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Abstract. MicroRNA‑21 (miR‑21) is a small non‑coding RNA 
that is differentially expressed during tooth development, 
particularly during amelogenesis. Although orthodontic tooth 
movement and the innate immune response are impaired, 
miR‑21 knockout mice demonstrate no obvious skeletal pheno‑
type. However, the consequence of miR‑21 knockout on tooth 
phenotype and corresponding alveolar bone is unknown. The 
current study utilized landmark‑based geometric morphomet‑
rics to identify anatomical dissimilarities of the three lower and 
upper molars, and the corresponding alveolar bone, in miR‑21 
knockout and wild‑type control mice. The anatomical struc‑
tures were visualized by microcomputer tomography. A total 
of 36 and 38 landmarks were placed on mandibular and maxil‑
lary molars, respectively. For the alveolar bone, 16 landmarks 
were selected on both anatomical sites. General Procrustes 
analysis revealed significantly smaller molars and dimensions 
of the alveolar bone in the mandible of the miR‑21 knockout 
mice when compared with wild‑type controls (P=0.03 and 
P=0.04, respectively). The overall dimension of the mandible 
was reduced by the lack of miR‑21 (P=0.02). In the maxilla, 
the dimension of the alveolar bone was significant (P=0.02); 
however, this was not observed in the molars (P=0.36). Based 
on principal component analysis, no changes in shape for any 

of the anatomical sites were observed. Dental and skeletal 
jaw length were calculated and no prognathism was identi‑
fied. However, the fluctuating asymmetry of the molars in the 
mandible and the maxilla was reduced in the miR‑21 knockout 
mice by 38 and 27%, respectively. Taken together, the results of 
the present study revealed that the molars in the mandible and 
the dimension of the respective alveolar bone were smaller in 
miR‑21 mice compared with wild‑type littermates, suggesting 
that miR‑21 influences tooth development.

Introduction

MicroRNAs (miRNAs) are small non‑coding RNAs which 
regulate gene expression at the post‑transcriptional level 
in eukaryotes (1). miR‑21 levels are comparatively high in 
mammalian cells and upregulated in association with human 
colon cancer and chronic lymphocytic leukemia cells (2,3). 
This seems to be an extraordinary property of miR‑21 since 
in a profiling of 540 clinical samples of cancer patients it 
was the only constantly upregulated miRNA (4). The sum of 
miR‑21 characteristics may lead to its utilization as a diagnostic 
and prognostic biomarker for diverse types of cancer and as a 
potential therapeutic target (5). In result most studies on miR‑21 
focused on its association with cancer and clinical application. 
However, miR‑21 expression also controls osteoblast‑mediated 
bone formation and osteoclast‑related bone remodeling. For 
instance, miR‑21 can promote and reduce osteogenic differen‑
tiation in MC3T3‑E1 cells (6) and human adipose mesenchymal 
cells (7), respectively. Alternatively, miR‑21 was highly 
upregulated during osteoclast differentiation (8) and regulates 
RANKL‑induced osteoclastogenesis (9). In addition, miR‑21 
was found at increased levels in sera and bone tissue of osteopo‑
rotic patients, and high levels of miR‑21 support fracture healing 
in preclinical models (10). Mouse models have provided further 
insights into the biological function of miR‑21 in vivo.
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Knockout mice of miR‑21 showed delayed early healing 
of alveolar socket following tooth extraction (11), impaired 
bone regeneration of maxillary bone defects (12), and 
enhanced inflammatory osteolysis upon ligature‑induced 
periodontitis (13). Orthodontic tooth movement is impaired 
in miR‑21 knockout mice (14‑16), likely because miR‑21 
deficiency inhibits osteoclast function (17). During tooth 
development, particularly during amelogenesis, miR‑21‑5p 
turned out to be differentially expressed (18). However, the 
consequences of miR‑21 knockout on the tooth phenotype 
and the corresponding alveolar bone have not been investi‑
gated so far.

There is a large variation of the shape in molar crowns 
making the metameric evaluation difficult. Consequently 
geometric morphometrics (GMM), a multivariate statis‑
tical technique to provide a comprehensive description of 
morphology aspects based on landmarks (19) was intro‑
duced to the field (20,21). GMM was originally used in 
anthropology (22,23) but also applied in clinical research on 
orthodontic tooth movement (24). GMM is now also increas‑
ingly implemented in mouse genetics to define a phenotype. For 
example, the craniofacial shape of Twist1+/‑ mice and wild‑type 
controls was analyzed by GMM. Twist1+/‑ mice showed a 
consistent pattern of craniofacial dysmorphology affecting all 
major regions of the skull (25). GMM also revealed that Panx3 
knockout mice have shorter diaphyseal shafts compared with 
wild‑type littermates, and relatively larger areas of muscle 
attachment sites (24), overall supporting the use of GMM to 
identify anatomical changes of bones.

GMM has been used to investigate the tooth phenotype in 
mouse models. For example, phylogeny and adaptation affect 
the shape of molars of insular mice (26). Mouse dietary groups 
can be distinguished with the use of a GMM based on first 
upper molars (27). Likewise, the impact of p63 on tooth and 
jaw development was reported based on GMM (28). GMM was 
further applied to determine the impact of BMP7 on the shape 
of molars in mutant mice (29). Considering the involvement of 
miR‑21 in tooth development and the alveolar bone to follow 
the anatomy of the teeth, we hypothesized that miR‑21 affects 
the anatomy of the tooth and consequently also the dimensions 
of the alveolar bone.

Materials and methods

Animals and microcomputed tomography. miR‑21 knockout 
mice were backcrossed six times into the C57BL/6J back‑
ground and maintained by breeding heterozygous animals. 
Mice were fed standard chow and kept under controlled 
lighting conditions (12 h light, 12 h dark) at the Division of 
Biomedical Research at the Medical University of Vienna. 
Animal experiments were approved by the local animal welfare 
committee and the Austrian Federal Ministry for Science 
(GZ BMWFW‑66.009/0080‑WF/V/3b/2017). We had skulls of 
5 female and 3 male littermates, each miR‑21 knockout (KO) 
and corresponding wild‑type (WT) controls. Mice were sacri‑
ficed at an age between 39 and 66 weeks with carbon dioxide 
(at a displacement of volume at 10‑30% / per min ensuring a 
standardized increase and a homogeneous distribution of the 
gas inside the modified cage in October 2015). After cessa‑
tion of respiratory and cardiac movements (observation after 

≥10 min, at room air) decapitation was performed. The heads 
were fixed in 4% formaldehyde for 48 h and transferred into 
70% ethanol. µCT with an isometric voxel size of 17.2 µm was 
carried out using a µCT50 device (Scanco Medical AG). The 
scanning of the skulls was done at 70 kVp/100 µAs with an 
integration time of 500 msec.

Data acquisition. Bone and tooth surfaces of these skulls were 
generated by using the half maximum height value (HMHV) 
as threshold in each individual. The gray values of the tissue 
of interest and the adjacent material are measured and the 
value half way between the highest and lowest value is used 
as threshold for the surface reconstruction. The HMHV 
give the value most close to reality and the best standard‑
ization for possible differences in density. We established 
six different landmark sets for the different regions, i) upper 
teeth, ii) lower teeth, iii) upper alveolar bone, iv) lower alveolar 
bone, v) the mandible as a whole and vi) landmarks for jaw 
lengths. A total of 36 and 38 landmarks were placed according 
to the anatomical structure on the occlusal surface and root 
furcation of mandibular and maxillary molars. There are also 
8 landmarks on each upper and lower alveolar bone per side, 
17 landmarks on each side of the mandible (Fig. 1). Surface 
reconstruction and landmark coordinate retrieval were 
performed using Amira (Version 6.1; Visage Imaging Inc). For 
the dental jaw distance, distance between the temporoman‑
dibular joint and the cusps of the first lower and upper molar 
were calculated. For the skeletal distance, distance between 
the temporomandibular joint and the lower alveolar inner 
point of the lower incisor and the prosthion were calculated for 
the skeletal distance.

Statistical analysis. We transferred the coordinates of 
the landmarks into a text file in morphologika format for 
analysis in the EVAN Toolbox 1.71 (www.evan‑society.org). 
A generalized Procrustes analysis was performed to super‑
impose the landmark configurations, quantify centroid size, 
and calculate the Procrustes distances and Procrustes shape 
coordinates. Separate principal component analysis (PCA) 
with and without the natural log of centroid sizes provided a 
representation of morphometric variation across groups. We 
used the decision procedure of Bookstein, when 2Nlog(a/g) 
exceeds ‘2’ the principal component is considered for inter‑
pretation below ‘2’ the principle component is considered to 
only express noise (30,31). Asymmetry which is described by 
Procrustes distance between any form and its reflected rela‑
beling was used as an additional quantification of perturbed 
development via the formulas for total, directional, and 
fluctuating asymmetry (32). Normality tests and according 
to the outcome unpaired t‑tests or Mann‑Whitney tests were 
performed using GraphPad Prism version 8.0.0 for Windows, 
GraphPad Software, www.graphpad.com.

Results

Generalized Procrustes analysis of molars and the dimen‑
sion of the alveolar bone reveals reduced sizes in miR‑21 
knockout mice. To compare the size of molars a generalized 
Procrustes analysis was performed. Based on the 36 and 
38 landmarks placed on mandibular and maxillary molars, 
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respectively, the molars in the mandible (P=0.02) but not on 
the maxilla (P=0.36) were significantly smaller in the miR‑21 
knockout mice compared to the wild‑type controls. In line 
with these observations, the dimension of the alveolar bone 
of the mandible (P=0.03) and of the maxilla (P=0.02) was 
smaller in the miR‑21 knockout mice when compared to 
the wild‑type littermates. In addition, the dimension of the 
mandible was reduced as a consequence of the lack of miR‑21 
(P=0.02). Fig. 2 shows the statistical values of centroid size. 
Taken together, the absence of miR‑21 causes smaller molars 
and the respective alveolar bone in the mandible and in the 
maxilla.

Principal component analysis to assess changes in form and 
shape. We performed the PCA with (form space) and without 
(shape space) the natural log of centroid sizes, which integrates 
size and shape information to find a difference in the variance 
between miR‑21 knockout mice and corresponding wild‑type 
controls. The two groups were similar in form and shape at 
all anatomical sites investigated (lower molars, lower alveolar 
bone, upper molars, upper alveolar bone, and mandible). In 
Table I, the variance and noise criterion of principal compo‑
nent 1 and 2 are shown. The Procrustes distance values on the 
PC1 for the lower alveolar bone are significantly different with 
size (P=0.01) (Fig. 3).

Figure 1. Landmark configuration (yellow dots) on mandible and teeth surface reconstruction. A total of 34 landmarks were placed according to anatomical 
structures on the (A) mandible, (B) 16 on each upper and lower alveolar bone, and a total of 36 and 38 on the occlusal surface and root furcation of (C) man‑
dibular and (D) maxillary molars. Each region was analyzed separately.

Figure 2. Centroid sizes of the investigated regions. Differences in centroid size reach a level of significance for the mandible, lower and upper alveolar bone 
and lower teeth but not for upper teeth (n=16). Black line indicated the median. WT, wild‑type; miR‑21, microRNA‑21 knockout.
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Asymmetry analysis as a parameter for developmental 
stress and instability. The values presented are by their 
nature of calculation (32) group values, since directional and 
fluctuating asymmetry depend on the squared Procrustes 
distance between the original mean and the reflected mean 
of the landmarks. For that reason, significance values are 
not provided and the values should be interpreted as means. 
miR‑21 knockout reduced the fluctuating asymmetry of 
the molars in the mandible and the maxilla by 38 and 
27%, respectively. Fluctuating asymmetry of the respective 
alveolar bone was also reduced in miR‑21 knockout mice by 
58 and 12% (Fig. 4)

Dental and skeletal jaw length as a parameter for genetic 
diseases. Jaw lengths of miR‑21 knockout mice showed no 
differences in either dental or skeletal length when compared 
to the wild‑type group (Fig. 5; P=0.72, P=0.95).

Discussion

Considering that microRNAs are involved in tooth devel‑
opment (33) and the notion that miR‑21 is differentially 
expressed during this process, particularly during amelogen‑
esis, it is reasonable to suggest that miR‑21 knockout mice 
generate a tooth phenotype. However, miR‑21 knockout mice 

Table I. Variance in form and shape and noise criterion.

A, PC1

Site Variance in form (%) 2Nln (a/g) Variance in shape (%) 2Nln (a/g)

Lower molars 34.3 1.8 25.9 1.3
Upper molars 42.8 7.0a 19.2 0.2
Lower alveo‑lar bone 35.8 3.5a 23.1 0.7
Upper alveo‑lar bone 33.0 2.3a 21.5 0.5
Mandible 24.8 0.7 20.1 0.2

B, PC2

Site Variance in form (%) 2Nln (a/g) Variance in shape (%) 2Nln (a/g)

Lower molars 17.3 1.3 14.4 0.2
Upper molars 10.8 0.1 15.0 0.2
Lower alveo‑lar bone 13.8 0.3 15.4 0.1
Upper alveo‑lar bone 15.3 0.5 15.1 0.3
Mandible 16.4 0.3 16.0 0.2

aNoise criterion for principal component one reaches a level of two or higher in form space. No shape space and no second principal component 
reached that limit and should not be used as explaining principal component. This indicates a high influence of size on the shape. Group 
separation on the principal component one of the regions with explaining value is presented in Fig. 3.

Figure 3. Distribution of Procrustes distance on the principal component 1 in form space. The differences of Procrustes distance on the PC1, including the 
natural logarithm of centroid size, was significant for lower and upper alveolar bone, but not for the upper teeth (n=16). Black line marks the median value. 
WT, wild‑type; miR‑21, microRNA‑21 knockout.
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show a normal skeletal phenotype suggesting that, if at all, 
only marginal changes in tooth morphology can be expected. 
Bearing in mind that metameric evaluation of teeth is problem‑
atic, it requires GMM to reveal if miR‑21 plays indeed a role 
during tooth development. According to this landmark‑based 
statistical method, we demonstrate that the molars and the 
alveolar bone in the mandible and in the maxilla are smaller 
in the miR‑21 knockout mice when compared to the wild‑type 
controls. No changes in shape were noticed. miR‑21 knockout 
also reduced the fluctuating asymmetry of the molars in both, 
the mandible and the maxilla suggesting a moderate effect 
on tooth development. Dental and skeletal jaw length can 

be influenced by genetic diseases (34), however, dental and 
skeletal jaw length showed no difference between the groups. 
Taken together, our data suggest that miR‑21 affects, even 
though at a moderate level, molar development and the dimen‑
sions of the corresponding alveolar bone in mice.

Our findings basically support the ground tenor that 
microRNAs regulate tooth morphogenesis by fine‑tuning the 
signaling network (33). Our research is among the pioneer 
study using GMM to identify the impact of miRNAs on tooth 
and alveolar bone morphology. The present study extends the 
use of GMM in mouse dental research such as phylogeny and 
shape adaptation of molars of insular mice and to distinguish 
dietary groups based on first upper molars. We applied GMM 
not only on molars but also on the respective alveolar bone in 
mouse models. This research is consistent with previous work 
with GMM to detect size shape and fluctuating asymmetry of 
the mandible and teeth in mouse models (35,36). Fluctuating 
asymmetry is considered to be the product of developmental 
stress and instability, caused by both genetic and environmental 
stressors (37). A gene defect which results in the absence of a 
protein may cause developmental stress or uncanalized devel‑
opment leading to the inability of an organism to compensate 
(canalize) this stress which is often associated with excess 
morphological variance or higher asymmetry (37,38). miR‑21 
knockout mice present here with less asymmetry which is 
the opposite. One reason to explain this could be that miR21 
does not code for a protein but as a micro RNA is a regulator 
by itself. The interaction with other regulating mechanism 
could result in an imbalance of tissue apposition and therefore 
higher asymmetry in the wild‑type. A second reason could be 
the smaller size of the more symmetrical tissue. At the level 
of hard tissue, failure to produce perfect symmetry is mani‑
fested by different apposition rates, different tooth eruption 
and suture fusion times in the developing organism. With less 
tissue mass, there seems to be a lower probability of failure in 
the symmetric apposition of tissue. The opposite was found 

Figure 4. Total and fluctuating asymmetry of the five investigated regions. The group values for all regions demonstrated a reduced asymmetry in miR‑21 
knockout compared with wild‑type mice. However, the mandible was the exception. WT, wild‑type; miR‑21, microRNA‑21 knockout.

Figure 5. Dental and skeletal jaw distances. For dental jaw distance, the dis‑
tance between the temporomandibular joint and the cusps of the first lower 
and upper molar were calculated. For skeletal distance, the distance between 
the temporomandibular joint and the lower alveolar inner point of the lower 
incisor and the prosthion were calculated. The ratio of these distances is 
presented. There was no difference between jaw distance ratios in WT and 
miR‑21 mice. The broken line indicates the median, dotted lines indicate 
quartiles. WT, wild‑type; miR‑21, microRNA‑21 knockout; TMJ, temporo‑
mandibular joint; UD, upper jaw distance; LD, lower jaw distance.
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in Sost KO mice where more bone mass lead to higher asym‑
metry (34).

A study limitation is that the presented work remains 
descriptive; thus, we have no explanation about the underlying 
molecular and cellular mechanisms that cause the smaller 
size of teeth in miR‑21 knockout mice. However, new hypoth‑
eses originate from our cross search of genes regulated by 
miR‑21 by miRWalk2.0 and genes associated with GO terms 
by amigo.geneontology.org (39) for ‘tooth’: Four target genes 
were identified, namely peroxisome proliferator‑activated 
receptor alpha (PPARA), endoribonuclease dicer (DICER1), 
activating transcription factor 2 (ATF2), and osteoprotegerin 
(TNFRSF11B, OPG). Interestingly, and similar to the dental 
phenotype of miR‑21 knockout mice, a slight decrease in the 
size of the molars was observed in PPARA knockout mice. 
Thus, miR‑21 might exert its function during tooth develop‑
ment by modulation of PPARA translational activity. DICER1 
is involved in the biogenesis of most small RNAs, including 
miR‑21 and plays a central role in tooth development. ATF2 
activation occurs in the late secretion phase of ameloblasts 
apical to the transition zone of rat incisors OPG production 
by the dental follicle likely affects the alveolar bone resorp‑
tion needed for tooth eruption. The present observations are a 
primer for a more detailed analysis on the expression changes 
of the putative target genes in miR‑21 mice, with a particular 
focus on the cell involved in tooth formation (40).

Matrix metalloproteinases (MMPs) might offer another link 
between miR‑21 and tooth anatomy. Mice deficient for MMP14, 
the membrane‑type 1 metalloproteinase (MT1‑MMP), have 
impaired tooth eruption and root elongation (41), and the 
expression of MT1‑MMP was enhanced by miR‑21 mimics in 
mesenchymal cells (42). Also, MMP20 and kallikrein‑related 
peptidase 4 (KLK4) are required to harden enamel (43). There 
are potential miRNA‑binding sites in the 3'‑untranslated 
region of several MMPs (44) and miRNAs can participate in 
MMP regulation at the posttranscriptional level and change the 
expression of MMP genes (45). miR‑21 promotes upregulation 
of MMP2 and MMP9 in human hepatocellular and pancreatic 
carcinoma cells (46,47). It would be worth studying a possible 
involved of miR‑21 in the regulation of MMP20 and KLK4. 
In general, the association of genes that play a role in tooth 
development being modulated by miR‑21 might be the basis 
for future research.

The results presented here demonstrate that the molars 
and the respective alveolar bone in the mandible are signifi‑
cantly smaller in the miR‑21 knockout mice compared to 
the wild‑type controls. Shape changes were not found but a 
reduced asymmetry for either of the anatomical sites. It will 
now be critical to determine the molecular and cellular mecha‑
nisms how miR‑21 affects tooth growth.
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