ily on SBI-06 (monomorphism rate = 0.88, recombination
rate = 2.3 cM/Mb). Further studies of mechanisms underly-
ing recombination rate differences are needed to predict local
recombination rates, and to identify alleles that increase re-
combination (Mercier et al. 2015).

The genetic map presented in this study is the densest
recombination map of the sorghum genome. In previous maps,
the shortest average marker interval was 0.79 cM using
1997 markers (Mace et al. 2009). By contrast, the 90,441
markers in this study correspond to at least 8349 unique ge-
netic loci, so the density of informative markers was one per
0.16 cM. The large number of markers and informative cross-
overs enabled the computation of a high-density recombination
map of the sorghum genome, with a consequent substantial
increase in resolution compared to previous maps. The individ-
ual map length is similar to previous maps (1314 cM in this
study vs. 1528 cM for the TAMU-ARS map, and 1227 cM for
the CIRAD map). We covered all distal gaps compared to the
previous composite maps. The largest remaining gap is 3.9 cM
at �44 Mb on SBI-06. For future map-based gene cloning, in-
dividual RIL families can be targeted or avoided based on re-
combination or monomorphism rates. For instance, Ajabsido

Figure 3 Crossover rate is greater near and in
genes. (A) The number of crossovers (COs) with re-
spect the distance to the nearest gene. The leftmost
bar, which represents COs in genes (distance to
gene = 0), notes the number of COs in 59 untrans-
lated regions (UTR), 39 UTR, coding DNA sequence
(CDS), and non-CDS regions of genes. (B) Compar-
ison of CO rate in different gene regions. “Region
Rate” indicates the percentage of base pairs in each
category across the genome. “Region CO Increase
Rate” is the ratio of the CO rate in specific regions
over the genome rate (CO Rate/Region Rate). Plot-
ted values are mean 6 SD based on resampling of
half the markers 50 times.
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and P898012 families may be excluded for QTL located on
short arm of SBI-06 due to monomorphism.

Genetic dissection of flowering time and plant height

We characterized flowering time and plant height (Figure 4),
which are important contributors to agro-climatic adaptation,
and phenotypic covariates for other traits (Buckler et al. 2009;
Russell et al. 2016). The percentage of variance explained by
genetic effect was 77% for flowering time and 50% for height
(P , 10216). The percentage of variance explained by site
for height was 34%. G3E was strongly significant for height
(P , 10216), and explained 11% of phenotypic variance.
We did not have replicates to estimate G3E for flowering
time. In the semi-arid environment, plants were shorter and
phenotypic variance was reduced (Figure 4B). This decrease
in height was more pronounced for families with tall plants
(size decrease ranged from 19% for SC35 to 33% for SC971).
We observed abundant transgressive segregation, especially
pronounced in families with tall and late phenotypes, like
the P898012 family. Considering the significant effect of
environment, we performed QTL analyses separately for
both environments. Using MLLM and JL, we detected sev-
eral major QTL for flowering time and plant height in the
NAM population with high resolution (Figure 5, File S35,
File S36, File S37, File S38, File S39, File S40, File S41, File
S42, File S43, File S44, and File S45). Overall, 18 and
23 highly significant associations (passing the E205 thresh-
old) were identified for flowering time and plant height,
respectively, in at least one environment. The JL QTL are
listed in Table S1, and are described further below.

Genetic variation considering all SNP simultaneously (fit
with a random polygenic term) explained 65% of phenotypic
variance for flowering time. Eighteen QTL for flowering time
were observed, with major effect QTL (.2 days) on SBI-06
(S6_758162, S6_38361618, S6_40204294, S6_41417540),
SBI-03 (S3_62707083, S3_55337873, S3_73262074), SBI-10
(S10_12485175), and SBI-09 (S9_58743830). Considering
known floral regulators in sorghum (Murphy et al. 2014;
Yang et al. 2014a,b), there were QTL nearMa6/Ghd7, SbCN12,
Ma1/SbPRR37, and SbCO (Figure 5, A and B), but not near
Ma3/PhyB, Ma5/PhyC, SbGI, SbCN4, SbCN8, or SbCN15. One
flowering time QTL was 2 kb from Ma6 (Murphy et al. 2014)
with MLLM or 84 kb from Ma6 with JL. Other flowering time
QTLwere detected 64 kb from SbCN12 (Yang et al. 2014a), and
63 kb from Ma1 (Murphy et al. 2011). Surprisingly, the two
largest effect QTL (at S6_38361618 and S6_41417540) were
near Ma1 (1.2 Mbp downstream and 1.9 Mbp upstream) but
not colocalized with this major effect gene. No orthologs of
known maize inflorescence regulators (Zhang and Yuan 2014)
were located near these QTL, and we did not observe any obvi-
ous a posteriori candidate genes under these QTL. They may be
synthetic associations (Dickson et al. 2010; Platt et al. 2010) or
additional floral regulators that are not orthologous to known
floral regulators in cereals.

Genetic variation explained 74% of phenotypic variance in
plantheight.Twenty-threeQTL forplantheightwereobserved,

with major effect QTL (.15 cm) on SBI-07 (S7_55156401,
S7_58487616), SBI-09 (S9_57069231), SBI-06 (S6_42726152),
and SBI-02 (S2_33698052) (Figure 5, C–F and Table S1).
Plant height QTL were found 122 kb from the Dw3 gene
(Multani et al. 2003), 25 kb from the Dw1 gene (Hilley et al.
2016; Yamaguchi et al. 2016), and at the Dw2 (Morris et al.
2013a) and qHT7.1 (Li et al. 2015) loci. We confirmed that a
region on SBI-09 selected in the sorghum conversion pro-
gram (Stephens et al. 1967; Morris et al. 2013a) fractionates
into two QTL, one underlying plant height (Dw1), and one
underlying flowering time (SbFL9.1) (Thurber et al. 2013;
Higgins et al. 2014). The most significant SNP in the Dw2
region (S6_42726152) was 6 kb from a histone deacetylase
(Sobic.006G067600) that was previously identified as a candi-
date for Dw2 based on GWAS in the SAP (Morris et al. 2013a),
and was homologous to genes controlling height in maize and
rice (Rossi et al. 2007; Hu et al. 2009).

To compare the power of NAM vs. DP-GWAS to detect
flowering time and plant height QTL, we mapped these traits
in the NAM population, and two diverse association panels
(SAP340 and GRIN700), using either the maximum number
of RILs available (Figure S4, Figure S5, File S46, and File S47),

Figure 4 Variation of flowering time and plant height in the NAM fam-
ilies. (A) Flowering time distribution for each NAM family in a continental
humid (CH; Manhattan, KS) environment. (B) Plant height distribution for
each NAM family in a CH environment (green) or a semi-arid environment
(Hays, KS) (orange).
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or equal-size subsets of RILs, as described below. Unless noted,
the given QTL was observed in all runs (nrun = 10) when
data subsetswere used (i.e., NAM340 andNAM700). For plant
height, the two QTL on chromosome 7 at qHT7.1 and Dw3
(55.16 and 58.48 Mb) were detected with NAM2214 and
SAP340, and with NAM340 (8/10 and 10/10 runs, respec-
tively). The QTL on SBI-09 (57.07 Mb), 25 kb from Dw1,
was detected with NAM2214, NAM340, and SAP340. The
Dw2 QTL on SBI-06 (42.72 Mb) was detected with NAM2214
and NAM340 (6/10 runs). For Ma1 (SBI-06, 40.27 Mb), the
QTL was detected for NAM2214 (62 kb away), and GRIN700
but not for SAP340. OneQTLwas detected for SAP on SBI-06 at
48 Mb. In subsets of the NAM population, the Ma1 QTL was
observed using NAM700 (6/10 runs), while a QTL located
1 Mb away was observed using NAM340 (6/10 runs). The
Ma6 locus (SBI-06, 0.67 Mb) was detected with NAM2214
(84 kb away), while the nearest QTL was 2 Mb away for
GRIN700, and no QTL was detected in this region with
SAP340. The Ma6 locus was detected in NAM340 (3/10
runs) and NAM700 (7/10 runs). The major flowering time
QTL on SBI-09 (58.74 Mb; colocalized with SbFL9.1) was
detected with NAM2214, GRIN700, SAP340, NAM700, and

NAM340 (4/10 runs). Taken together, these findings sug-
gest that the NAM approach more consistently identified
known QTL for flowering time and height loci compared
to DP-GWAS with equal-size data sets.

Power of NAM vs. DP-GWAS for simulated QTL

Given that this initial study was conducted in a small number
of environments, and environments were different for NAM
andDP-GWAS,we investigated simulated traits to circumvent
any effect of G3E. To test whether NAM is generally more
powerful than DP-GWAS to dissect adaptive traits, we sim-
ulated QTL and compared the power of NAM (using JL
mapping with NAM2214) vs. DP-GWAS (using MLMM with
DA2148) in panels of the same size (full sets, n � 2200, or
subsets, n = 400) (Figure 6 and File S47). With a large
panel and high heritability (n � 2200, h2 = 0.7), the ratio
of power for the NAM compared to DP-GWAS (“NAM power
ratio”) was 1.2. The NAMpower ratio was higher under low-
power scenarios, e.g., when sample size was small (2.2 when
n = 400, h2 = 0.7), or heritability was low (3.6 when
n = 400, h2 = 0.4; 1.3 when n � 2200, h2 = 0.4) (Figure
6, A and B). Similarly, the NAM power ratio was higher when

Figure 5 QTL mapping for flowering
time and plant height in the NAM
population. Flowering time QTL effect
sizes in a continental humid (CH; Man-
hattan, KS) environment estimated
with a JL model (A), and flowering time
QTL identified using a MLLM model
(B). Known flowering time genes in
sorghum that colocalize with the QTL
are noted green dashed lines. Plant
height QTL effect sizes in the CH envi-
ronment estimated with a JL model (C),
and plant height QTL identified using a
MLLM (D). Plant height QTL effect sizes
in a semi-arid (SA; Hays, KS) environ-
ment estimated with a JL model (E),
and plant height QTL identified using
a MLLM (F). Known plant height genes
in sorghum that colocalize with the
QTL are noted with green dashed lines.
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QTL have low effect (4.1 when pqb2 = 0.05, n � 2200,
h2 = 0.7). Importantly, the power ratio was higher when
QTL were under strong selection pressure in diversity pan-
els [BayeScan log10(Posterior Odds) .1.5] (1.8 when
n = 2200, h2 = 0.7; 7.5 when n � 2200, h2 = 0.4)
(Figure 6, C and D). Interestingly, under a high power sce-
nario (large sample size and high heritability), the power of
DP-GWAS was greater than NAM for QTL under moderate
selection, perhaps due to the loss of allelic diversity in the
NAM population. One special case of interest was SBI-06,
where a low recombination rate and history of strong selec-
tion limit mapping of key loci, including Dw2 (Klein et al.
2008; Morris et al. 2013a; Thurber et al. 2013). The NAM
power ratio was much higher for QTL on SBI-06 and under
selection pressure (5.1 when h2 = 0.7, n � 2200). In con-
trast, no QTL could be detected on SBI-06 in the diverse
association panel (Figure S6 and File S47). Finally, we consid-
ered whether the larger extent of LD in the NAM population
lead to a higher FDR. The FDR was,1% using DP-GWAS, but
13% in the NAMusing JL (2 cMwindow, n � 2200). Reduced
recombination between markers in the NAM population com-
pared to the diverse association panel increases FDR, and de-
creases the power of QTL detection. One solution to increase
power and decrease FDR could be to nest markers within fam-
ilies in the model, increase allelic diversity by combining NAM
populationswith different common parents, and selecting a sub-
sample of RIL that maximize the number of crossing-overs.

Our simulations confirm previous findings in maize (Yu
et al. 2008) that demonstrate the power of NAM to detect

small effect QTL compared to diverse association panels. Fur-
ther, we demonstrate the power of NAM to detect QTL at loci
under strong selection pressure, especially when heritability
or panel size is low. This increase in power is especially im-
portant on SBI-06, where low recombination rate and low
polymorphism due to selection during breeding have led to
low power for QTL detection in temperate association panels
(Morris et al.2013a; Thurber et al.2013). In practice, the greater
size of the NAM population compared to existing association
panels orRIL families can be a challenge for phenotyping. There-
fore, field-based high-throughput phenotyping is needed to
reveal the full potential of the NAM population, especially for
ecophysiological traits that vary on short time scales (Araus and
Cairns 2014). If phenotyping the entire NAM population is not
possible due to technical or resource constraints, the NAM par-
ent lines can be screened to identify individual families that
segregate for the trait of interest. Note, even if parent lines do
not vary for a given trait, the NAM population may segregate
transgressively for that trait, as occurs for several traits in the
maize NAM population (Cook et al. 2012; Peiffer et al. 2014),
and for flowering time and plant height in this study. Alterna-
tively, as our simulations demonstrate, when heritability is high,
a smaller subset of the NAM population can be used effectively
for trait mapping.

Conclusions

The sorghum NAM population captures much of the species’
global allelic diversity, and is well suited for mapping com-
plex traits that are difficult to map using DP-GWAS. Since

Figure 6 Power of QTL detection using the NAM
population vs. a diverse association panel. In top
row (A, B), the power of association studies is rep-
resented as a function of pqb2, where p and q are
the frequencies of alleles 1 and 2, respectively, and
b is the QTL effect. In bottom row (C, D), the power
of association studies is represented as a function of
selection intensity in diverse accessions calculated
with BayeScan. The models plotted are JL and
MLLM for NAM and MLMM for GWAS.
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much of the global sorghum breeding effort is focused on
stress adaptation traits (National Research Council 1996),
the improved power to dissect structured adaptive traits
with NAM promises to be valuable for marker-assisted
breeding. For breeding programs focused on commercial
hybrid sorghum, the sorghumNAM population can facilitate
prebreeding by putting exotic alleles into an elite background
suitable for QTL discovery. For breeding programs focused on
smallholder varieties, the NAM population can facilitate iden-
tification of genetic variants from landraces in an international
reference background. By leveraging genetic resources and
bridging global germplasm, the sorghum NAM resource pro-
vides a new platform to understand and improve this climate-
resilient crop.
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