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Background: Lifetime risk assessment tools are relatively limited in identifying breast
cancer risk in younger women. The predictive value of mathematical models to esti-
mate risk varies according to age, menopausal status, race/ethnicity, and family history.
Current risk prediction models estimate population, not individual, levels of breast can-
cer risk; hence, individualized risk prediction models are needed to identify younger
at-risk women who could benefit from timely risk reduction interventions. Clinical data
collected as part of breast cancer screening studies may be modeled using Bayesian
classification. Purpose: To train a proof-of-concept Bayesian classifier for breast cancer
risk stratification. Patients and Methods: We trained a Bayesian belief network (BBN)
model on cohort data (including risk factors, demographic, electrical impedance scan-
ning (EIS), breast imaging, and biopsy data) from a prospective pilot screening trial in
younger women (N = 591). Receiver operating characteristic curve analysis and cross-
validation of the model were used to derive preliminary guidance on the robustness of
this approach and to gain insights into what a cross-validation exercise could provide
in terms of risk stratification in a larger population. Results: Independent predictors of
biopsy outcome in the BBN model included personal breast disease history, breast size,
EIS (low vs high risk) and imaging results, and Gail cutoff (5-year risk: <1.66% vs
≥1.66%). Area under the receiver operating characteristic curve and positive predictive
value for benign and malignant biopsy outcomes were 0.88 and 97% and 0.97 and 42%,
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respectively. Patient-specific probability of biopsy outcome given positive EIS result and
Gail model 5-year risk ≥1.66% indicated that the combined effect of these predictors
on likelihood that a biopsy would prove malignant exceeded the sum of the individual
effects; breast cancer likelihood is as follows: 3% (EIS negative and Gail model 5-year
risk <1.66%) versus 9% (EIS positive and Gail model 5-year risk <1.66%) versus 27%
(EIS negative and Gail model 5-year risk ≥1.66%) versus 45% (EIS positive and Gail
model 5-year risk ≥1.66%). Conclusion: Clinical data collected as part of breast can-
cer screening studies can be modeled using Bayesian classification. The BBN model
may be predictive and may provide clinically useful incremental risk information for
individualized breast cancer risk assessment in younger women.

Breast carcinoma is the most commonly diagnosed cancer and the second leading
cause of cancer-related mortality among women in the United States.1 In 2009, there were
more than 192 000 estimated new cases of cancer of the breast and more than 40 000
disease-specific deaths.1 Breast cancer–related mortality rates have steadily decreased over
the past 2 decades, largely because of improved disease detection and therapy.2

As breast cancer in younger (age < 40 years) women is infrequently diagnosed in the
early stages by utilizing current screening guidelines, improved cancer screening and de-
tection methods are important in current research, particularly in younger, at-risk women.3

Breast cancer in younger women typically has unfavorable prognostic characteristics asso-
ciated with increased disease-specific mortality; hence, early detection in younger women
is imperative.4-6 Younger women are not referred for periodic imaging unless they are
identified as being “high risk.”7 “At risk” younger women with significant family history
or genetic factors are encouraged to undergo frequent clinical and annual breast imaging
surveillance and to consider chemoprevention.

While increased surveillance for at-risk women may be beneficial, the value of this
approach is restricted by the rarity of breast cancer due to known genetic risk factors.8,9

More than 90% of breast cancers are detected in women who are not identified as being high
risk.3 Furthermore, screening mammography is generally less accurate in younger women
and those with increased breast tissue density commonly encountered in women younger
than 40 years.10 The reduced sensitivity of mammography for dense breasts impacts age
groups in which a “life saved” often results in “higher” personal and societal costs in terms
of altered life expectancy and personal productivity.11

Magnetic resonance imaging (MRI) is being used increasingly as a screening modality
in high-risk women with a significant family history of breast cancer or those with BRCA1
or BRCA2 gene mutations, resulting in lifetime risk of cancer exceeding 20%.12,13 Hence,
breast MRI is currently applied to a relatively small proportion of all women. Because
MRI is unaffected by breast tissue density, it is appealing to consider its use for screening
young women in general; however, the high cost, requirement for intravenous contrast
administration, and variable specificity limit its feasibility for widespread population-based
screening.14,15 Therefore, improved methods for risk prediction in younger women are
needed to identify those at high risk for breast cancer.

Tamoxifen may be considered in both premenopausal and postmenopausal women,
and raloxifene may be considered in postmenopausal women, with lobular carcinoma in situ
or with a 5-year breast cancer risk estimate of 1.66% or higher (according to the Gail model
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or the National Cancer Institute Breast Cancer Risk Assessment Tool), in order to reduce the
risk of estrogen receptor-positive breast cancer.16 In the National Surgical Adjuvant Breast
and Bowel Project (NSABP) P-1 study tamoxifen (20 mg/day for 5 years) consistently
reduced the incidence of breast cancer by 49% in at-risk women across all study age and
risk groups (women age 35–59 with a ≥1.66% risk, those 60 years or older, or with those
prior LCIS) thereby demonstrating the efficacy of chemoprevention for this disease.17 The
Multiple Outcomes of Raloxifene Evaluation (MORE), Continuing Outcomes Relevant to
Evista (CORE), Raloxifene Use for the Heart (RUTH,) and NSABP Study of Tamoxifen
and Raloxifene (STAR) trials demonstrated consistent significant reductions in estrogen
receptor-positive breast cancer incidence in at-risk postmenopausal women.16 Subsequent
analyses of the NSABP P-1 study data suggested improved quality-adjusted survival and
cost-effectiveness when tamoxifen was initiated as early as age 35 years in at-risk (Gail
model 5-year risk ≥1.66%) women.18,19 Hence, identification of women who are at high
risk and may benefit from chemoprevention is of particular importance.

Lifetime relative risk assessment tools (eg, Gail model) are available to identify women
older than 35 years who are at risk for breast cancer. However, the predictive value of
mathematical models to estimate breast cancer risk varies according to age, menopausal
status, race/ethnicity, and family history of breast cancer. Instruments such as the Gail
model are imperfect for identifying increased cancer risk in younger women.20 Importantly,
all current risk prediction models estimate population, not individual, levels of breast
cancer risk. Currently, the only criterion generally used to identify high-risk young women
who could benefit from chemoprevention is family/genetic history. The value of this risk
estimation paradigm is limited by the rarity of breast cancer due to known gene mutations.
Better individualized risk prediction models are needed to identify younger at-risk women
who could benefit from risk reduction interventions and earlier chemoprevention.

Bayesian belief network (BBN) models have been used in research to better understand
research data and biologic systems such as functional genomics. In recent years, these
applications have been applied to better understand clinical problems, such as models
developed to estimate breast cancer risk in mammographic microcalcifications and predict
false-positive mammograms.21,22 We believe that clinical data collected as part of breast
cancer screening studies may be modeled using Bayesian classification. The objective of
this study was to train a proof-of-concept machine-learned BBN model based on previously
unpublished cohort data from this prospective pilot screening trial and to perform cross-
validation for the purposes of evaluating the feasibility of using readily available data
(including risk factors, demographic data, breast impedance, and breast imaging) and the
Bayesian classification for breast cancer risk stratification (estimating biopsy outcome) in
younger women.

METHODS

Patients

Between August 2002 and March 2005, a total of 591 female military healthcare beneficia-
ries were enrolled into this institution review board–approved, single-arm, prospective pilot
screening trial. The clinical protocol was reviewed and approved by institutional review
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boards of the Walter Reed Army Medical Center, Washington, DC, and the Keller Army
Hospital, West Point, NY. Subjects who met the eligibility criteria were offered participa-
tion in this study. Subjects were recruited from the gynecology clinic or the Comprehensive
Breast Center at Walter Reed Army Medical Center or the gynecology or family practice
clinic at Keller Army Hospital. Study inclusion criteria consisted of younger women aged
18 to 49 years who provided informed consent prior to study enrollment and who were will-
ing to be followed at the participating institution. Age was stratified for analysis as follows:
younger than 30, 30 to 34, 35 to 39, and 40 to 49. Potential study subjects were excluded
if they had breast surgery (including core biopsy) or were lactating within the preceding
3 months, had breast fine needle aspiration within the preceding 1 month, were pregnant, had
electrically powered implanted devices (eg, pacemaker), or were undergoing chemotherapy
or radiation treatment. Data collected for each study subject included age, race/ethnicity,
clinical history (personal and family history of breast cancer, previous breast surgery or
biopsy, and results of those interventions), hormonal information (age of menarche and
first full-term pregnancy, menstrual status, date of last menstrual period, and exogenous
hormone use), breast density and size (bra cup size), Gail model risk estimate, results of
clinical breast examination (CBE), screening breast electrical impedance scanning (EIS),
conventional imaging, and biopsy results. All study participants underwent EIS of the breast
by using the T-ScanTM 2000ED (Mirabel Medical, Austin, TX) as previously described.23

Statistical Methods

The BBN model was trained by using a priori variables to estimate the likely diagnostic
outcome of breast biopsy. The BBN model was developed by using commercially available
machine-learning algorithms (FasterAnalytics, DecisionQ, Washington, DC), which auto-
matically learn network structures and joint probabilities from the prior probabilities in the
data. BBN models are a type of directed acyclic graph, which means that they represent
information in a hierarchical format. BBN models allow us to identify those variables that
contain the most information and are thus most useful for estimating outcomes. The asso-
ciations represented by BBN models are associations of conditional dependence, allowing
us to estimate the posterior likelihood of a given outcome given prior observations.

In order to refine the model, a stepwise training process was used. Quantitative and
qualitative assessments were used to optimize variable preparation and selection in order
to produce the most robust and useful model. The objective was to produce the optimum
biopsy outcome estimate through iterative quality assurance and reduction of confounding
information. This process used to develop the model is summarized as follows: (1) prelim-
inary modeling to identify appropriate machine-learning parameters, data quality issues,
and confounding features and feature analogues that reduce model accuracy, (2) global
modeling to set appropriate machine-learning parameters, remove identified analogs and
confounders, and perform full “queue learning” to observe global data structure, (3) naive
modeling of the outcome of interest to identify the relative contribution of covariates, and
(4) focused modeling by using “queue learning” on subsets of variables identified in the
prior steps to derive a more focused BBN model than that obtained in global modeling.
By excluding marginal or noncontributory variables, the remaining ones are explored more
exhaustively.
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Cross-validation was performed on the final focused Bayesian classifier by using a
train-and-test cross-validation methodology to produce classification accuracy estimates.
Fivefold cross-validation was performed by randomizing the data set into 5 separate and
unique train-and-test sets. Each set consists of a training set composed of 90% of patient
records and a test set consisting of the remaining 10% of records. Once the model was con-
structed with a training set, the matching test set was entered into the model, generating a
case-specific prediction for each record for independent variables of interest. A receiver op-
erating characteristic curve was plotted for each test to calculate classification accuracy. The
receiver operating characteristic curve was used to calculate area under the curve, a metric of
overall model quality, and to calculate corresponding predictive values for biopsy outcome.

RESULTS

The study population comprised an ethnically diverse group of younger women (41% non-
Caucasian), healthcare beneficiaries in a free access system of military medical care. Of the
591 study participants, 67% were younger than 40 years (mean age: 35 ± 6.9 years) and 90%
were premenopausal (Table 1). Two percent of the study population was taking exogenous
hormones at the time of study enrollment; however, there was no statistically significant
association with disease (P = .95). Fifty-five percent of participants had no family history
of breast cancer, and family history was only marginally associated with biopsy outcome
(P = .10). The findings of CBE were statistically associated with both age (P = .01) and
disease (P ≤ .001); 31% of subjects had findings that were deemed not suspicious, whereas
4% of subjects had suspicious CBE findings. Five percent of study subjects had an estimated
5-year risk of breast cancer ≥1.66% according to the Gail model, and these findings were
statistically associated with both disease and age of subject (P ≤ .001). Mammography was
performed in 281 women and was found to be Breast Imaging Reporting and Data System
(BIRADS) III or higher in 75 cases (27%); mammography was found to be statistically
associated with both disease and age of subject (P ≤ .001). Breast ultrasound examination
was performed in 258 women and was found to be BIRADS III or higher in 66 cases (26%);
ultrasound was found to be statistically associated with disease (P ≤ .001) but not with
age (P = .18).

We also studied other well-known risk factors in our population and identified 3 risk
factors that were not statistically associated with biopsy outcome: mean age at menarche
(P = .12), mean age at first pregnancy (P = .39), and nulliparity (P = .93). Finally, there
was no statistically significant difference between the mean age of our population (35
years) and the mean age at time of cancer diagnosis (38 years, P = .35) or diagnosis of
premalignant histopathology (38 years, P = .56). We tabulated data by age group and
biopsy outcome as shown in Tables 1 and 2.

Of the 591 women enrolled in the study, 568 were found to be EIS negative (low
risk) and 23 were found to be EIS positive (high risk). In the EIS-negative group, 95
underwent biopsy and 87 were benign on final histopathology. The remaining 8 were either
premalignant (n = 4) or malignant (n = 4). In the EIS-positive group, 10 underwent biopsy;
5 were benign, whereas 5 were either premalignant (n = 3) or malignant (n = 2). Of 13
premalignant or malignant lesions, EIS identified 5 (38.5%). The negative predictive value
(NPV) of the EIS-negative group was 92%, whereas the positive predictive value (PPV) of
the EIS-positive group was 50%.
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Table 1. Summary of study population characteristics by age∗

Age category, y

Characteristic <30 30-34 35-39 40-49 P

Menopausal status <.001
Premenopausal 124 114 122 171
Postmenopausal 0 5 15 34
Perimenopausal 0 0 1 4
Not recorded 0 0 1 0

Screening breast EIS result .4515
Negative 120 117 132 199
Positive 4 2 7 10

Clinical breast examination result .0077
No findings 78 88 77 141
Not suspicious 45 28 52 57
Suspicious 1 3 10 11

Hormone replacement therapy .0263
Current 0 2 2 11
Past 0 1 0 3
Never 124 116 137 195

Mammogram results <.001
BIRADS 0 1 0 3 10
BIRADS I or II 6 16 61 109
BIRADS III 1 6 8 21
BIRADS IV 0 2 10 23
BIRADS V 0 1 2 1
No mammogram 116 94 55 45

Breast biopsy category .4076
Benign, no atypia 19 12 27 34
Premalignant 1 0 2 4
Infiltrating cancer or DCIS 0 1 2 3
No biopsy (assumed benign) 104 106 108 168

Family history category .4080
One first degree 9 12 20 18
One second degree 22 24 24 38
One first and one or more second degree 9 9 12 11
Two or more first degree 0 1 4 2
Two or more second degree 7 12 10 21
No significant family history 77 61 69 119

Gail model 5-year risk category, % <.001
<1.66 108 119 132 175
≥1.66 0 0 3 27

∗BIRADS indicates Breast Imaging Reporting and Data System; EIS, electrical impedance scanning; and ductal carcinoma
in situ.

We trained a proof-of-concept BBN model on this pilot cohort data and performed
analysis and cross-validation. The Bayesian Network shown in Figure 1 indicates that the
six nearest independent associated features (direct relationship to breast biopsy diagnosis)
used to estimate a breast biopsy diagnosis (Biopsy category) are screening breast EIS
result, Gail model cutoff (5-year risk estimate <1.66% vs ≥1.66%), mammogram BIRAD
result, MRI BIRAD result, breast size, and personal history of breast disease. This does not
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mean, however, that “Any Palpable Mass” on CBE and ultrasound BIRAD results (indirect
relationship to breast biopsy diagnosis—Fig 1) do not influence the estimate of likely
biopsy diagnosis, but rather that they are conditionally independent of biopsy outcome,
given knowledge of screening breast EIS and MMG BIRAD results.

Figure 1. Exemplar BBN model of breast biopsy out-
come with expected frequency of histology in our
study population. BBN indicates Bayesian belief net-
work; LCIS, lobular carcinoma in situ; MRI, magnetic
resonance imaging; BIRAD, Breast Imaging Report-
ing and Data System; EIS, electrical impedance scan-
ning; US, ultrasound; MMG, mammography; DCIS,
ductal carcinoma in situ; and ADH, atypical ductal
hyperplasia.

The BBN feasibility model was validated using train-and-test cross-validation and pro-
duced strongly predictive areas under the curve (0.75–0.97) for differentiating malignancy
and premalignant disease from benign findings (Table 3). Cross-validation also produces
a 97% NPV and a 42% PPV for malignancy. It is important to note that with a relatively
small set of outcomes, there is a high degree of variance in results between cross-validation
exercises (Table 3). The BBN model is a recursive information structure, and the inclusion
of conditional dependence between predictive variables guards against overinterpretation
of data (overfitting). The model informs estimates not only through estimation of biopsy
outcome but also through estimation of as-yet-unknown imaging results, wherein estimates
of biopsy outcome can be derived from available clinical and imaging data, even if some
imaging studies are unavailable at the time of biopsy outcome estimation.

To demonstrate the use of this type of model, we walk through an example case of how
we can use available information to estimate clinically relevant outcomes using the network.
Knowledge of breast size (bra cup) B (Fig 2: Evidence 1) results in slightly lower risk of
cancerous biopsy result (−3.6%) for the subject compared with our reference population.
When the additional knowledge of Gail model 5-year high-risk estimate (Fig 3: Evidence
2) is added to refine the posterior estimate of biopsy outcome given previously known
breast size (bra cup) B, there is a 12% increased likelihood of cancerous biopsy and a 17%
increase in the likelihood of premalignant histology, relative to our overall study cohort.
Finally, adding knowledge of a positive (high risk) EIS screening result (Fig 4: Evidence
3) increases the posterior risk estimate of cancerous biopsy by 21% and the risk estimate
of premalignant disease by 35%. Each posterior probability estimate is the result of adding
evidence for each factor being used to make the estimate. As new evidence is “added” for a
given factor, the existing evidence already input remains unchanged. However, other nodes
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Table 2. Summary of study population characteristics by biopsy category∗

Biopsy category

Infiltrating
Benign, no cancer No biopsy

Characteristic atypia or DCIS Premalignant (benign) P

Mean age at menarche, y† 13 12 13 13 .9997
Mean age at first pregnancy, y† 25 22 24 24 .8622
% Nulliparous 79.1 100.0 66.7 75.8 .9299
Mean age at diagnosis, y† 36 38 38 35 .0959
Menopausal status .0307
Premenopausal 86 6 6 433
Postmenopausal 6 0 0 48
Perimenopausal 0 0 1 4
Screening breast EIS result <.001

Negative 87 4 4 473
Positive 5 2 3 13

Clinical breast examination result <.001
No findings 19 2 4 359
Not suspicious 55 1 2 124
Suspicious 18 3 1 3

Hormone replacement therapy .9460
Current 1 0 0 14
Past 1 0 0 3
Never 90 6 7 469

Bra cup size .0094
A 4 3 0 39
B 25 1 3 123
C 18 0 1 110
D+ 6 1 1 65
Not recorded 39 1 2 149

Mammogram results <.001
BIRADS 0 3 0 3 8
BIRADS I or II 27 0 2 163
BIRADS III 6 0 0 30
BIRADS IV 26 3 2 4
BIRADS V 0 3 0 1
No mammogram 30 0 0 280

Family history category .1035
One first degree 7 1 0 51
One second degree 18 1 2 87
One first degree and one or 0 1 0 6

more second degree
Two or more first degree 6 0 2 42
Two or more second degree 55 2 3 266
No significant family history 6 1 0 34

Gail model 5-year risk category, % <.001
<1.66 86 2 5 441
≥1.66 4 3 1 22
Not recorded 2 1 1 23

∗BIRADS indicates Breast Imaging Reporting and Data System; EIS, electrical impedance scanning; and DCIS, ductal
carcinoma in situ.
†P value of cancer and premalignant populations compared with benign population.
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in the network for which no evidence is available have their posterior probabilities updated
given other evidence that has been input, and these new posteriors in turn influence the
predicted variable.

Table 3. Feasibility model cross-validation statistics

Area under the curve Predictive value, %

Benign Cancer Premalignant Benign Cancer Premalignant

Internal 0.98 0.99 0.97 100.0 66.7 50.0
Exercise 1 0.94 0.98 0.58 100.0 33.3 0.0
Exercise 2 0.81 0.98 0.53 94.4 NA 0.0
Exercise 3 0.92 0.98 0.90 93.8 33.3 0.0
Exercise 4 0.89 0.95 0.95 100.0 50.0 16.7
Exercise 5 0.86 0.98 0.79 94.4 50.0 NA
Mean 0.88 0.97 0.75 96.5 41.7 4.2
95% CI low 0.82 0.96 0.51 92.6 26.4 0.0
95% CI high 0.95 0.99 0.98 100.0 57.0 17.4

Figure 2. Probability of cancer diagnosis given only evidence of
breast size (bra cup) B is 3%. LCIS indicates lobular carcinoma in
situ; MRI, magnetic resonance imaging; BIRAD, Breast Imaging
Reporting and Data System; EIS, electrical impedance scanning;
US, ultrasound; MMG, mammography; DCIS, ductal carcinoma in
situ; and ADH, atypical ductal hyperplasia.

As all features in the model are, at some level, conditionally dependent with biopsy
outcome, those features available at the time of initial clinical visit (a priori knowledge) can
be selected and applied to the model to estimate biopsy outcome. Subsets of features can
also be used to generate an inference table (Table 4) that can be used to quickly estimate
biopsy outcome for all known combinations of the identified features. The incremental
values of both screening breast EIS and the Gail model data are shown in the inference
table, Table 4. Under the most favorable circumstances (EIS negative and Gail model 5-year
risk <1.66%) the risk of malignancy is 3%, and under the least favorable circumstances
(screening EIS positive and Gail model 5-year risk ≥1.66%), the risk of malignancy is
45%.
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Figure 3. Probability of cancer diagnosis given only evidence of bra
cup size B and Gail model 5-year risk ≥1.66% is 19%. LCIS indi-
cates lobular carcinoma in situ; MRI, magnetic resonance imaging;
BIRAD, Breast Imaging Reporting and Data System; EIS, electrical
impedance scanning; US, ultrasound; MMG, mammography; DCIS,
ductal carcinoma in situ; and ADH, atypical ductal hyperplasia.

Figure 4. Probability of cancer diagnosis given only evidence of
bra cup size B, Gail model 5-year risk ≥1.66%, and EIS positive
result is 28%. EIS indicates electrical impedance scanning; LCIS,
lobular carcinoma in situ; MRI, magnetic resonance imaging; BI-
RAD, Breast Imaging Reporting and Data System; US, ultrasound;
MMG, mammography; DCIS, ductal carcinoma in situ; and ADH,
atypical ductal hyperplasia.

DISCUSSION

For the majority of younger women, namely those considered to be average risk for de-
veloping breast cancer under the current risk assessment and screening model, the only
generally available risk assessment modality is CBE, which is imperfect as a screening
tool as it has an unacceptably low sensitivity and high false-positive rate compared with
mammography.24 CBE detects cancers only when they have advanced to the point of being
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palpable. When cancers are clinically palpable, they have reached a more advanced stage
of disease. Palpable breast cancers typically require more aggressive and costly treatments,
with concomitant worse quality of life and oncological outcomes.25,26

Table 4. Probability of biopsy diagnosis given Gail model risk estimate and breast EIS
result∗

Estimated outcome, %

Known evidence Biopsy category

EIS Gail Benign, no Infiltrating cancer
Case frequency, % result cutoff‘ atypia or DCIS Premalignant

74 Negative Negative 91 3 7
16 Positive Negative 65 9 26
7 Negative Positive 53 27 19
3 Positive Positive 18 45 37

∗EIS indicates electrical impedance scanning; DCIS, ductal carcinoma in situ.

The early detection of breast cancer in younger women is very important, particularly
because it demonstrates aggressive tumor biology with rapid tumor growth, demonstrates
a relatively short preclinical disease phase, and has worse cancer-specific survival than in
older women.6,27,28 A risk stratification paradigm that improves upon the interpretation of
existing clinical information should allow us to detect disease at an earlier stage of devel-
opment. The Gail model offers an improvement in predicting risk, yet it is still an imperfect
tool because it is designed using a primarily older, Caucasian population. Further, as more
effective personalized detection, prevention, and treatment strategies become available for
breast cancer in younger women, strategies and technologies that support truly personal-
ized risk assessment and screening can favorably impact survival, especially if conducted
at shorter intervals than in older women.28−33

Recognizing the need for individualized breast cancer risk assessment tools for younger
women, we conducted a feasibility study to determine whether a machine-learned BBN
model could be developed to support individualized breast cancer risk stratification. The
model trained and cross-validated in this study was based on data from a prospective pilot
screening trial in younger women (N = 591) and produced receiver operating character-
istic curves, when cross-validated, with areas under the curve of 0.88, 0.97 and 0.75 for
benign, malignant, and premalignant findings, respectively. This proof-of-principle study
shows that clinical data collected as part of routine, current breast cancer screening studies
can be developed into enhanced screening tools with improved sensitivity and specificity
by using machine-learned BBN models. These networks can use readily available informa-
tion to estimate clinically relevant outcomes, providing clinically useful incremental risk
information for individualized breast cancer risk assessment in younger women.

In our BBN model, the features showing direct conditional dependence with biopsy
outcome include (1) personal history of breast disease, (2) breast size (bra cup). (3) EIS
(low vs high risk), (4) breast imaging results, and (5) Gail model risk cutoff (5-year risk
<1.66 vs ≥1.66). Each of these variables is also significantly related to biopsy category
when examined using the calculated χ2. CBE and breast ultrasound results were also
determined to be statistically associated with biopsy outcome, and the Bayesian model
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includes these features as well, but they are associated with biopsy outcome through
EIS and mammography results. Other features that showed statistical significance, but
dropped out of the training process in the model, include patient ethnicity, menopausal
status, and prior breast biopsy. The machine-learning process is designed to produce a
simpler (parsimonious) model whenever possible; thus, these additional factors were likely
surpassed by more specific imaging and personal history risk factors.

Interestingly, a number of attributes were found to have statistically significant as-
sociation with patient age, including CBE findings, mammography BIRADS category,
nulliparity, and Gail model 5-year risk score. Conversely, certain factors found to be sig-
nificantly associated with biopsy outcome, using both bivariate statistical tests and the
machine-learning process, were not associated with patient age: breast (bra cup) size, EIS
screening examination, or MRI. There was no statistically significant difference in mean
age at diagnosis of premalignant or malignant disease compared with the mean age of
our study population, and when biopsy results were examined by age category, they still
did not demonstrate any statistically significant associations. Finally, features considered
as well-established breast cancer risk factors in the general population were not found
to have statistically significant associations with biopsy outcome in our younger popula-
tion, including family history of breast cancer, age at menarche, nulliparity, and age at
first pregnancy. While these are considered as common risk factors for developing breast
cancer, data suggest that these variables are not effective to determine individual risk of
cancerous or premalignant lesions in our study population. Although we must be cautious
not to overinterpret these findings, they do raise important questions about the appropriate
risk measures in a younger population of ethnically diverse women when well-established
risk factors have statistically significant association with subjects’ age while our disease
outcome appears to be age independent.

Having trained, encoded, and validated the machine-learned BBN model, we can esti-
mate the likely biopsy outcome given readily available clinical and imaging data. However,
the BBN model not only allows the posterior estimation of the likely biopsy outcome but
also identifies a hierarchy of conditional dependence that allows us to identify which pieces
of information are most useful in calculating our estimate. This hierarchy also defines how
independent variables influencing biopsy outcome also influence one another, providing a
better understanding of how the estimate is derived and providing an opportunity to estimate
missing parameters by using those currently available for any given patient. It is notable
that the combined effect of these independent predictors on the likelihood of disease is
greater than the sum of the individual effects. By way of example, mammography finding
of BIRAD IV increases the likelihood of a malignant biopsy result in our study population
by 5%, whereas a Gail model 5-year risk score of greater than 1.66% increases the likeli-
hood of malignancy by 26%, yet together these findings increase the likelihood of disease
by 42%—greater than the sum of their individual effects.

Importantly, the current proof-of-principle model estimates probability of having a
breast abnormality biopsied and having it show the underlying malignancy. The ultimate
clinical utility of such a model with appropriate sample size, population disease incidence,
and follow-up will be based on robust predictive value of the model for developing breast
cancer. The most clinically relevant model will be based on easily obtainable nonimag-
ing parameters to identify at-risk women, who could benefit from breast imaging–based
screening and risk reduction interventions.
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CONCLUSION

A need exists for a breast cancer risk estimation paradigm that can be used along with rel-
evant demographic, clinical, and other readily obtainable patient-specific data in younger
women in order to provide an individualized cancer risk assessment, direct screening
efforts that can lead to prophylaxis, and detect breast cancer at an early stage. The com-
putational complexity of designing such risk stratification algorithms for the average-risk
woman necessitates a large, multidimensional cohort and requires a selection and encoding
methodology that is both robust and transparent so as to sustain clinical scrutiny and im-
prove clinical practice. For our study, we integrated multidimensional clinical, imaging, and
pathological data from a prospective cohort to test the feasibility of model development.
Using this cohort, we trained a BBN model by using machine-learning algorithms and
developed a risk classification model for the average-risk younger woman, with promising
cross-validation results. Our proof-of-concept study shows that this type of model could be
used to perform individualized screening on a regular basis, using available clinical data at
low cost, and that it warrants further assessment and independent testing.
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