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1 Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico, 2 Centro de Ciencias de la
Complejidad, Universidad Nacional Autόnoma de México, Mexico City, Mexico

Clear cell renal carcinoma (ccRC) comprises a set of heterogeneous, fast-progressing
pathologies with poor prognosis. Analyzing ccRC progression in terms of modifications at
the molecular level may provide us with a broader understanding of the disease, paving
the way for improved diagnostics and therapeutics. The role of micro-RNAs (miRs) in
cancer by targeting both oncogenes and tumor suppressor genes is widely known.
Despite this knowledge, the role of specific miRs and their targets in the progression of
ccRC is still unknown. To evaluate the action of miRs and their target genes during ccRC
progression, here we implemented a three-step method for constructing miR–gene co-
expression networks for each progression stage of ccRC as well as for adjacent-normal
renal tissue (NT). In the first step, we inferred all miR–gene co-expression interactions for
each progression stage of ccRC and for NT. Afterwards, we filtered the whole miR–gene
networks by differential gene and miR expression between successive stages: stage I with
non-tumor, stage II with stage I, and so on. Finally, all miR–gene interactions whose
relationships were inversely proportional (overexpressed miR and underexpressed genes
and vice versa) were kept and removed otherwise. We found that miR-217 is differentially
expressed in all contrasts; however, its targets were different depending on the ccRC
stage. Furthermore, the target genes of miR-217 have a known role in cancer progression
—for instance, in stage II network, GALNTL6 is overexpressed, and it is related to cell
signaling, survival, and proliferation. In the stage III network, WNK2, a widely known tumor
suppressor, is underexpressed. For the stage IV network, IGF2BP2, a post-transcriptional
regulator of MYC and PTEN, is overexpressed. This data-driven network approach has
allowed us to discover miRs that have different targets through ccRC progression, thus
providing a method for searching possible stage-dependent therapeutic targets in this
and other types of cancer.
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INTRODUCTION

The global incidence of renal cell carcinomas (RCC) has
notoriously increased since 2008, exerting an important burden
in both individuals and health systems (1). A number of basic
and clinical endeavors have been implemented to try to alleviate
this situation. Important efforts have been made in searching for
key regulators in the development of this disease. Oncogenes and
tumor suppressors such as VHL (3p26), FH (1q42.1), MET
(7q34), or FLCN (17p11.2) genes have been studied in different
types of RCC. These have been associated with different
syndromes and inheritance patterns (2).

However, up to 70% of RCC cases correspond to the clear cell
subtype (ccRC). The progression in this tumor subtype is
commonly initiated by mutations in VHL. Some transcription
factors are accumulated due to VHL inactivation, which induces
the expression of vascular endothelial growth factor (VEGF).
Therefore, ccRCCs are often highly vascularized and respondent
to anti-angiogenic therapy (3). Subsequent mutations commonly
arise in BAP1/PBRM1/SET2/KDM5C, giving rise to DNA repair
defects. These genes are then considered as gene drivers for ccRC
evolution. Moreover, activation of the PI3K pathway promotes
metastases (4). Considering that up to a third of cases will
present metastases, the importance of determining with a
higher accuracy the molecular factors underlying the
progression of ccRC is undeniable. Additionally, there is
evidence that VHL inactivation in humans and mice does not
directly induce ccRC tumorigenesis (5).

Regarding immune responses, the relationship of the
microenvironment with ccRC progression is not clear. However,
efforts have been made to find the patterns of macrophages and T
cells, characterized by a wide diversity, both in phenotypes and
responses (6). To overcome this challenge, efforts have been made
to findmarkers of the different elements of immune response—for
instance, in (7), it was found that individuals with inflammatory
responses enriched for BAP1 have a worse prognosis. PBRM1 has
also been found in both animal models and in human samples
with decreased immune infiltration. It has also been observed that
PBRM1-knocked-out tumors were more resistant to anti-PD-1
antibody (8).

Tumor microenvironment heterogeneity is indeed just
partially responsible for the complexity behind ccRC responses.
Regulatory elements and epigenomic modulators are known to
be also playing relevant roles—for instance, it has been argued
that micro-RNAs (miRs) appear to regulate more than 60% of
human genes (9). Furthermore, aberrant expression patterns of
miRNA have been reported in many human cancers (10). A
number of these genes are considered as key factors in cancer
development pathways (11). To mention just a few, miRs such as
miR-646, miR-21, and miR-204 have been implicated in the
development and progression of renal cell carcinoma (12). miR
families, such as miR-200 family, have also been reported to be
strongly dysregulated in metastases and met-like primary tumors
(13, 14).

The effects of miRNAs over gene regulation are complex and
highly context dependent, varying by cell type as well as by the
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severity and persistence of conditions in cell signaling and other
processes, including genomic damage (15). The effects that miRs
exert on gene expression are often mostly attributed to the miR–
mRNA 3′ untranslated region (UTR) interactions. These
interactions lead to target post-translational inhibition or
degradation. However, focusing on this mechanism to design
miR therapeutics is likely proven to be too simplistic, owing in
part to other emerging micro-RNA mechanisms, which include
decoy activity and 5′ UTR and direct DNA regulatory activities.

Alternatively, miRNAs can be associated to the development
of tumor-suppressive and oncogenic functions, and their ability
to modulate different genes may be also context dependent (3).
Specifically, miR–gene regulation may repress or promote
transcription (non-canonical) or translation (canonical) (15).

It is widely known that a single miR can regulate several
mRNAs and that a single mRNA transcript can be targeted by
several miRs (16). To broadly understand the intrinsic
complexity of a miR–gene interaction, developing integral
approaches that combine different sources of information
becomes mandatory. Additionally, it is necessary to take into
account the complex nature of miR–gene regulation and its
many associated mechanisms.

Abnormalities in cell behavior that involve the dysregulation
of gene and miR expression have been argued to play relevant
roles in triggering carcinogenic processes. Several studies have
confirmed, for instance, that overexpression of miRs has the
potential to promote cancer development [for a broad review, see
(17–19)]—for example, miR-203 has been related to follicular
grow factor 2 (FGF2) and CAV1 as a downstream regulator,
affecting pathways such as PI3K/AKT/mTOR (20). There is also
evidence that miRs such as miR-141, miR-200a, or miR-200b
may serve as drivers in the epithelium-to-mesenchymal
transition and the complementary process, the mesenchymal-
to-epithelium transition, by inhibiting the expression of VIM,
ZEB1, or ZEB2 genes (14). Processes such as proliferation,
migration, invasion, or apoptosis can be altered by miR-203 by
targeting FGF2 (12).

Despite the ever-growing evidence of the role that miRs exert
on the oncogenic process, a comprehensive list of oncomiRs or
tumor suppressor miRs, particularly for ccRC, is still
lacking (11).

Building such a comprehensive catalog is indeed easier said
than done. Important steps have been taken, however, in this
direction. With the advent of next-generation sequencing, gene
expression profiles have been extensively used to discover crucial
features based on the expression of certain genes that may drive
the reconfiguration of the transcriptional program, often leading
to dramatic effects on the phenotype (21–25).

Although the importance of genetic expression in cancer is
out of discussion, it is also clear that the gene regulation during
the carcinogenic process is strongly altered by several
components. Additionally, the gene expression landscape often
does not provide information on how those genes are
regulated (26).

To overcome the latter challenge, a common approach used
for high-throughout-derived datasets is the gene co-expression
July 2022 | Volume 12 | Article 934711
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network (GCN). These networks are commonly inferred by
correlating the expression profile of gene couples with multiple
samples. GCNs offer a framework that allows the analysis of
global changes in a given phenotype, such as cancer. With this
approach, the statistical dependency of a given gene can be
quantified by the expression of any other gene (27–31).

In relation to ccRC, we recently demonstrated that differential
gene expression profiles are quite similar between progression
stages; however, the gene co-expression networks observed in
those stages resulted different in terms of structure and also the
associated biological processes involved in such networks (32).

The evidence of the role of miRs in the rise and development
of cancer, in particular for clear cell renal carcinoma, is
increasing. miR alterations may be key factors in the
development and progression of ccRC to more advanced
stages. However, the specific role of miRs during the
progression stages of ccRC is still unknown.

In order to evaluate the role of the miRs–gene relationships in
ccRC progression, here we implemented a three-step method for
constructing miR–gene co-expression networks for the four
progression stages of clear cell renal carcinoma as well as for
healthy renal tissue, with data obtained from The Cancer
Genome Atlas (TCGA)-GDC consortium.

In the first step, we inferred all miR–gene co-expression
interactions of each progression stage of ccRC and for the
healthy renal tissue. In the second step, we filtered the whole
miR–gene networks by differentially expressed miRs and genes.
We assessed the differentially expressed genes between non-
tumor adjacent-to-tissue control samples and each progression
stage. However, to establish the progression between stages with
higher accuracy, we calculated the differentially expressed miRs
and genes from contiguous stages: stage I vs. control, stage II vs.
stage I, and so on.
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Once each network was constructed, we conserved the miR–
gene interaction whose relationships were inversely proportional
(overexpressed miR and underexpressed genes and vice versa);
otherwise, we removed them. Finally, we observed the shared
genes and interactions between cancer stages and also those
genes and interactions that resulted unique for each stage. With
this data-driven network sifting, we were able to discover miRs
that have different targets through the clear cell renal carcinoma
progression, thus providing a method for searching possible
therapeutic targets in ccRC and other types of cancer.
MATERIALS AND METHODS

In order to carry out the research program just outlined, we have
implemented a streamlined analytics methodology. A graphical
representation of the workflow followed is shown in Figure 1. In
the following subsections, we will expound on the different
aspects of the workflow just presented.

Data Acquisition
ccRC RNA sequencing data was obtained from TCGA
collaboration (33–35). To obtain the gene expression profiles
for each progression stage, we started by downloading RNA-Seq
level 3 gene expression files for ccRC samples. Additionally, we
downloaded the miR profiles for the same samples; therefore, all
samples were paired RNA/micro-RNA, and the corresponding
metadata is indeed harmonized. Hence, we compiled two main
datasets (1): miR expression quantification (reads per million)
and (2) isoform expression quantification, which contains
detailed information about the transcribed species (as
coordinates mapped) for each transcript. This can be used to
get mature micro-RNA information.
FIGURE 1 | Graphical pipeline. Firstly, sequencing data was obtained from the TCGA-GDC consortium. Secondly, a pre-processing phase was performed, where
raw counts were filtered and normalized. Differential expression was calculated to retrieve genes and miRs whose expression became altered between contiguous
stages. A bipartite co-expression network (miR–gene) for each progression stage was inferred. After that, we conserved those miR–gene interactions with miRs and
genes with opposite differential expression. Finally, an enrichment analysis of the relevant genes obtained by the aforementioned pipeline was performed.
July 2022 | Volume 12 | Article 934711
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The indexes of both datasets were harmonized to match
patient codes as a master key for agglomerating RNAseq and
micro-RNA raw counts. A summary of pre-processed data can
be seen in Table 1.

Clinical Information
We processed the clinical information directly from the TCGA-
KIRC project. We categorized all samples by its tumor_stage
variable. Samples with not-reported stages were removed. The
TCGAbiolinks library (V 2.24.1) was used to retrieve data
from TCGA.

Pre-processing
We pre-processed gene and miR data as follows: (1) we removed
genes without annotation in the BioMart Database, (2) we
removed genes with more than 50% of zero counts per sample,
and (3) genes with a mean expression of less than 10 counts were
also removed. For bias correction, we used the EDASeq R-
package (V 2.30.0) (36). In brief, we removed biases in GC
content, gene length, and biotype. Finally, in order to correct for
possible batch effects, we used the ARSyN method, implemented
in R as a function of NOIseq library (V 2.40.0) (37).

After all filters were implemented and the bias removal was
performed, the total number of miRs for analysis was 275;
meanwhile, the total of genes was 16,224. Those were the
entities used to infer miR–gene networks and to perform
differential expression analyses. A summary of phenotypes,
units of counts, and size of genes and miRs is portrayed
in Table 2.

Differential miR and Gene Expression
Differential expression analysis was implemented by using the
DESeq R package (V 1.8.3) (38). Here we considered
differentially expressed genes (DEGs) with the following filters:
|LogF C| > 1.0 and FDR-corrected d p − value < 1e − 5 .
Meanwhile for differentially expressed miRs (DEMs), the filters
were |LogF C| > 0.5 and p−value < 1e−5. It is worth noticing that
the logFC cutoffs depend on the empirical data distributions and
the associated dynamic ranges of the measurements of the
variables. Even though both RNASeq and miRNASeq were
performed with roughly the same technology (Illumina NGS
Sequencing), there are indeed differences in the capture rates, the
variant calls and annotations, and other issues of the
experimental methodologies. Even more important, there are
differences in the natural abundance of these two types of
transcripts in the samples.

We compared the non-tumor (NT) dataset with all
progression stages (stI , stII , stIII , and stIV). Additionally, in
order to track down the evolution of the tumor progression, we
also performed differential expression analysis between
Frontiers in Oncology | www.frontiersin.org 4
contiguous stages (progression contrast) NT- stI, stI -stII, and
so on. To visualize the DEGs and DEMs, we constructed volcano
plots for each contrast with the default specifications of
EnhancedVolcano (V1.14.0) package (https://github.com/
kevinblighe/EnhancedVolcano).

We observed the number of DEGs and DEMs which appeared
for each contrast. We also calculated those unique DEGs and
DEMs for each contrast as well as those shared DEGs/DEMs in
all contrasts. The code to develop these analyses can be found at
the following repository: https://github.com/josemaz/kirc-mirna.

Network Inference
To analyze the potential role played by miRs in the gene
expression program, we inferred five miR–gene networks, one
for tumor-adjacent-healthy-tissue (NT) samples, and one for
each tumor progression stage. All networks were inferred by
using mutual information (MI) as a statistical dependence
measure. MI was calculated over the expression values for all
miR–gene couples (275 × 16, 227 ≈ 4.5 × 106 pairwise
interactions) for each phenotype. We implemented a multi-
thread miR–gene co-expression calculation based on the
ARACNe algorithm (27). The code to infer such MI-based
networks can be found at https://github.com/josemaz/
aracne-multicore.

Network Filtering and Visualization
In order to find dysregulated genes targeted by micro-RNAs, we
used both DEGs and DEMs as network filters. Briefly, we
conserved the 100,000 highest miR–gene MI interactions to
capture the most relevant co-expression relations for any given
phenotype. We conserved only those miR–gene interactions in
which the micro-RNA and its target have opposite differential
expressions: overexpressed miR and underexpressed gene and
vice versa looking for canonical miR–gene interactions.

Finally, we analyzed the fraction of conserved miR–gene
interactions and the fraction of unique interactions for each
phenotype. Network visualizations were performed with
Cytoscape 3.8.2 (39).
RESULTS AND DISCUSSION

NT and ccRC Contrasts
We performed a multi-group comparison between control and
each progression stage. We found a larger number of over-
expressed genes and miRs than that of underexpressed ones.
Table 3 shows the comparison between miRs and differentially
expressed genes between non-tumor (NT) and each progression
stage of ccRC (stI, stII, stIII, and stIV). Interestingly, the number of
TABLE 1 | Number of harmonized cases for each stage of ccRC and NT.

NT stI stII stIII stIV

Number of samples 71 251 55 122 81
TABLE 2 | Summary of genes and miRs.

Genes miRNAs

Size 16,224 275
Units HTSeq - counts Reads-per-million-miRNA-mapped
Phenotypes 5 5
July 2
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DEGs increases with progression stages; this may suggest that the
whole gene regulatory program becomes more disrupted as the
tumor evolves to later stages.

The large difference of DEGs and DEMs between NT and stI,
compared with the rest of contrasts, may be due to the
recruitment and accumulation of several different cancer-
associated cell types, aside from the intrinsic genomic
alterations of cancer cells with respect to normal ones.

Despite the large number of DEGs and DEMs, unique
differentially expressed genes or miRs are quite scarce. Table 4
shows the number of unique DEGs and DEMs per contrast. As
observed, the number of unique DEGs/DEMs per contrast is
almost 40 times lower than the total amount of DEGs/DEMs.

These results become of particular interest because it appears
that most of the DEGs/DEMs are conserved throughout the
whole evolution of the disease. However, as we have previously
observed in gene–gene co-expression networks (32), differential
expression is not sufficient to explain the evolution of the early
stages to the more advanced ones.
DEGs and DEMs Are More Abundant
Between Control and Stage I Than in Any
Other Contrast
Although the differential expression between control and
progression stages provides information regarding those genes
and miRs that may exert influence on the acquisition of
oncogenic traits, a comparison between contiguous stages can
be, in some sense, more revealing since it represents the evolution
of the gene expression program along tumor progression.

To further investigate on this, we performed a differential
expression analysis between sequentially contiguous stages. In
Figures 2, 3, we can observe volcano plots showing the DEGs
and DEMs between the consecutive stages of ccRC evolution: NT
− stI , stI − stII , stII − stIII, and stIII − stIV. Supplementary
Material S1 shows the shared and unique genes/miRs for
each contrast.
Frontiers in Oncology | www.frontiersin.org 5
Figure 2 shows the volcano plots for the DEGs. As can be
seen, the contrast with the larger number of DEGs is that
between NT and stI , with a total of 2,187 overexpressed genes
and 1,946 underexpressed ones. The following contrasts had a
number of DEGs more than 100 times lower than the first one.
Analogously, in Figure 3, we can observe a similar behavior for
DEMs. According to these results, in ccRC, the main changes in
the gene and miR regulatory programs occur in the initial phase
of tumor evolution.

In the latter contrasts, both DEGs and DEMs show specific
differences in their expression—for instance, mir-155
(considered as miR regulator of VHL) (40, 41) is overexpressed
in the T-stage1 comparison: However, in the following contrasts
it is not differentially expressed.

To notice, in the latter contrasts, for both cases of miRs and
genes, the list of DEGs and DEMs is different for each contrast.
In Supplementary Material S2, we provide all contrasts between
NT and all ccRC progression stages as well as between
sequentially contiguous stages.

The resulting overexpressed and underexpressed miRs and
genes were then used to construct the miR–gene networks for
each phenotype (NT and the four stages). We conserved only
those miR–gene interactions between DEGs and DEMs with an
opposite differential expression trend (potentially corresponding
to the canonical mechanisms of miR–gene regulation).
miR–Gene Networks Are Mostly Stage
Specific
Figure 4 shows an upset plot of the shared miR–gene
interactions for each stage. In stark contrast with the high
number of shared genes among DEGs and DEMS, in the case
of miR–gene networks, there is only a small subset of interactions
that are shared between networks. More than 90% of the miR–
gene interactions are unique for each network.

This result was seemingly counter-intuitive at first since the
number of shared genes and miRs between contrasts was very
TABLE 3 | DEGs and DEMs for each progression stage as compared with non-tumor adjacent tissue-derived samples.

NT–stI NT–stII NT–stIII NT–stIV

Underexpressed genes 1,946 2,012 2,106 2,187
Overexpressed genes 2,187 2,238 2,587 2,630
Overexpressed miRs 88 87 96 91
Underexpressed miRs 87 87 88 88
All genes 4,133 4,250 4,693 4,817
All miRs 175 174 184 179
July 2022 | Volume 12 | Article
TABLE 4 | Unique differentially expressed genes and miRs for each non-tumor stage contrast.

NT–stI NT–stII NT–stIII NT–stIV

Overexpressed genes 52 54 61 189
Underexpressed genes 56 58 30 141
Overexpressed miRs 2 2 4 4
Underexpressed miRs 1 1 1 3
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high. However, the miR–gene regulatory programs, as
represented by high-confidence co-expression networks, are
indeed highly specific for each progression stage.

A concomitant result derived from the uniqueness of miR–
gene interactions for each progression stage is that there is a small
Frontiers in Oncology | www.frontiersin.org 6
set of shared interactions between cancer stages but not shared
with the NT network. Only 33 interactions are common for the
four stages and not presented in the non-tumor phenotype.

By looking at those interactions, it can be appreciated that
practically all of them correspond to miRs and genes that belong
A B

DC

FIGURE 2 | Differentially expressed genes for each contiguous stage of ccRC. (A) Contrast between control and stage I; (B) stage I V, stage II; (C) stage II V, stage
III; (D) stage III V, stage IV. Red circles represent genes with a |log2FC| >1 and a p-value <1e-5; circles depicted in green take account for those genes with a |
log2FC| >1 but p-value <1e-5; those genes with a |log2FC| <1 but a p-value <1e-5 are depicted in blue. Finally, those genes with values lower than those thresholds
are depicted in gray. It becomes evident that the contrast with more DEGs is the one between NT and stI.
A B

DC

FIGURE 3 | Differentially expressed miRs for each contiguous stage of ccRC. (A) Contrast between control and stage I; (B) stage I V, stage II; (C) stage II V, stage
III; (D) stage III V, stage IV. The color code is the same as that in Figure 2.
July 2022 | Volume 12 | Article 934711
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to the same chromosome. Furthermore, they belong to the same
cytoband (Supplementary Material S6).

Interestingly, among the most connected miRs corresponding
to the miR-196 family are the following: miR-10A and miR-
196A-1 (Chr17q21.32), miR-196A-2 (Chr12q13.13), and miR-
196B (Chr7p15.2). As can be observed in Figure 4B, those miRs
(upper part of the network) are associated with HOX genes
which belong to the same location than the said miRs: HOXC9,
HOXC10, and HOXC11 are located at Chr12q13.13. Analog is
the case of HOXA5, HOXA7, and HOXA10 (Chr7p15.2) or
HOXB3, HOXB4, HOXB6, and HOXB8 (17q21.32).

The role of HOX genes in the rise and development of several
types of cancer has been extensively reported (42–44).
Additionally, the role of the miR-196 family has been also
described in different carcinomas (45–47). The fact that the
miR-196-HOX genes complexes are shared between all
Frontiers in Oncology | www.frontiersin.org 7
progression stages but absent in the non-tumor network, may
indicate the role of these relationships in ccRC progression.

It is worth to noticing, genes shared by non-tumor (control)
and stages were: HOXA9, MEST, TENM4, ARPP21, DIO3. As it
was mentioned, HOAX genes have an important role in cancer.
The loss of imprinting of MEST gene has been linked to certain
types of cancer and may be due to promotor switching. However,
all those genes play a critical role in mammalian development as
a common feature.

Finally, the neighboring location of miRs and genes observed
in Figure 4B has been previously described in gene–gene co-
expression networks for breast cancer (28, 30, 48), lung cancer
(31), and also in clear cell renal carcinoma progression stages
(32). In this case, where the inferred networks are obtained by
correlating the micro-RNA expression with the gene expression,
the effect of loss of long-distance co-expression is not appreciated
A

B

FIGURE 4 | Intersection of miR–gene co-expression networks. (A) Each bar in the UpSet plot represents the number of interactions in the selected set, represented
by linked points below the bars (log scale). Above each bar, the number of interactions is shown. The first five bars account for unique interactions. From the sixth
bar onward, each one of them shows the number of shared interactions between two or more networks. At the right side, the set of shared interactions between the
four CCRC progression stages (but not NT) is highlighted in yellow. (B) The 33 shared interactions between the four progression stages but not shared with the non-
tumor network are depicted. In the figure, the color of the nodes represents the chromosome where miRs and genes are located.
July 2022 | Volume 12 | Article 934711
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in the whole networks. However, in the 33 (out of 100,000 for
each stage) cancer-shared interactions, we observe not only miR–
gene interactions with molecules from the same chromosome but
also the same cytoband and, furthermore, contiguous locations
in terms of start positions (Supplementary Material S6).

After observing the location of miRs and genes in the shared
network, we argue that the appearance of intra-cytoband
interactions in cancer-exclusive phenotypes could be related to
an anomalous transcriptional event which allows to have similar
expression patterns between microRNAs and gene transcripts.
Experimental corroboration, however, is needed to fully
elucidate the role of those interactions. Additionally, the
HOX–miR-196 complex should also be investigated in order to
provide a possible explanation of those development-related
genes in ccRC progression.
Frontiers in Oncology | www.frontiersin.org 8
miR–Gene Networks Are Different
Between Stages, Both in Size and
Composition
As previously stated, we inferred five networks (one for each
phenotype), one network for NT, and one network for each ccRC
progression stage. To construct all networks, we calculated the
mutual information measure between miRs and genes by using
the expression matrices for miRs and genes in all stages
(see Table 1).

We conserved the top 100,000 miR–gene interactions for each
one of the five networks (Supplementary Material S3). From the
top 100,000 edge networks, we conserved only those miR–gene
interactions between DEGs and DEMs with opposite differential
expression trend (overexpressed miR, underexpressed gene, and
vice versa). The resulting networks are depicted in Figure 5. The
July 2022 | Volume 12 | Article 934711
FIGURE 5 | miR–gene networks for each progression stage. In this figure, we can observe networks inferred by mutual information between the expression of miRs
and genes for each progression stage. Networks are placed from top to bottom according to the progression stage. The contrast used to depict each network is
placed at the left. Red nodes represent overexpressed miRs or genes; meanwhile, underexpressed molecules are depicted in blue. At the left side, networks
constructed with overexpressed miRs and underexpressed genes can be found. The right part of the figures contains networks with underexpressed miRs and
overexpressed genes. Green squares mark the location of miR-217, the only micro-RNA present in the four networks.
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difference in size between the networks of stI and the rest of
networks is evident.

miR-217 Is Differentially Expressed in
All Sequentially Contiguous Contrasts
Yet Shows Different Target Genes
for Each Stage
From Figure 5, it can be appreciated that, in each network, miR-
217 appears as one of the DEMs and also has a target gene in all
cases. In the contrast between stage I and NT, miR-217 is
underexpressed (Log2FC = −1.32). In this stage, this micro-
RNA potent ia l ly regula t es up to 60 targe t genes
(Supplementary Material S4). Among the target genes of
miR-217, we can find BIRC7 (Log2FC = 5.988), LAMA4
(Log2FC = 4.024), or E2F2 (Log2FC = 2.266) genes (Table 5).

For the contrast between stage I and NT, BIRC7 was the most
overexpressed gene. BIRC7 has been reported to be crucial in the
development of thyroid cancer by inhibiting apoptosis (49) in
several cancer types, such as thyroid (50), leukemia (51), or
neuroblastoma (52). In particular, for renal cell carcinoma, the
overexpression of BIRC7 has been associated to PTEN-related
malignancy and poorer prognosis (53) and metastatic behavior
(54). Supplementary Material S5 is a Cytoscape session file
(a.cys network file) containing all top 100,000 networks as well as
those for the differentially expressed miR–genes.

LAMA4 is also strongly overexpressed in stage I compared
with NT. Its overexpression has been related305 to metastasis in
pancreatic Cancer (55). Additionally, it has been observed that
miR-200b306 down-regulated LAMA4 and decreases metastasis
of renal cell carcinoma (56).

Regarding the stage II network, GALNTL6 (polypeptide N-
acetylgalactosaminyltransferase like 6) is the only target of miR-
217 present. This gene is related to the metabolism of proteins
and O-linked glycosylation (57). The Gene Ontology (GO)
annotations related to this gene include carbohydrate binding
and polypeptide N-acetylgalactosaminyltransferase activity.
GALNTs typically initiate O-glycosylation in the Golgi
apparatus, but in cell culture models these enzymes can
translocate to the ER via a process that involves aberrant Src
signaling, leading to an increased density of O-glycosylation of
MUC1 repeats (58). GALNTL6 has been reported to be amplified
in papillary thyroid carcinomas (59).

For the stage III network, the only target of miR-217 is WNK2
(WNK lysine-deficient protein kinase 2). Diseases associated
with WNK2 include hypomagnesemia 4 and renal and
angiomatous meningioma. Pathways related to WNK2 are the
transport of glucose and other sugars, bile salts and organic acids,
and metal ions and amine compounds and ion channel
transport. The GO annotations related to this gene include
Frontiers in Oncology | www.frontiersin.org 9
transferase activity, transferring phosphorus-containing groups,
and protein tyrosine kinase activity.

We should notice that, in stage III network, WNK2 is
underexpressed, and miR-217 is upregulated. WNK2 is
considered as a tumor suppressor gene because it inhibits cell
proliferation (60), negatively regulating epidermal growth factor
receptor signaling via the inhibition of MEK1 (61).

Taking these issues into account, the fact that miR-217
resulted overexpressed and its only target in stage III network
was WNK2 supports the hypothesis that WNK2 may be a stage-
III-specific tumor suppressor gene downregulated by miR-217.

Finally, we found IGF2BP2 as the unique target of miR-217 in
the stage IV network. IGF2BP2 is an IGF2 (insulin growth factor
2) post-transcriptional regulator. Other targets of this gene are
MYC and PTEN, two crucial participants in pathways associated
with tumorigenesis (62). IGF2BP2 was considered as a
metabolism regulator. It modulates cellular metabolism in
diabetes, obesity, or fatty liver diseases by means of post-
transcriptional gene regulation (63). Recently, it has been
demonstrated that the overexpression of this gene is a
prognostic factor in several types of cancer, such as leukemia
(64), breast (65), lung (66), colorectal (67), or hepatocellular
carcinoma (68) (Figure 6).

In the stage IV network, miR-217 is underexpressed, and its
only target is IGF2BP2, which is overexpressed (Log2FC =
1.0798). The overexpression of this gene may be due to the
underexpression of miR-217 in this stage of ccRC.

It is worth noticing that the differential expression of all
aforementioned genes occurs between sequentially contiguous
stages, i.e., the contrast between those genes is made by the
previous phase of ccRC. These results are remarkable since the
“control” dataset is an earlier stage of ccRC; that control gene
expression dataset is already altered by cancer. Hence, DEGs and
DEMs are “more differentiated” than in the control network,
which is the traditionally selected contrast.

As shown in Figures 2, 3, the number of statistically significant
interactions in the NT − stI network is much larger than in any
other contrast. This implies that the largest alterations occurring
between these contiguous progression stages are given by the high
number of differentially expressed genes and miRs, allowing the
deregulation of several biological processes, which are, in turn,
associated with radical changes of the whole phenotype.

On the other hand, the low number of interactions in the
subsequent contrasts may also imply that the miR–gene
deregulation observed in the advanced stages is a complementary
process, which is concomitant to several other phenomena that
drive the clear cell renal carcinoma progression.

We want to highlight an apparently counter-intuitive result;
this is related to the number of shared differentially expressed
TABLE 5 | Expression statistics for miR-217 and its target genes.

NT–stI stI–stII stII–stIII stIII–stIV

miR-217 Log2FC -1.322 -0.5326 0.9033 -0.7065
Number of targets 60 GALNTL6 WNK2 IGF2BP2
Targets Log2F 1.899 (average) 1.1678 -1.2373 1.0798
July 2022 | Volume 12 | Articl
e 934711
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genes/miRs in each tumor stage with respect to the shared
interactions: the same set of 16,227 genes and 275 miRs was
used to construct each network. However, as shown in
Figure 4A, the number of shared interactions is very low
compared with the unique interactions per network (more
than 90,000 out of 100,000 for any given phenotype).

This effect of uniqueness in the network interactions most
likely obeys the specificities of regulation by micro-RNAs in each
context. Despite the fact that the five networks contain the same
genes and miRs, the way in which miRs and genes co-express is
exclusive. The progression of CCRC apparently modifies the
micro-RNA-mediated genetic regulatory processes.

Notwithstanding, the network composed of the shared
interactions between the four CCRC progression stages is also
informative. From that network, we can observe that almost all
interactions occur between genes and miRs from the
same chromosome.

The bias to intra-chromosomal interactions has been
previously reported by our group in gene co-expression
networks for breast cancer (28, 48, 70–72), lung cancer (31),
and also CCRC (32). These results show a clear trend to favor
close gene correlations in terms of base pair distance. However,
for miR–gene co-expression networks in breast cancer (14, 73,
74), we did not observe a trend to present more intra-
chromosomal miR–gene interactions over inter-chromosomal
ones. To our knowledge, this is the first time that a bias into the
intra-chromosomal miR–gene interactions, in the context of
breast cancer, was observed.

The finding of those 31 intra-chromosomal miR–gene
interactions may be related to the same mechanism behind the
bias favoring local correlations over the long-distance ones.

However, the mechanism for which this phenomenon
emerges in cancer, but not in control, networks remains
elusive. We have investigated the role of other biomolecular
Frontiers in Oncology | www.frontiersin.org 10
processes such as those in transcription factor binding sites,
CTCF binding sites (30), or copy number alterations (75). It is
worth noticing that none of them has shown to be significantly
related to the loss of inter-chromosomal interactions.

Regarding the differences between progression stage
networks, the low number of regulated genes by miRs is
intriguing since the reports of genes targeted by miRs in the
context of renal carcinoma has grown in the recent years [for a
systematic review, see (76)]. The latter could be due to the form
in which networks were constructed. These networks were
obtained by three different filters: (a) the top 100,000 miR–
gene co-expression interactions, (b) those miRs and genes that
resulted differentially expressed between contiguous stages, and
(c) the co-expression relationships between miRs and genes with
opposite sign in their differential expression values.
CONCLUDING REMARKS

In this work, we have constructed a set of networks in order to
provide a framework for the evolution of the co-expression
landscape of micro-RNAs and genes during the progression of
clear cell renal carcinoma. As a summary of findings, we may
establish the following:

• With this approach we were able to find differentially
expressed genes and miRs for each progression stage. At the
same time, we were capable of inferring networks filtered to
look up for canonical miRs–gene regulatory interactions.

• The largest difference in terms of number of differentially
expressed genes as well as in the number of miR–gene
interactions occurring between control and stage I.

• Each network behaves differently in terms of miRs and genes
involved. Those networks do not share interactions, and the
FIGURE 6 | Possible oncogenic role of miR-217. In cancer transition one (stage I–II), miR-217 allows GALNTL6 overexpression. This protein typically initiates post-
translational modifications in the Golgi apparatus. Additionally, in cell culture models, these enzymes affect the ER via aberrant Src signaling. In stages II–III (transition
two), miR-217 represses WNK2 expression, a tumor suppressor which inhibits cell proliferation by negatively modulating the activation of the MEK1 pathway. In the
last transition (stages III–IV), miR-217 enables IGF2BP2 overexpression. This gene promotes tumor progression in several types of cancer, such as glioblastoma
multiforme and gallbladder cancer. IGF2BP2 also promotes tumor cell proliferation through the PI3K-Akt pathway (69).
July 2022 | Volume 12 | Article 934711
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large majority of miR–gene edges are indeed unique for each
progression stage network.

• miR-217 is differentially expressed in all networks. It is the
only micro-RNA that is differentially expressed in each stage
with oppositely expressed gene targets.

• miR-217 correlates with a completely different set of genes
depending on the progression stage. Furthermore, the
differential expression of all those genes is in agreement
with their role as oncogenes or tumor suppressor genes.

• The finding that LAMA4, BIRC7, GALNTL6, WNK2, and
IGFBP2 are potential targets of miR-217 at different times of
tumor evolution may help to develop stage-specific strategies,
taking into account the differential expression of miR-217 in
each stage of clear cell renal carcinoma progression.

• To our knowledge, this is the first time that the evolution of
the expression patterns of a micro-RNA is tracked down
during all steps of carcinoma progression and, at the same
time, its ability to regulate different targets according to the
tumor evolution is analyzed.

Possible extensions to the work presented here may include
the analysis of other -omic sources, such as the methylation
profile, the role of long non-coding RNAs, or the copy number
alteration profile. The idea of integrating several sources to
provide a more realistic model of the transcriptomic regulation
in cancer is important for further steps towards an integrative
understanding of gene regulatory programs in cancer.

Additional extensions could be related to the classification of
samples based on other clinical features and not only in the
progression stage, such as age, gender, or survival status.

A number of the hypotheses that this and other studies have
generated must be experimentally tested under different
conditions in order to fully capture the potential mechanisms
and their implications. However, we believe that approaches
such as this one could help the biomedical and clinical research
in the search for stage-specific micro-RNA-targeted therapies.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.
AUTHOR CONTRIBUTIONS

JZ-F performed the computational analyses, developed and
implemented the programming code, performed pre-
processing and low-level data analysis, made the figures, and
drafted the manuscript. EH-L developed the theoretical
Frontiers in Oncology | www.frontiersin.org 11
approach, supervised the statistical analysis, designed the
figures, and drafted and reviewed the manuscript. JE-E
conceived and designed the project, supervised the project,
made the figures, and drafted and reviewed the manuscript. All
authors contributed to the article and approved the
submitted version.
FUNDING

This work was supported by CONACYT (267236 PhD student
scholarship to JMZ-F) as well as by federal funding from the
National Institute of Genomic Medicine (Mexico). JMZ-F is a
doctoral student from the Programa de Doctorado en Ciencias
Biomédicas, Universidad Nacional Autónoma de México. This
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14. Drago-Garcıá D, Espinal-Enrıq́uez J, Hernández-Lemus E. Network Analysis
of EMT and MET Micro-RNA Regulation in Breast Cancer. Sci Rep (2017)
7:1–17. doi: 10.1038/s41598-017-13903-1

15. O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis,
Mechanisms of Actions, and Circulation. Front Endochrinology (2018) 9:402.
doi: 10.3389/fendo.2018.00402

16. Hashimoto Y, Akiyama Y, Yuasa Y. Multiple-To-Multiple Relationships
Between Micrornas and Target Genes in Gastric Cancer. PloS One (2013) 8:
e62589. doi: 10.1371/journal.pone.0062589

17. Di Leva G, Garofalo M, Croce CM. Micrornas in Cancer. Annu Rev Pathology:
Mech Dis (2014) 9:287–314. doi: 10.1146/annurev-pathol-012513-104715

18. Garzon R, Calin GA, Croce CM. Micrornas in Cancer. Annu Rev Med (2009)
60:167–79. doi: 10.1146/annurev.med.59.053006.104707

19. Hayes J, Peruzzi PP, Lawler S. Micrornas in Cancer: Biomarkers, Functions
and Therapy. Trends Mol Med (2014) 20:460–9. doi: 10.1016/
j.molmed.2014.06.005

20. Han N, Li H, Wang H. Microrna-203 Inhibits Epithelial-Mesenchymal
Transition, Migration, and Invasion of Renal Cell Carcinoma Cells via the
Inactivation of the Pi3k/Akt Signaling Pathway by Inhibiting Cav1. Cell
Adhesion Migration (2020) 14:227–41. doi: 10.1080/19336918.2020.1827665

21. Amar D, Safer H, Shamir R. Dissection of Regulatory Networks That are
Altered in Disease via Differential Co-Expression. PloS Comput Biol (2013) 9:
e1002955. doi: 10.1371/journal.pcbi.1002955
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Hernández-Lemus E. Intrachromosomal Regulation Decay in Breast
Cancer. Appl Mathematics Nonlinear Sci (2019) 4:223–30. doi: 10.2478/
AMNS.2019.1.00020
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