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Abstract Perception and behavior can be guided by predictions, which are often based on

learned statistical regularities. Neural responses to expected stimuli are frequently found to be

attenuated after statistical learning. However, whether this sensory attenuation following statistical

learning occurs automatically or depends on attention remains unknown. In the present fMRI study,

we exposed human volunteers to sequentially presented object stimuli, in which the first object

predicted the identity of the second object. We observed a reliable attenuation of neural activity

for expected compared to unexpected stimuli in the ventral visual stream. Crucially, this sensory

attenuation was only apparent when stimuli were attended, and vanished when attention was

directed away from the predictable objects. These results put important constraints on

neurocomputational theories that cast perception as a process of probabilistic integration of prior

knowledge and sensory information.

DOI: https://doi.org/10.7554/eLife.47869.001

Introduction
Previous experience constitutes a valuable source of information to guide perception and behavior.

Extracting statistical regularities from past input in the environment to form expectations about the

future has been shown to improve behavior in myriad ways (Bertels et al., 2012; Hunt and Aslin,

2001; Kim et al., 2009). Indeed, the acquisition of statistical regularities is thought to occur auto-

matically (Turk-Browne et al., 2009) and affects behavior even in the absence of an intention to

learn, or an awareness of, the regularities (Fiser and Aslin, 2002; Brady and Oliva, 2008). Given the

significant behavioral and perceptual relevance of expectations, it is perhaps not surprising that the

brain shows a remarkable sensitivity to statistical regularities. Many studies documented attenuated

neural responses for expected compared to unexpected object stimuli in ventral visual regions sub-

serving object recognition, both in terms of single unit spiking activity in monkeys (Meyer and

Olson, 2011; Kaposvari et al., 2018) and in terms of non-invasively measured BOLD activity in

humans (den Ouden et al., 2010; Egner et al., 2010; Richter et al., 2018; for a review see

de Lange et al., 2018). This reduced response to expected stimuli has frequently been interpreted,

within a predictive processing framework (Friston, 2005; Rao, 2005; Rao and Ballard, 1999), as sig-

nifying a reduction of prediction errors elicited by the stimulus when sensory input matches prior

expectations. However, it remains largely unknown whether this sensory attenuation process to pre-

dicted visual stimuli is automatic, as its relation to statistical learning may suggest, or only apparent

when the predictable stimuli are attended.

Indeed, research on visual statistical learning in monkeys has typically not manipulated attention,

but only required monkeys to passively fixate in order to obtain reward (Meyer and Olson, 2011;

Kaposvari et al., 2018), thereby precluding conclusions pertaining to the dependence of these pre-

dictive processes on attention. Many studies in humans, providing evidence for suppressed

responses to expected stimuli, did require participants to attend the predictable stimuli (e.g.,

den Ouden et al., 2010; Egner et al., 2010; Kok et al., 2012a; Richter et al., 2018). On the other
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hand, den Ouden et al. (2009) demonstrated attenuated responses to task-irrelevant expected

stimuli, suggesting the possibility that the sensory consequences of statistical learning may not

depend on attention. Similarly, Kok et al. (2012a) showed that the sensory attenuation for grating

stimuli with an expected orientation was independent of whether the orientation feature was

attended or not. Importantly however, in both these studies the expected or unexpected stimulus

was the only stimulus presented on the screen, so even though the stimuli were not relevant, atten-

tion was not effectively disengaged by other stimuli. Without competition, it is likely that even a

task-irrelevant stimulus will receive some attention.

Thus, at present it remains unclear whether statistical learning automatically results in altered neu-

ral responses to expected compared to unexpected visual stimuli, or whether this process hinges on

the stimuli being attended. In order to answer this question, we exposed participants to sequentially

presented pairs of object images. The first image predicted the identity of the second image,

thereby making an image expected depending on temporal context. We recorded responses to

expected and unexpected object images using whole-brain fMRI while participants performed one

of two tasks. Either participants categorized the predictable, second object image as (non-)elec-

tronic (rendering the object images attended), or they classified a concurrently shown character (let-

ter or symbol), presented within the fixation dot, as (non-)letter (rendering the object images

unattended).

In brief, our results demonstrate strong sensory attenuation for expected object images within

the ventral visual stream. Crucially however, expectation suppression was only evident when objects

were attended and vanished when participants attended the concurrently presented alphanumeric

characters at fixation. This suggests that sensory attenuation induced by statistical learning is not the

result of an automatic integration of prior knowledge with incoming information, but hinges on

attention, thus constraining neurocomputational theories of perceptual inference.

Results
We exposed participants to statistical regularities by presenting object image pairs in which the

leading image predicted the identity of the trailing image. During a learning session, participants

performed a detection task of unpredictable upside-down images. On the next day, in the MRI scan-

ner, participants were shown the same object image pairs, however unexpected trailing images

were also presented; that is, images which were predicted by a different leading image. Crucially,

participants either classified the trailing object as (non-)electronic, thus actively attending the pre-

dictable object, or classified a concurrently presented, but unpredictable, trailing character as (non-)

letter, thus not attending the predictable object.

Attention is a prerequisite for perceptual expectations
First, we investigated whether the sensory attenuation for expected object stimuli was equally pres-

ent when participants attended the objects or not, focusing on our a priori defined ROIs (see

Figure 1A): primary visual cortex (V1), object-selective lateral occipital complex (LOC), and temporal

occipital fusiform cortex (TOFC). In all three regions, expectation suppression was robustly present

when participants attended the objects (V1: t(33) = 3.573, p=0.001, dz = 0.613; LOC: t(33) = 3.860,

p=5.0e-4, dz = 0.662; TOFC: t(33) = 5.133, p=1.2e-5, dz = 0.880), but absent when participants

attended the characters at fixation; that is, when the predictable objects were unattended (V1: t(33)
= �0.216, p=0.830, dz = �0.037; LOC: t(33) = �0.831, p=0.412, dz = �0.143; TOFC: t(33) = 0.072,

p=0.943, dz = 0.012). Indeed, Bayesian analyses showed moderate support for the null hypothesis

(BF10 <1/3) of no expectation suppression in all three regions during the character categorization

task (V1: BF10 = 0.188; LOC: BF10 = 0.253; TOFC: BF10 = 0.184). The robustness of this distinct pat-

tern of expectation suppression for the two conditions was statistically confirmed by an interaction

analysis (expectation by attention interaction, V1:, F(1,33) = 7.706, p=0.009, h2=0.189; LOC: F(1,33) =

12.580, p=0.001, h2=0.276; TOFC: F(1,33) = 16.955, p=2.4e-4, h2=0.339).

Thus, in V1, LOC, and TOFC, there was a significant suppression of BOLD responses for expected

compared to unexpected object stimuli exclusively during the object categorization task. No such

modulation of BOLD responses by expectation was observed in the objects unattended condition in

any of the three a priori ROIs, and in fact, there was moderate evidence for the absence of such a

modulation when objects were unattended. We repeated all ROI analyses within the same ROIs but
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with different ROI sizes in order to ensure that our results were not dependent on the a priori but

arbitrarily defined ROI mask size. Results were highly similar (i.e., the same effects showing statisti-

cally significant results) to those mentioned above within all three ROIs (V1, LOC, TOFC) for all

tested ROI sizes, ranging from 100 to 400 voxels (800 mm3 - 3200 mm3) in steps of 100 voxels. Thus,

our results do not depend on the exact ROI size but represent responses within the respective areas

well.

We also examined how expectation modulated neural activity outside our predefined ROIs by

performing a whole-brain analysis. Results of this whole brain analysis are illustrated in Figure 2A.

The upper row in Figure 2A shows extensive clusters of expectation suppression throughout the

ventral visual stream when objects were attended, but no difference when the objects were unat-

tended (middle row), leading to a significant interaction (bottom row). These results complement

our ROI-based analysis by showing that the observed expectation suppression effect is not unique

to the a priori defined ROIs but evident throughout the ventral visual stream.

Outside the ventral visual stream, additional clusters of expectation suppression are evident in

anterior insula and the frontal operculum, the precentral and inferior frontal gyrus, superior frontal

gyrus and supplementary motor cortex, superior parietal lobule, as well as parts of the cerebellum.

All significant clusters are summarized in a table in Supplementary file 1. Again, all these non-sen-

sory clusters showed reduced activity for expected objects only when the object stimuli were

Figure 1. Expectation suppression within the ventral visual stream depends on attention. (A) Displayed are

parameter estimates + /- within subject SE for responses to expected (blue) and unexpected (green) object stimuli

during the objects attended task (attended) and objects unattended task (unattended). In all three ROIs, V1 (left),

LOC (middle), and TOFC (right) BOLD responses were significantly suppressed in response to expected stimuli

during the objects attended task. No difference was found between BOLD responses to expected and

unexpected stimuli during the objects unattended task. The interaction effect between expectation and attention

condition was significant in all three ROIs. (B) Expectation suppression in primary visual cortex is stimulus

unspecific, and specific only in higher visual areas. Displayed is the average expectation suppression effect (BOLD

responses, unexpected minus expected) split into stimulus-driven (light gray) and non-stimulus-driven (dark gray)

gray matter voxels. Data are shown for the three ROIs, V1 (left bars), LOC (middle bars), and TOFC (right bars).

Expectation suppression in LOC and TOFC was significantly larger for stimulus-driven than non-stimulus-driven

voxels, while no such difference was evident in V1, indicating that expectation suppression in V1 was stimulus

unspecific. Error bars indicate within-subject SE. Note, that the ROI masks in panel A and B differ, for details see:

ROI definition and Stimulus specificity analysis in the Materials and methods section. *p<0.05. **p<0.01.

***p<0.001.

DOI: https://doi.org/10.7554/eLife.47869.002

The following source data is available for figure 1:

Source data 1. Expectation suppression within the ventral visual stream depends on attention.

DOI: https://doi.org/10.7554/eLife.47869.003
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Figure 2. Expectation suppression across cortex for attended object stimuli only. (A) Widespread expectation suppression across cortex in the objects

attended condition. Displayed are parameter estimates for unexpected minus expected image pairs overlaid onto the MNI152 2 mm template. Color

indicates unthresholded parameter estimates: red-yellow clusters represent expectation suppression. Opacity represents the z statistics of the contrasts.

Black contours outline statistically significant clusters (GRF cluster corrected). Significant clusters included major parts of the ventral visual stream (early

visual cortex, LOC, TOFC), anterior insula, and inferior frontal gyrus during the objects attended condition (upper row). No significant clusters were

evident in the objects unattended condition (middle row). The interaction (attended >unattended; bottom row) showed significant clusters similar to

those of the attended condition, albeit less extensive. (B) Expectation suppression across the ventral visual stream for attended objects, but with task-

irrelevant predictions. Displayed are z statistics of the contrast unexpected minus expected of the conjunction: attended task-relevant predictions
S

task-irrelevant predictions; data of task-irrelevant predictions from Richter et al. (2018). Exclusively the ventral visual stream clusters showed significant

expectation suppression in this conjunction, while all non-sensory area clusters were no longer significant. Thus, only the ventral visual stream clusters

displayed a sensitivity to conditional probabilities, irrespective of whether predictions were task-relevant or task-irrelevant, as long as the predictable

stimuli were attended.

DOI: https://doi.org/10.7554/eLife.47869.004

The following source data is available for figure 2:

Source data 1. Expectation suppression across cortex for attended object stimuli only.

DOI: https://doi.org/10.7554/eLife.47869.005
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attended and categorized. There was no significant modulation of activity by expectation anywhere

in the whole brain analysis when the objects were unattended.

Expectation suppression requires attention to the stimuli, but not their
predictable relationship
During the object categorization task, the ability to form expectations about the trailing object stim-

ulus was helpful for the participants, and indeed expected object stimuli were categorized more

quickly and accurately (see Figure 5A and Expectations facilitate object classification). This begs the

question whether the expectation suppression effect that we observed throughout multiple brain

areas during the object categorization task reflects differences in task engagement. Participants had

an incentive to (implicitly or explicitly) use their knowledge of the predictable relationship between

the leading and trailing image to prepare their object categorization response. In order to examine

which brain regions exhibited expectation suppression irrespective of the relevance of the predict-

able relationship between stimuli, we performed a conjunction analysis that highlighted regions that

showed significant expectation suppression both in the current study (during the object categoriza-

tion task) and in a similar study that we published previously (Richter et al., 2018). During this latter

study, participants also attended the object stimuli, but were asked to press a button whenever an

object appeared that was flipped upside-down. Upside-down images occurred rarely, and impor-

tantly, were not related to the (implicitly learned) statistical regularities. Figure 2B shows the whole-

brain results of this conjunction analysis. Significant, bilateral clusters of expectation suppression

were evident throughout most of the ventral visual stream. However, none of the non-sensory clus-

ters showed significant expectation suppression during both experiments. Thus, only in the ventral

visual stream we found strong and robust evidence for expectation suppression, regardless of

whether the predictable relationship was task-relevant or task-irrelevant, as long as the predictable

object pairs were attended.

Stimulus specificity of the neural modulation by expectation
Next, we investigated the stimulus specificity of expectation suppression. Stimulus specificity con-

cerns the question whether only stimulus-driven voxels or also voxels that were not (strongly) driven

by the object stimuli displayed expectation suppression. The rationale was that an unspecific sup-

pression effect (i.e., expectation suppression that is also evident in not stimulus-driven voxels) may

result from global non-sensory effects, such as changes in general arousal or global surprise signals.

On the other hand, stimulus-specific suppression effects, being limited to stimulus-driven voxels, are

rather suggestive of a more specific suppression mechanism that selectively operates on the neural

populations that represent the expected stimulus; for example, the dampening of stimulus-specific

prediction errors as a result of a match between prediction and input.

All three ROIs were split into two populations of gray matter voxels, according to their stimulus

responsiveness (stimulus-driven: responding to the object images; not stimulus-driven: not signifi-

cantly responding to the object images), using independent data from the localizer run. There were

strong differences between the ROIs in terms of the stimulus specificity of expectation suppression

(Figure 1B; ROI x drive interaction: F(1.245,41.080) = 7.651, p=0.005, h2=0.188). Whereas there was

clear evidence for a larger expectation suppression effect in stimulus-driven than not stimulus-driven

voxels in higher visual areas (LOC: t(33) = 3.991, p=3.4e-4, dz = 0.684; TOFC: t(33) = 4.654, p=5.1e-5,

dz = 0.798), suppression was not significantly different between stimulus-driven and not stimulus-

driven voxels in V1 (t(33) = �1.057, p=0.298, dz = �0.181). Indeed, a Bayesian analysis indicated

moderate support for the absence of a difference between stimulus-driven and not stimulus-driven

voxels in V1 (BF10 = 0.307). Of note, all sub-populations in all three ROIs showed significant expecta-

tion suppression (all p<0.05), suggesting that there is a general suppression of activity for expected

stimuli in visual cortex, irrespective of whether the visual cortical area is driven by the stimuli. How-

ever, in later visual cortical areas (LOC and TOFC) there was significantly more expectation suppres-

sion in neuronal subpopulations that were driven by the stimulus, implying a more selective

suppression mechanism in these areas.
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Surprising stimuli elicit a larger pupil dilation
In view of the suggestion that a global, stimulus unspecific response modulation may partially

account for expectation suppression, we performed an exploratory analysis to examine whether sur-

prising stimuli were associated with a stronger pupil dilation in our task. Pupil responses have been

with linked with changes in arousal (Reimer et al., 2014; Vinck et al., 2015), which in turn may

account for the stimulus unspecific suppression component. Moreover, pupil dilation scales with sur-

prise (Damsma and van Rijn, 2017; Kloosterman et al., 2015; Preuschoff et al., 2011). Thus, this

account would predict enhanced pupil dilation to unexpected compared to expected stimuli when

objects were attended.

There was indeed a larger pupil diameter for unexpected compared to expected trailing images

during the objects attended task (Figure 3, left). This difference emerged gradually starting ~600 ms

after the onset of the trailing object image, and was significant between 1.5–2.8 s, as assessed with

a cluster permutation test (pcluster = 0.017). When objects were unattended, no significant difference

in pupil diameter was found between the expectation conditions, and in fact, no timepoint sur-

passed the cluster formation threshold (i.e., all timepoints p>0.05 uncorrected; Figure 3, right).

However, the expectation induced difference in pupil diameter was not reliably different between

attended and unattended stimuli (pcluster = 0.393). Thus, the data showed that the pupil was

Figure 3. Larger pupil dilations in response to unexpected compared to expected stimuli during the objects attended task. Displayed are pupil

diameter traces over time, relative to trailing image onset. Pupil diameter data for expected (blue) and unexpected (green) image pairs are shown for

the objects attended task (left) and objects unattended task (right). The black line on the abscissa denotes statistically significant differences in pupil

dilations between expected and unexpected images (cluster permutation test, p<0.05). In the objects attended condition significantly larger pupil

dilations in response to unexpected images are evident between 1.52 to 2.88 s after trailing image onset (left). No significant difference is found in the

objects unattended condition (right), nor in the interaction between conditions. The first vertical dashed line indicates leading image onset, the second

vertical line trailing image onset. Shaded areas denote within-subject SE. Timepoints from �1.0 to �0.5 s served as baseline period.

DOI: https://doi.org/10.7554/eLife.47869.006

The following source data and figure supplements are available for figure 3:

Source data 1. Larger pupil dilations in response to unexpected compared to expected stimuli during the objects attended task.

DOI: https://doi.org/10.7554/eLife.47869.010

Figure supplement 1. Pupil dilation influences BOLD responses in V1.

DOI: https://doi.org/10.7554/eLife.47869.007

Figure supplement 2. Pupil dilation influences BOLD responses more in non-stimulus-driven than stimulus-driven V1 voxels.

DOI: https://doi.org/10.7554/eLife.47869.008

Figure supplement 3. No difference in baseline pupil size between attention tasks, nor expectation conditions.

DOI: https://doi.org/10.7554/eLife.47869.009
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significantly more dilated for unexpected than expected objects when the images were attended,

mirroring the results of the neural data – albeit, without a reliable difference between attended and

unattended stimuli. This tentatively suggests that the enhanced BOLD responses to unexpected

stimuli might be partially accounted for by a global mechanism, such as increased arousal in

response to surprising stimuli.

Expectation suppression and pupil dilations to surprising stimuli are
associated
We explored whether expectation suppression and pupil dilation differences between unexpected

and expected objects were associated. In other words, we sought for evidence of an association

between the effect of expectations on pupil dilation and the expectation induced neural response

attenuation. For this analysis we rank correlated expectation suppression magnitudes with pupil dila-

tion differences for each participant. Results, displayed in Figure 4A, suggest that, when objects

were attended, expectation suppression in V1 was more pronounced for trailing images that also

resulted in larger pupil dilation differences (t(31) = 2.464, p=0.019, dz = 0.436). This association was

not reliable in LOC (t(31) = 1.413, p=0.167, dz = 0.250; BF10 = 0.466) or TOFC (t(31) = 1.401,

p=0.171, dz = 0.248; BF10 = 0.458). There was no correlation of pupil dilation differences and expec-

tation suppression when stimuli were unattended in any of the ROIs (V1: t(31) = �0.159, p=0.875,

dz = �0.028; BF10 = 0.191; LOC: t(31) = �0.125, p=0.901, dz = �0.022; BF10 = 0.190; TOFC: t(31) =

0.177, p=0.861, dz = 0.031; BF10 = 0.192). There was no significant overall difference in the correla-

tion strength between attended and unattended stimuli (F(1,31) = 1.892, p=0.179, h2=0.058), nor

between ROIs (F(1.558,48.293) = 0.134, p=0.823, h2=0.004), nor their interaction (F(2,62) = 0.482,

p=0.603, h2=0.015). Thus, when stimuli were attended there was evidence for an association of pupil

dilation and expectation suppression in V1.

Figure 4. Expectation suppression is associated with pupil dilation differences and behavioral benefits of

expectations. (A) Correlation of expectation suppression magnitude and pupil dilation differences due to

expectation. When predictable objects are attended, trailing images that induce larger pupil dilation differences

are also showing larger expectation suppression magnitudes in V1. No such association is evident when objects

are unattended. (B) Correlation of expectation suppression magnitude and RT benefits due to expectation. When

predictable objects are attended, larger RT benefits are associated with larger expectation suppression effects in

V1 and TOFC. This association is absent when objects are unattended. Error bars indicate within-subject SEM.

*p<0.05.

DOI: https://doi.org/10.7554/eLife.47869.011

The following source data is available for figure 4:

Source data 1. Neural effects of expectations are associated with pupil dilation differences and reaction time

benefits.

DOI: https://doi.org/10.7554/eLife.47869.012
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Expectations facilitate object classification
In order to assess whether, concurrent with the neural effects of expectations, behavioral benefits of

expectations were evident, we analyzed behavioral responses during MRI scanning in terms of reac-

tion times (RTs) and response accuracy. Overall, the objects attended (classify electronic items) and

objects unattended task (classify characters at fixation) showed very similar response accuracies

(attended: 94.3 ± 5.4% vs. unattended: 94.0 ± 6.6%, mean ± SD) and only minor differences in RTs

(attended: 574 ± 150 ms vs. unattended: 602 ± 131 ms, mean ± SD). This supports the notion that

both tasks were of approximately equal difficulty.

During the object categorization task, participants could benefit from the foreknowledge of the

identity of the trailing object image, as they were asked to categorize the trailing image. Such a ben-

efit would however not be expected during the character categorization task, as the participants

could fully ignore the object stimuli during this task. This is precisely what we observed, both in

terms of accuracy and RTs (Figure 5A). During the object categorization task, participants were

more accurate (W = 457, p=3.2e-4, rB = 0.536) and faster (W = 9, p=3.8e-9, rB = �0.970) for

expected compared to unexpected trailing object stimuli. Conversely, during the character categori-

zation task, no such benefit was observed in terms of accuracy (t(33) = 1.600, p=0.119, dz = 0.274;

BF10 = 0.582) or RT (W = 252, p=0.447, rB = �0.153; BF10 = 0.273). The robustness of this distinct

pattern of behavioral advantage for expected stimuli for the two conditions was statistically con-

firmed by an interaction analysis (accuracy: F(1,33) = 5.203, p=0.029, h2=0.136; RT: F(1,33) = 37.543,

p=6.6e-7, h2=0.532).

Figure 5. Behavioral results demonstrate statistical learning. (A) Behavioral benefits of expectations demonstrate

statistical learning. Displayed are mean accuracy (left) and mean reaction time (right) + /- within subject SE.

Responses to expected stimuli are significantly more accurate and faster, an effect exclusively observed during the

objects attended condition. Thus, object identity expectations benefit behavioral performance during object

classification and do not impact letter classification. (B) Pairs of both the objects attended image set and the

objects unattended image set were classified significantly above chance, indicating a learning of the pairs for both

conditions. Displayed are mean accuracy (left) and mean reaction time (right) during the post-scanning pair

recognition task, + /- within subject SE. The dashed line indicates chance level. During the pair recognition task,

no differences in either classification accuracy (left) or response speed (right) were observed between pairs

previously belonging to the objects attended task compared to the objects unattended task. *p<0.05. ***p<0.001.

DOI: https://doi.org/10.7554/eLife.47869.013

The following source data is available for figure 5:

Source data 1. Behavioral results demonstrate statistical learning.

DOI: https://doi.org/10.7554/eLife.47869.014
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Neural and behavioral effects of expectations are associated
In order to explore whether the observed expectation suppression is associated with the behavioral

benefits due to expectations, we correlated the magnitude of expectation suppression and the

expectation induced RT benefits. Results, illustrated in Figure 4B, show that when the predictable

objects were attended, behaviorally observed expectation RT benefits and neurally observed expec-

tation suppression were associated in both, V1 (t(33) = 2.442, p=0.020, dz = 0.419) and TOFC (t(33) =

2.236, p=0.032, dz = 0.384), but no reliable correlation was found in LOC (t(33) = 1.384, p=0.176,

dz = 0.237, BF10 = 0.439). There was no association in any ROI when objects were unattended (V1:

t(33) = �0.418, p=0.679, dz = �0.072, BF10 = 0.199; LOC: t(33) = �0.374, p=0.711, dz = �0.064,

BF10 = 0.196; TOFC: t(33) = 0.179, p=0.859, dz = 0.031, BF10 = 0.186). On average correlations were

not reliably larger when objects were attended than when they were unattended (attention: F(1,33) =

2.920, p=0.097, h2=0.081). The pattern of results was similar in all ROIs (F(1.636,53.988) = 0.615,

p=0.513, h2=0.018; interaction: F(1.461,48.203) = 0.381, p=0.619, h2=0.011). Thus, there is some evi-

dence that when the objects were attended, participants showed larger benefits (faster RTs) for

expected trailing images for which they also showed larger magnitudes of expectation suppression

in V1 and TOFC. These results suggest that the neural and behavioral effects of expectations are

associated.

No differences in association strength between attended and
unattended object pairs
An alternative explanation for the absence of sensory attenuation for expected object stimuli during

the character categorization task is that statistical regularities for the objects that are presented dur-

ing this condition have simply not been learned. This explanation may be unlikely, because the vast

majority of exposure to the expected pairs takes places in the learning session, during which the

same task (upside-down image detection) was used for all image pairs. However, it is nonetheless

important to ensure that statistical regularities were learned for the image pair sets of the object

and the character categorization task. To empirically address this, we tested whether participants

had explicit knowledge of the statistical regularities for all object pairs. During this post-scanning

pair recognition task, participants were asked to indicate which one of two trailing images was more

likely given the leading image. Participants indicated the correct trailing image with above chance

accuracy for both, the set of object pairs that was previously attended (Figure 5B; perfor-

mance = 62.1 ± 1.8%, mean ± SE; t(33) = 6.803, p=4.6e-8, dz = 1.167) and the set that was previously

unattended (performance = 58.7 ± 2.2%; t(33) = 3.905, p=2.2e-4, dz = 0.670). There was no statisti-

cally significant difference in accuracy on the pair recognition task between these sets of objects

(W = 365, p=0.256, rB = 0.227; BF10 = 0.737). Reaction times were also similar for both sets of

objects (objects previously attended: RT = 458.8 ± 25.4 ms; objects previously unattended:

RT = 466.5 ± 25.9 ms; t(33) = �1.208, p=0.236, dz = �0.207; BF10 = 0.358). Thus, the image pairs

belonging to both task conditions (objects attended and unattended tasks) were reliably learned,

most likely during the extensive behavioral training session, and there was no evidence for a signifi-

cant difference in the learning of associations for the two sets of object pairs. This strongly suggests

that the differences in sensory attenuation between the two attention conditions are unlikely to be

explained by differences in the strength of the association between the object pairs.

Visual processing continues in the absence of attention
Finally, one may wonder whether the lack of expectation suppression when objects were unattended

is due to the fact that object stimuli simply did not elicit strong activity in the ventral visual stream,

as they were not in the focus of attention. Although all three ROIs showed reliable above-baseline

activity also when objects were unattended (Figure 1A), and activity in LOC and TOFC was of similar

amplitude during both conditions, the overall activity level may partly represent stimulus-unrelated

activity. Therefore, in an explorative analysis, we assessed the strength of stimulus-specific activity in

our three ROIs, by means of a decoding analysis of the trailing images. In brief, a multi-class decoder

was trained to differentiate between the six trailing images per attention condition. The classifier

was trained on data obtained in an independent localizer run, during which participants performed a

separate task (detection of dimming of fixation dot). Performance of this decoder was tested on the

mean parameter estimates per trailing image for each of the two attention conditions of the main
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MRI task data. Because each task was comprised of six trailing images, chance performance was

16.7%. One-sample t-tests or Wilcoxon signed rank test (as applicable) showed that in each of the

three ROIs (V1, LOC, TOFC) and tasks (objects attended, objects unattended) object identity could

be decoded above chance (V1 attended: 81.1%; W = 595, p=3.3e-7, rB = 1; V1 unattended: 84.8%;

W = 595, p=3.2e-7, rB = 1; LOC attended: 37.3%; t(33) = 6.303, p=4.0e-7, dz = 1.08; LOC unat-

tended: 38.0%; W = 583, p=9.7e-7, rB = 0.96; TOFC unattended: 25.0%; W = 476, p=0.002,

rB = 0.60), except in TOFC in the attended condition (TOFC attended: 19.6%; W = 383, p=0.143,

rB = 0.287; BF10 = 0.388).

Moreover, decoding accuracy was not different between the objects attended and unattended

conditions in any of the ROIs (V1: t(33) = �1.197, p=0.240, dz = �0.205, BF10 = 0.354; LOC: t(33) =

�0.214, p=0.832, dz = �0.037, BF10 = 0.188; TOFC: t(33) = �1.726, p=0.094, dz = �0.296,

BF10 = 0.697). This suggests that the object stimuli evoked a reliable stimulus-specific activity pattern

in all three sensory regions, which was not significantly different in strength between the two tasks

(object categorization and character categorization). Note, the participants’ task during the localizer

run, which we used to train the classifier, was to detect a dimming of the fixation dot. As such,

object stimuli were unattended during the localizer run, which may render the training data more

similar in terms of attention allocation to the objects unattended task than the objects attended

task. This may explain why decoding accuracy is similar, or even higher, for unattended compared to

attended objects. More importantly, overall visual processing of the object stimuli was clearly pres-

ent even when the objects stimuli were not attended, as the identity of the objects could be reliably

decoded from neural activity patterns throughout the ventral visual stream when objects were

unattended.

Discussion
In the present study, we set out to investigate how sensory attenuation following visual statistical

learning is modulated by attention. In line with previous studies (Alink et al., 2010; den Ouden

et al., 2010; Kok et al., 2012a; Richter et al., 2018; Summerfield et al., 2008) we found a signifi-

cant and wide-spread attenuation of neural responses to expected compared to unexpected stimuli.

Crucially, we showed that attending to the predictable stimuli is a prerequisite for this expectation

suppression effect to arise. While unattended objects led to reliable and stimulus-specific increases

in neural activity, and object pairs were equally learned for these stimuli, there was no differential

activity depending on whether the trailing object was expected or unexpected. Additionally, we

found that higher visual areas exhibited stimulus-specific expectation suppression, whereas early

visual cortex showed a global, stimulus unspecific suppression, possibly arising from a general

increase in arousal in response to surprising stimuli.

Attention is a prerequisite for expectation suppression
Our results show that a core neural signature of perceptual expectations, expectation suppression

(Alink et al., 2010; den Ouden et al., 2010; Kok et al., 2012a; Richter et al., 2018), is only evident

when attention is directed to the predictable object stimuli. Specifically, when participants engaged

in an object categorization task, we found a wide-spread reduction of neural activity for expected

compared to unexpected stimuli throughout the ventral visual stream (V1, LOC, TOFC), as well as

several non-sensory areas (anterior insula, inferior frontal gyrus, precentral gyrus, and superior parie-

tal lobule). Strikingly, no modulation of neural activity by expectation was found when attention was

drawn away from the object stimuli.

Interestingly, by directly comparing our present data with a previous dataset, in which we used a

similar design (reported in Richter et al., 2018), we established that expectation suppression is pres-

ent throughout the ventral visual stream irrespective of whether predictions are task-irrelevant, as

long as the object stimuli are attended. In contrast, the larger activity for surprising stimuli in non-

sensory areas (insular, frontal and parietal cortex) was only observed in the context of task-relevant

expectations. This suggests that neural activity in the ventral visual stream is modulated by condi-

tional probabilities, as long as the stimuli are attended, while the modulations in non-sensory regions

are probably reflecting differences in task demands, given that unexpected stimuli were more diffi-

cult to categorize (reflected by a cost in speed and accuracy). During the object classification task,

unexpected objects may require response inhibition, reevaluation of the category, and thus a new
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response decision. Given that the anterior insula has been associated with task control, action evalu-

ation (Brass and Haggard, 2010), as well as general attentional processes (Nelson et al., 2010),

and inferior frontal gyrus with response inhibition (Aron et al., 2003; Aron et al., 2004), the inter-

pretation that the expectation modulation in non-sensory clusters may reflect task related aspects,

but not conditional probabilities per se, appears well-supported by previous research.

Finally, our results also demonstrate that larger expectation suppression effects in V1 and TOFC

are associated with increased reaction time benefits afforded by expectations when people are judg-

ing the predictable objects. This suggests that the observed expectation suppression effect may not

merely constitute an epiphenomenon of more resource efficient neural processing. Instead, given

the present data, it is plausible that the behavioral advantage of predicting stimuli may partially be

rooted in improved and more effective sensory processing already at the early stages of visual proc-

essing. Predictions may thus help in converging more rapidly on an interpretation of the current sen-

sory input, thereby contributing to faster reactions to expected than unexpected stimuli.

No perceptual predictions without attention
Our results corroborate and extend earlier work by Larsson and Smith (2012), who observed that

stimulus expectation only affected repetition suppression when the stimuli were attended. However,

they appear at odds with several previous studies that have reported expectation suppression in the

visual system for stimuli that were not task-relevant and thus appeared unattended (den Ouden

et al., 2009; Kok et al., 2012a; Kok et al., 2012b). However, in all these studies, while the predict-

able stimuli were task-irrelevant, attention was not effectively drawn away by a competing stimulus

that required attention. While our attention manipulation is also based on task-relevance, we do

engage attention elsewhere using a competing task. This is a crucial difference between the present

and previous studies, because it is likely that any supraliminal stimulus, in the absence of competi-

tion, will be attended to some degree, even if it is not task-relevant, especially if the stimulus is sur-

prising (Horstmann and Herwig, 2015). Indeed, synthesizing earlier and current findings, we can

conclude that expectation suppression in the visual system occurs irrespective of exact task goals

and relevance of the predictable objects and their predictable relationship, but it is abolished by

drawing attention away from the stimuli. This suggests that the integration of prior knowledge and

sensory input is gated by attention – that is, prior knowledge only exerts an influence on stimuli that

are in the current focus of attention, instead of automatically and pre-attentively modulating sensory

input as an obligatory component of perceptual processing.

It is however possible that other, more ‘stubborn’ prior expectations (Yon et al., 2019) that are

derived over longer (ontogenetic or phylogenetic) time scales may persist even when attention is

drawn away, such as perceptual fill-in during the Kanizsa illusion (Kok et al., 2016). Therefore, it is

crucial to discriminate between different types of predictions, as expectations of different sources

may rely on different neural mechanisms and therefore have distinct properties. Similarly, for simple

stimuli, such as oriented gratings (Kok et al., 2012a; Kok et al., 2012b) or simple sequences

(Ekman et al., 2017), the resolution of expectations may depend less on recurrent processing

throughout the visual hierarchy than for complex objects. Thus, it is conceivable that the automaticity

of predictive processing partially depends on the complexity of the predictable stimuli and their

association, with increasing complexity requiring increasing processing across the hierarchy, and in

turn a focus of attention on the predictable stimuli.

Specific vs. unspecific surprise responses
In LOC and TOFC expectation suppression was largest in neural populations that were driven by the

stimuli. Surprisingly, this was not the case in V1, where the suppression was uniformly present in the

population that was driven by the stimuli and the population that was not. This replicates the results

of our previous study (Richter et al., 2018) and suggests that the expectation suppression we

observe in V1 is not the result of a stimulus-specific reduction in prediction error responses of neu-

rons processing the stimulus. Rather, they suggest that the observed expectation suppression effect

in V1 may be accounted for by a more general response modulation. Widespread nonperceptual

modulations of visual cortical activity have been documented in response to unexpected events

(Jack et al., 2006; Donner et al., 2008) and have been suggested to be linked to the cholinergic or

noradrenergic system (Aston-Jones and Cohen, 2005; Yu and Dayan, 2005a). Interestingly, both
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the cholinergic and noradrenergic systems have also been associated with fluctuations in pupil dila-

tion (Reimer et al., 2016). In line with this, we found a significantly enhanced pupil dilation in

response to unexpected stimuli when the objects were attended. This suggests two possible global

mechanisms which may partially account for the observed unspecific expectation suppression effect.

Given that both pupil dilation (Reimer et al., 2014; Vinck et al., 2015) and the noradrenergic sys-

tem (Berridge et al., 2012) are associated with arousal changes, it is possible that expectation sup-

pression is partially accounted for by an increased arousal in response to surprising stimuli. A related

explanation is that enhanced pupil dilation to surprising stimuli (Damsma and van Rijn, 2017;

Kloosterman et al., 2015; Preuschoff et al., 2011) results in enhanced retinal illumination, which in

turn leads to stronger responses in early visual areas (Haynes et al., 2004), which could potentially

also contribute to stimulus unspecific expectation suppression in V1. These interpretations are fur-

ther supported by the fact that expectation suppression and pupil dilation differences between

unexpected and expected attended stimuli were associated, with trailing images that elicit larger

pupil dilation differences also showing more pronounced expectation suppression in V1.

It is unlikely however that these explanations can fully account for the observed expectation sup-

pression effect across the visual hierarchy, given the stimulus-specificity of suppression in LOC and

TOFC. Also, it is important to bear in mind that earlier studies, using different stimuli and paradigms,

did observe stimulus-specific expectation effects in V1 (Kok et al., 2012a; Gavornik and Bear,

2014). Combined, the evidence suggests that the resolution of prediction errors crucially depends

on the visual areas that are specifically coding the feature that is diagnostic of an expectation confir-

mation or violation, while areas below this level may only witness an unspecific, global modulation in

their response, signifying the binary expectation confirmation or violation.

Attention and prediction errors
Within the predictive coding framework, it has been suggested that attention modulates the gain of

prediction error units (Feldman and Friston, 2010). On first glance, our results may not appear com-

patible with the suggestion that attention modulates the gain of prediction errors, because we

observe a stimulus-specific bottom-up signal (prediction error) when stimuli are unattended, but no

difference in the size of this prediction error between expected and unexpected stimuli. However, it

is conceivable that the gain modulation of activity in prediction error units only occurs after the initial

feedforward activity sweep, once the object predictions are strongly activated and start exerting an

effect on the resolution of the prediction error. In particular, the response to unexpected attended

stimuli may be upregulated by attention, while prediction errors for expected attended stimuli are

rapidly resolved, thus resulting in the difference in activity for attended objects. On the other hand,

when attention is drawn away from the object stimuli, a reduced gain on prediction error units

results in the observed attenuation of overall BOLD responses, and an absence of a reliable differ-

ence between expected and unexpected stimuli. A closely related, but conceptually distinct, inter-

pretation is that attention constitutes a (modulation of the) prior itself (Rao, 2005; Yu and Dayan,

2005b). On this account, attention boosts relevant predictions, as during the object classification

task, thus leading to wide-spread expectation suppression, due to larger prediction errors for unex-

pected compared to expected stimuli. However, when attention is disengaged from the object stim-

uli, object predictions are not generated, and thus do not exert an effect on sensory processing.

Interpretational limitations
One may wonder whether the character categorization task at fixation may have drawn attention

away from the objects so forcefully that the object stimuli were no longer processed by sensory cor-

tex. It is important to note here that, although attention was engaged at fixation by the character

categorization task, this task was of trivial difficulty. Thus, it seems unlikely that attentional resources

were exhaustively engaged by the task, preventing any processing of the surrounding object stimuli,

thereby causing the absence of predictive processing. Indeed, behavioral performance was at ceiling

during both tasks. Furthermore, even when objects were unattended reliable visual processing took

place, as evident by strong responses and object-specific neural patterns in the visual ventral stream.

This suggests that in-depth visual processing of object stimuli did occur in the absence of attention,

but predictive processes in particular ceased.
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Another alternative explanation of the present results could be that predictive relationships were

not learned for the set of objects that were used during the character categorization task, thereby

accounting for the absence of a prediction effect. The pair recognition task at the end of the experi-

ment however showed that associations were learned for both image pair sets. Thus, a lack of visual

processing or absence of learning cannot account for the observed results. Also, it is worth noting

that initially the used probabilistic associations (P(expected|cue)=0.5) may appear less strong than in

some previous studies; for example, Egner et al. (2010), Kok et al. (2012a), and

Summerfield et al. (2008) used P(expected|cue)=0.75. However, the likelihood ratio of expected/

unexpected stimuli (0.5/0.1 = 5) used here is actually larger (i.e., each unexpected image is more sur-

prising) than in the cited studies (0.75/0.25 = 3). Moreover, similar probabilistic associations have

been successfully employed in studies investigating neural effects of statistical learning in both non-

human primates (Meyer and Olson, 2011) and humans (Richter et al., 2018). In short, the utilized

conditional probabilities are comparable to previous studies investigating statistical learning. Finally,

it is worth emphasizing that neither adaptation nor familiarity effects can account for the observed

results, because all trailing objects served both as expected and unexpected images, depending

only on temporal context (i.e., the leading image).

Conclusion
In sum, our results suggest that visual statistical learning results in attenuated sensory processing for

predicted input, but only when this input is attentively processed. Thus, attention seems to gate the

integration of prior knowledge and sensory input. This places important constraints on neurocompu-

tational theories that cast perceptual inference as a process of automatic integration of prior and

sensory information.

Materials and methods

Preregistration and data availability
The present study was preregistered at Open Science Framework (OSF) before any data were

acquired. The preregistration document is available at DOI: 10.17605/OSF.IO/36TE7. All procedures

and criteria outlined in the preregistration document were followed, unless explicitly specified in the

Materials and method section below. In this manuscript, only research question 1 of the preregistra-

tion document is addressed. All data analyzed in the present paper are available here: http://hdl.

handle.net/11633/aacg3rkw.

Participants and data exclusion
Our target sample size was n = 34. This sample size was chosen to ensure 80% power for detecting

at least a medium effect size (Cohen’s d � 0.5) with a two-sided paired t-test at an alpha level of

0.05. In total, 38 healthy, right-handed participants were recruited from the Radboud University

research participation system. The study followed institutional guidelines of the local ethics commit-

tee (CMO region Arnhem-Nijmegen, The Netherlands). We excluded four participants, following our

exclusion criteria (see preregistration document and Data Exclusion) resulting in the desired sample

size of n = 34 participants (25 females, age 24.9 ± 4.8 years, mean ± SD) for data analysis. Of these

four exclusions, three exhibited excessive motion during scanning, and one was caused by the par-

ticipant falling asleep, thus resulting in an incomplete data set.

Data exclusion
The following preregistered criteria were utilized for the rejection of data. If any of the following cri-

teria applied, data from that participant were excluded from all analyses. (1) Subpar fixation behavior

during scanning, indicative by a total duration of closed eyes exceeding 3 SD above the group mean

– only trials with stimuli were considered in this analysis; that is, null events and instruction or perfor-

mance screens were not included. (2) Excessive relative motion larger than ½ voxel size (i.e., 1 mm)

during MRI scanning, as indexed by the total number of these motion events exceeding 2 SD above

the group mean. (3) Task performance during MRI scanning indicating frequent attentional lapses, as

indicated by a mean error rate 3 SD above the group mean.
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A fourth rejection criterion, outlined in the preregistration document, based on chance level per-

formance during the post-scan pair recognition task (see: Pair recognition task and 2AFC task in the

preregistration document), was not enforced. This decision was based on feedback by participants,

indicating that the short ITI during this task made it very challenging, even for participants who

reported to have learned most of the associations. Thus, the preregistered pair recognition task

based exclusion criterion would not fulfill the desired function of reliably indicating which partici-

pants did not explicitly learn the associations, as participants struggled with the task due to its fast

pace. Indeed, the enforcement of the criterion would have resulted in the rejection of an additional

nine participants (~26% of participants) from data analysis, which was deemed too stringent.

Stimuli and experimental paradigm
Experimental paradigm
The experiment consisted of two sessions on two consecutive days. On each day the same stimuli

were used for each participant, but different tasks were employed.

Learning session – day one. On each trial participants were exposed to two images of objects in

quick succession (see Figure 6A for a single trial). Each stimulus was presented for 500 ms without

an interstimulus interval and an intertrial interval between 1000–2000 ms. Each participant saw 24

different object images, 12 of which only occurred as leading images (i.e., as the first image on a

trial), while the remaining 12 occurred only as trailing images (i.e., as the second image on a trial).

Importantly, during the learning session the leading image was perfectly predictive of the identity of

the trailing image [P(trailing|leading)=1]. In other words, there were 12 image pairs during learning.

While participants were made aware of the existence of such regularities, the regularities were not

task-relevant. On 20% of trials, one of the two object images was presented upside-down – either

the leading or the trailing image could be flipped upside-down. Crucially, whether an image was

upside-down could not be predicted and was completely randomized. Participants were instructed

to press a button as soon as an upside-down image occurred. Both speed and accuracy were

emphasized. On trials without an upside-down image, no response was required. Throughout the

entire trial, a fixation bull’s-eye (outer circle 0.7˚ visual angle) was superimposed at the center of the

screen. Within the inner circle of the fixation bull’s-eye (0.6˚ visual angle) alphanumeric characters

(letters or symbols) were presented (~0.4˚ visual angle). The characters were presented at the same

time and for the same duration as the object stimuli – that is, two characters per trial, each for 500

ms. As with the object images, there were 12 leading characters and 12 trailing characters. However,

unlike the objects, the identity of the characters, including whether a letter or symbol occurred, was

randomized and thus unpredictable. Participants were instructed that they could ignore these char-

acters, but to maintain fixation on the fixation bulls-eye. In total each participant performed 960 tri-

als during the learning session split into four runs, with a brief break in between runs. Thus, each of

the image pairs occurred 80 times during the learning session. The learning session took approxi-

mately 60 min. fMRI session – day two. Day two of the experiment took place one day after the

learning session. First, participants performed an additional 240 trials of the same upside-down task

as during the learning session in order to refresh the learned associations. Then participants per-

formed two new tasks in the MRI scanner. During MRI scanning, trials were similar to the learning

session, using the same stimulus presentation durations, except for longer intertrial intervals (4000–

6000 ms, randomly sampled from a uniform distribution). Another change to the paradigm during

MRI scanning was a reduction of the probability of the trailing image given the leading image; P(trai-

ling_expected|leading)=0.5. Thus, now only in 50% of trials a leading image was followed by its

expected trailing image. In the remaining 50% of trials, one of the other five trailing images would

occur, making these images unexpected given that particular leading image (i.e., each unexpected

trailing image had P(trailing_unexpected|leading)=0.1). This was achieved by splitting the original 12

� 12 transition matrix from day one into two 6 � 6 matrices (see Figure 6B). One 6 � 6 matrix was

used for each of the two tasks participants performed in the MRI (object categorization and charac-

ter categorization tasks; see below). Thus, each expected trailing image was five times more likely

given its leading image than any of the unexpected trailing images. Furthermore, each trailing image

was only (un-)expected by virtue of the leading image it followed, which in turn also ensured that all

images occurred equally often throughout the experiment, excluding confounds due to stimulus fre-

quency or familiarity. During MRI scanning, an infrared eye tracker (SensoMotoric Instruments, Berlin,
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Figure 6. Experimental paradigm. (A) A single trial is displayed, starting with a 500 ms presentation of the leading

object and the leading character superimposed at fixation. Next, without ISI, the trailing object and trailing

character are shown for 500 ms. Each trial ends with a 4000–6000 ms ITI (MRI session; 1000–2000 ms ITI learning

session), showing only a fixation dot. (B) Statistical regularities depicted as image transition matrix with object

pairs and trial numbers during MRI scanning. L1 to L12 represent leading objects, while T1 to T12 represent the

trailing objects. Leading and trailing objects were randomly selected per participant from a larger pool of images -

that is, leading images of one participant may occur as trailing objects of another participant, in a different task, or

not at all. Blue cells denote expected object pairs of the objects attended (object categorization) task, while green

indicates unexpected object pairs of the objects attended task. Red denotes expected objects of the objects

unattended (character categorization) task, and orange indicates unexpected objects of the objects unattended

task. Each participant was also assigned 12 leading and 12 trailing characters (six letters, six symbols each). Unlike

the object images, there was no association between leading and trailing characters – that is, the identity of the

leading and trailing character was unpredictable. White numbers represent the total number of trials of that cell

during MRI scanning. In total 120 trials of each of the four conditions were shown during MRI scanning per

participant. In the behavioral learning session, participants performed an orthogonal oddball detection task,

Figure 6 continued on next page
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Germany) was used to monitor and record the position and pupil size of the left eye, at 50 Hz.

Finally, after MRI scanning, a brief pair recognition task was performed – for details see Pair recogni-

tion task below.

Object categorization task. During the object categorization task participants were required to

categorize, as quickly and accurately as possible, the trailing object on each trial as either electronic

or non-electronic. Thus, during this task it was beneficial to be able to predict the identity of the

trailing object using the learned associations. Failing to respond, or responding later than 1500 ms

after trailing image onset, was considered a miss. Because the 12 � 12 transition matrix was split

into two 6 � 6 matrices, one for this task, one for the character categorization task, it was ensured

that both 6 � 6 matrices contained three electronic and three non-electronic objects as trailing and

leading images, ensuring an equal base rate of both categories. Before performing this task, it was

explained that ‘electronic’ would be any object that contains any electronic components or requires

electricity to be used. Furthermore, it was ensured that participants could correctly classify each

object by displaying all objects on screen and requesting participants to verbally categorize and

name each object before entering the MRI.

Character categorization task. Trials of the character categorization task were identical to the

object categorization task, except that participants were instructed to categorize the trailing charac-

ter on each trial as a letter (of the standard Latin alphabet: A, B, D, E, G, H, J, K, M, N, R, S) or non-

letter (i.e., a symbol or letter of a non-Latin alphabet: e, $, =, +, F, Ͽ, £, ‡, Ӵ, ,ל !, ?). While the

presentation onset and duration of the characters coincided with the presentation of the object

images, the identity of the trailing character was not predictable. As with the object images, six char-

acters (three letters, three non-letters) were assigned as leading characters and six were assigned as

trailing characters (three letters, three non-letters) for each of the two tasks (object and character

categorization task). This was done to ensure that the character categorization task was as similar as

possible to the object categorization task, and that exposure to the individual characters was as fre-

quent as to the objects. Thus, in short, the rationale of the character categorization task was to draw

attention away from the object stimuli and towards the characters, without imposing a heavy load

on attentional or cognitive resources. Indeed, both tasks were designed to yield task performance at

ceiling level. For both the object and character categorization tasks, feedback on behavioral perfor-

mance was provided at the end of each run.

Procedure, MRI session. First, participants performed a brief practice run consisting of 50 trials

(~5 min in duration) of either the object or character categorization task in the MRI. However, during

the practice run, no unexpected trailing images occurred in order to retain the strong expectations

built up during the learning session. Additionally, during the practice run, an anatomical image was

acquired. After the practice run, two runs of the object or character categorization task were per-

formed. Each run (~14 min) consisted of 120 trials and seven null events of 12 s. Next, a practice run

of the other task followed – that is, if the object categorization task was performed first, the charac-

ter categorization task would now follow, or vice versa. The task order was counter-balanced across

participants. The practice run was again followed by two runs of the second task. After this, partici-

pants performed one functional localizer run (see: localizer). Finally, participants did a pair recogni-

tion task (see: Pair recognition task), assessing the learning of the object pairs. Once finished,

participants were fully debriefed, and any remaining questions were addressed.

Localizer. We included a localizer session to define object-selective LOC for each participant and

to constrain region of interest (ROI) masks to the most informative voxels using data from an inde-

pendent, context-neutral run (i.e., without expectations). The functional localizer consisted of a

repeated presentation of the previously seen trailing images and their phase-scrambled version.

Images were presented for 12 s at a time, flashing at 2 Hz (300 ms on, 200 ms off). At some point

during stimulus presentation, the middle circle of the fixation dot would dim. Participants were

Figure 6 continued

during which only expected pairs were shown (i.e., only the diagonal of the matrix), for a total of 80 trials per

expected pair (960 trials total).

DOI: https://doi.org/10.7554/eLife.47869.015
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instructed to press a button, as fast as possible, once they detected the dimming of the fixation dot.

Each trailing image was presented six times. Additionally, a phase-scrambled version of each trailing

image was presented three times. Furthermore, 12 null events, each with a duration of 12 s were

presented. The presentation order was fully randomized, except for excluding direct repetitions of

the same image and ensuring that each trailing image once preceded and once followed a null event

in order to optimize the design.

Pair recognition task. The rationale of this task was to assess the learning of the object pairs (i.e,

statistical regularities) and to compare whether participants learned the regularities during the

objects attended task better than during the character categorization task. The pair recognition task

followed the MRI session and consisted of the presentation of a leading image followed by two trail-

ing images, one on the left and one on the right of the fixation dot. Participants were instructed to

indicate, by button press, which of the two trailing images was more likely given the leading image.

In order to prevent extensive learning during this task, a few trials with only unexpected trailing

images were shown. Furthermore, participants were instructed that a response was required on each

trial, even when they were unsure. Stimulus durations and intertrial intervals were identical to the

learning session, that is, 500 ms leading image, 500 ms trailing images, and a variable intertrial inter-

val (1000–2000 ms randomly sampled from a uniform distribution). A response had to be provided

within 1500 ms after trailing image onset, or otherwise the trial was counted as a miss. Participants

performed one block of this task, consisting of 240 trials.

Stimuli
Sixty-four full color object stimuli were used during the experiment. The object images were a selec-

tion of stimuli from Brady et al. (2008) comprising typical object stimuli which were clearly elec-

tronic or non-electronic in nature (stimuli can be found here, DOI: 10.17605/OSF.IO/36TE7). Of

these 64 object stimuli, 24 were randomly selected per participant, of which 12 were randomly

assigned as leading images, while the other 12 served as trailing images. Thus, each specific image

could occur as leading image for one participant, as trailing image for another participant, and not

at all for a third participant, thereby minimizing the impact of any particular image’s features. Images

spanned approximately 5˚ x 5˚ visual angle on a mid-gray background, both during the learning ses-

sion and MRI scanning. During the learning session stimuli were presented on an LCD screen (BenQ

XL2420T, 1920 � 1080 pixel resolution, 60 Hz refresh rate). During MRI scanning, stimuli were back-

projected (EIKI LC-XL100 projector, 1024 � 768 pixel resolution, 60 Hz refresh rate) on an MRI-com-

patible screen, visible using an adjustable mirror mounted on the head coil.

We calculated the average relative luminance of the object stimuli by converting the stimulus

images from sRGB to linear RGB, then calculated the relative luminance for all pixels (where relative

luminance Y = 0.2126*R + 0.7152*G + 0.0722*B; Stokes et al., 1996), and finally averaged the

obtained luminance values, thereby obtaining the mean relative luminance per image. On this rela-

tive luminance scale, 0 would be a completely black image, while one would be a white image. The

average relative luminance of the stimulus set was 0.225, while the relative luminance of the mid

gray background, presented during the ITI, was 0.216.

fMRI data acquisition
Anatomical and functional images were acquired on a 3T Prisma scanner (Siemens, Erlangen, Ger-

many), using a 32-channel head coil. Anatomical images were acquired using a T1-weighted magne-

tization prepared rapid gradient echo sequence (MP-RAGE; GRAPPA acceleration factor = 2, TR/

TE = 2300/3.03 ms, voxel size 1 mm isotropic, 8˚ flip angle). Functional images were acquired using

a whole-brain T2*-weighted multiband-6 sequence (time repetition [TR]/time echo [TE]=1000/34.0

ms, 66 slices, voxel size 2 mm isotropic, 75˚ flip angle, A/P phase encoding direction, FOV = 210

mm, BW = 2090 Hz/Px). To allow for signal stabilization, the first five volumes of each run were

discarded.

Data analysis
Behavioral data analysis
Behavioral data from the main task MRI runs were analyzed in terms of reaction time (RT) and

response accuracy. Trials with RT <200 ms, RT >1500 ms, or no response were rejected as outliers
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from RT analysis (1.56% of trials). The two factors of interest were expectation status (expected vs.

unexpected) and attention (objects attended vs. objects unattended task). Thus, a 2 � 2 repeated

measures analysis of variance (RM ANOVA) was used to analyze behavioral data, with the additional

planned simple main effects analyses of expected vs. unexpected within each task condition using

two-sided paired t-tests. For these tests, RT and accuracy data per participant were averaged across

trials and subjected to the analyses. For all paired t-tests, the effect size was calculated in terms of

Cohen’s dz (Lakens, 2013), while partial eta-squared (h2), as implemented in JASP (JASP Team,

2018), was used as a measure of effect size for the RM ANOVA. Standard errors of the mean were

calculated as the within-subject normalized standard error of the mean (Cousineau, 2005) with bias

correction (Morey, 2008). Data from the pair recognition task were analyzed by means of two-sided

paired t-tests or Wilcoxon signed rank test, if the normality assumption was violated, comparing RTs

and response accuracies between image pairs belonging to the attended vs. unattended conditions.

Effect size for Wilcoxon signed rank test was calculated as the matched rank biserial correlation (rb;

JASP Team, 2018).

fMRI data preprocessing
fMRI data were preprocessed using FSL 5.0.11 (FMRIB Software Library; Oxford, UK; www.fmrib.ox.

ac.uk/fsl; Smith et al., 2004, RRID:SCR_002823). The preprocessing pipeline consisted of the follow-

ing steps: brain extraction (BET), motion correction (MCFLIRT), grand mean scaling, temporal high-

pass filtering (128 s). For univariate analyses, data were spatially smoothed (Gaussian kernel with full-

width at half-maximum of 5 mm), while for multivariate analyses no spatial smoothing was applied.

FSL FLIRT was used to register functional images to the anatomical image (BBR) and the anatomical

image to the MNI152 T1 2 mm template brain using linear registration (12 degrees of freedom).

Registration to the MNI152 standard brain was only applied for whole-brain analyses, while all ROI

analyses were performed in each participant’s native space in order to minimize data interpolation.

fMRI data analysis
FSL FEAT was used to fit voxel-wise general linear models (GLM) to each participant’s run data in an

event-related approach. In these first-level GLMs, expected and unexpected image pair events were

modeled as two separate regressors with a duration of one second (the combined duration of lead-

ing and trailing image) and convolved with a double gamma haemodynamic response function. An

additional regressor of no interest was added to the GLM, modeling the instruction and perfor-

mance summary screens. Moreover, the first temporal derivatives of these three regressors were

added to the GLM. Finally, 24 motion regressors (FSL’s standard + extended set of motion parame-

ters) were added to account for head motion, comprised of the six standard motion parameters, the

squares of the six motion parameters, the derivatives of the standard motion parameters and the

squares of the derivatives. The contrast of interest, expectation suppression, was defined as the

BOLD response to unexpected minus expected images. FSL’s fixed effects analysis was used to com-

bine data across runs. Because each run either used the objects attended or objects unattended

(character categorization) task, two separate regressors were used in the fixed effects analysis, one

for the objects attended task, one for the objects unattended task. Finally, across participants, data

were combined using FSL’s mixed effects analysis (FLAME 1). Gaussian random-field cluster thresh-

olding was used to correct for multiple comparisons, using the updated default settings of FSL

5.0.11, with a cluster formation threshold of p<0.001 (one-sided; that is, z � 3.1) and cluster signifi-

cance threshold of p<0.05.

Region of interest (ROI) analysis
ROI analyses were conducted in each participant’s native space. The three a priori defined and pre-

registered ROIs were V1, object-selective LOC and TOFC. The choice of these ROIs was based on

our previous study (Richter et al., 2018), in which we found significant expectation suppression in

these cortical areas. For each ROI the mean parameter estimate was extracted from the participant’s

parameter estimate maps, representing the expected and unexpected images. This was done sepa-

rately for the objects attended and objects unattended tasks, thus resulting in four parameter of

interest. The parameter estimates were divided by 100 to yield percent signal change relative to

baseline (Mumford, 2007). For each ROI, these data were submitted to a 2 � 2 RM ANOVA with
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expectation (expected, unexpected) and attention (objects attended, objects unattended) as factors.

Simple main effects were calculated for the expectation effect in each of the attention conditions

using two-sided paired t-tests. As applicable, Cohen’s dz or partial eta-squared (h2) were calculated

as measures of effect size. Again, the within-subject normalized standard error of the mean (Cousin-

eau, 2005) with bias correction (Morey, 2008) was calculated as an indicator of the standard error.

ROI definition. All ROIs were preregistered and defined a priori, based on previous results, and

refined using independent data. The three ROIs were V1, object selective LOC, and TOFC. V1 was

defined based on each participant’s anatomical image, using Freesurfer 6.0 for cortex segmentation

(recon-all; Dale et al., 1999; RRID:SCR_001847). The resulting V1 labels were transformed into

native volume space using ‘mri_label2vol’ and merged into one bilateral mask. LOC masks were cre-

ated in each participant’s native space using data from the functional localizer. Object selective LOC

was defined as bilateral clusters, within anatomical LOC, showing a significant preference for intact

compared to scrambled object stimuli (Kourtzi and Kanwisher, 2001; Haushofer et al., 2008). To

this end, one regressor modeling intact objects and one regressor modeling scrambled objects were

fit to each participant’s localizer data. Additional regressors of no interest were added to the model,

with one regressor modeling instruction and performance screens, the temporal derivatives of all

regressors, and the 24 motion regressor as also described above (see: fMRI data analysis). The con-

trast of interest, objects minus scrambles, was constrained to anatomical LOC, and the largest con-

tiguous clusters in each hemisphere were extracted per participant. By default, the contrast was

thresholded at z >= 5 (uncorrected; that is, p<1e-6). The threshold was lowered on a per participant

basis if the resulting LOC clusters were too small; that is, bilateral mask with less than 400 voxels in

native volume space. The TOFC ROI mask was created using an anatomical temporal-occipital fusi-

form cortex mask from the Harvard-Oxford cortical atlas (RRID:SCR_001476), as distributed with

FSL. This mask was further constrained to voxels showing a significant expectation suppression effect

on the group level in our previous study, using an independent data set (Figure 2A in Richter et al.,

2018). The resulting mask was transformed from MNI space to each participant’s native space using

FSL FLIRT.

Finally, each of the three ROI masks were constrained to the 300 voxels forming the most infor-

mative neighborhoods concerning object identity decoding. This was done by performing a multi-

voxel pattern analysis (see: Multi-voxel pattern analysis (MVPA)) on the localizer data set per partici-

pant, decoding object identity. This ensured that the final masks contained the voxels that were

from the most informative neighborhoods in each respective mask. It was not required that the final

mask formed one contiguous cluster. In order to verify that our results did not depend on the a pri-

ori defined but arbitrary number of voxels in the ROI masks, we repeated all ROI analyses with masks

ranging from 100 to 400 voxels (i.e., 800 mm3 to 3200 mm3) in steps of 100 voxels.

Multi-voxel pattern analysis (MVPA)
A decoding analysis was performed on each participant’s localizer data. For this analysis, not spa-

tially smoothed mean parameter estimate maps were obtained per localizer trial by fitting a GLM

with only one trial as regressor of interest and all remaining trials as one regressor of no interest

(Mumford et al., 2012). Subsequently, these parameter estimate maps were used in a multi-class,

linear SVM-based decoding analysis (SVC function, Scikit-learn; Pedregosa et al., 2011; RRID:SCR_

002577), with the 12 trailing images as classes. The analysis was performed on the localizer data

across the whole brain using a searchlight approach (6 mm radius) and stratified 4-fold cross-valida-

tion. Finally, the resulting decoding accuracy maps were used to constrain the ROI masks (see ROI

definition).

We employed a similar decoding analysis to determine whether object-specific neural activity in

the visual ventral stream was equally present during both the objects attended and unattended

tasks. As above, a multi-class decoder with linear SVMs was used to decode object images. The per

trial parameter estimates of the localizer run served as training data. For each main task run voxel-

wise GLMs were fit with a regressor for each trailing image per expectation condition. As in the

other fMRI analyses, the 24 motion regressors and temporal derivatives were added to the model

(see fMRI data analysis). Finally, the decoder was tested on the obtained trailing image parameter

estimates per run. As each attention condition consisted of six trailing images, chance performance

of this decoder was at 16.7% (1/6).
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Stimulus specificity analysis
In an effort to further explore the nature of expectation suppression throughout the ventral visual

stream, we investigated the stimulus specificity of the suppression effect. The key question here was

if expectation suppression was primarily present in stimulus-driven voxels within a given area, or

whether most voxels in an area showed the effect, regardless of whether or not they were stimulus-

driven.

In order to investigate specificity, we obtained anatomically defined masks of our three ROIs (V1,

LOC, TOFC). For V1 the unconstrained, anatomically defined Freesurfer V1 mask was used (see ROI

definition). Anatomical LOC and TOFC were defined using the Harvard-Oxford cortical atlas. FSL

FAST was used to obtain a gray matter mask for each participant based on their anatomical scan.

Masks were transformed to the participant’s native EPI space. Next, the three ROI masks were con-

strained to the participant’s gray matter voxels. Within the resulting ROI masks, using the contrast

object stimuli compared to baseline from the functional localizer run, voxels were split into two cate-

gories, stimulus-driven (z > 1.96; that is, p<0.05, two-sided), and not stimulus-driven, but also not

deactivated, voxels (�1.96 < z < 1.96). Average expectation suppression was compared between

ROIs split into stimulus-driven vs. not stimulus-driven voxels. Thus, a 3 � 2 RM ANOVA with ROI (V1,

LOC, TOFC) and stimulus-driven (stimulus-driven vs not stimulus-driven) as factors was used for anal-

ysis. Greenhouse-Geisser correction was applied, if Mauchly’s sphericity test indicated a violation of

the sphericity assumption. Furthermore, the simple main effect of stimulus-driven vs. not stimulus-

driven was assessed within each ROI. Additionally, to test for the presence of any expectation sup-

pression, the amount of suppression was compared against zero using one sample t-tests.

Pupillometry
In order to investigate whether pupil dilation effects accompany expectation suppression, we ana-

lyzed the pupil diameter data recorded during MRI scanning. A priori, two participants were rejected

from this analysis, as the experiment log book indicated that pupil diameter data were unreliable for

these two participants, leaving 32 participants for pupillometry. First, blinks were detected using a

velocity based method, following the procedure outlined by Mathôt (2013). A blink was defined as

a negative velocity peak (eyes closing), followed by a positive velocity peak (eyes opening) within a

time period of 500 ms. The velocity threshold was set to 5 (arbitrary units). An additional 100 ms

were added as padding before and after the detected blink onset and offset. If padding resulted in

overlapping blink windows, consecutive blinks were considered as one long blink. Linear interpola-

tion was used to replace missing data during blinks (18.05% of data). Note, this number includes the

padding, and all time periods of no interest, such as null events, instruction and performance

screens, as well as recording periods before and after MRI run onset; that is, periods during which

participants were free to close their eyes. Remaining missing data, not following a typical blink pro-

file, were excluded from analysis, again adding a padding of 100 ms (3.07% of data). Similarly, out-

lier data with implausible velocity profiles were also rejected from the analysis, using the same

velocity-based threshold as for blink detection but without the criterion of a negative peak followed

by a positive peak (5.30% of data). Thus, data interpolation was only applied for short time intervals,

which represent a clear blink, in order to avoid interpolation based on artifacts or over exceedingly

long time periods. Finally, pupil data were smoothed using a Hanning window of 200 ms, and

epoched into trials from 1 s before trailing image onset to 4 s after trailing image onset. The data of

each trial were baseline corrected by diving the pupil diameter estimates by the mean diameter dur-

ing the baseline period, 0.5 to 0 s before leading image onset. As a final data quality check, all trials

exceeding pupil diameter values 7 SDs above the mean pupil diameter were rejected (3.01% trials).

Trials with expected trailing images and unexpected trailing images were averaged separately for

each participant. The difference between unexpected minus expected was subjected to a cluster-

based permutation test (100,000 permutations; two-sided p<0.05; cluster formation threshold

p<0.05) in order to assess statistical significance. Data from the objects attended and the objects

unattended tasks were analyzed separately.

Linking pupil and neural measures
In an exploratory analysis we sought to provide additional evidence for an association between pupil

dilation and expectation suppression. To this end, we correlated expectation suppression with pupil
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dilation differences between expected and unexpected objects per trailing image. First, we obtained

per trailing image parameter estimates by fitting a voxel-wise GLM to the fMRI data for each run,

following the same procedure as for the main fMRI data analysis, outlined in fMRI data analysis and

Region of interest (ROI) analysis. The only difference was that a separate regressor per trailing image

and expectation condition was fit, thus resulting in a model with 12 regressors of interest (six trailing

images * two expectation conditions). As before, data were combined across runs using FSL’s fixed

effect analysis. The resulting parameter estimate maps were extracted for each ROI (V1, LOC,

TOFC) and converted to percent signal change. Finally, for each participant we calculated expecta-

tion suppression for each trailing image (expectation suppression = BOLDunexpected – BOLDexpected).

Similarly, we calculated the difference in pupil dilation between unexpected and expected occur-

rences of each trailing image. For this we extracted the preprocessed (see: Pupillometry) pupil size

estimates for each trial and calculated the mean pupil size within the time window that showed a sig-

nificant difference in pupil dilation between unexpected compared to expected attended stimuli on

the group level (Figure 3, left panel); that is, 1.52 to 2.88 s after trailing image onset. Next, we cal-

culated the average difference in pupil size for each trailing image for unexpected compared to

expected occurrences, thus yielding six pupil size difference scores (unexpected – expected) for

both attention tasks per participant. Spearman’s rank correlation was then used to estimate the cor-

relation between the pupil dilation differences and expectation suppression magnitudes for each

participant. Therefore, this correlation expresses the correlation in ranks of pupil dilation differences

and expectation suppression magnitude for the trailing images, with positive correlations indicating

that trailing images with large expectation suppression effects are also associated with larger pupil

dilation differences. The obtained correlation coefficients were Fisher z-transformed and compared

against zero (no correlation) using one-sample t-tests for each ROI and attention condition. We also

submitted the coefficients to a repeated measures ANOVA with ROI and attention as factors.

Linking behavioral and neural measures
In another exploratory analysis we investigated the relationship between behavioral and neural ben-

efits of expectations by correlating expectation suppression with the behavioral RT benefit for

expected stimuli observed during MRI scanning. First, we calculated the RT benefit for each trailing

image during the main fMRI task (RTbenefit = RTunexpected – RTexpected, per trailing image). Within

each ROI we then correlated expectation suppression per trailing image (see: Linking pupil and neu-

ral measures) with RT benefit per trailing image using Spearman’s rank correlation. Thus, this correla-

tion coefficient indicates the rank correlation of expectation induced RT benefits and expectation

suppression magnitude for the different trailing images. For statistical inference across participants,

we Fisher z-transformed the correlation coefficients, and tested whether the observed correlation

coefficients differ from zero (no correlation) in each condition by performing one-sample t-tests for

each ROI and attention task separately. Finally, we also compared the magnitude of the correlations

between ROIs and attention tasks using a 3 � 2 repeated measures ANOVA with ROI and attention

condition (task) as factors.

Bayesian analyses
In order to further evaluate any non-significant tests, in particular simple main effects, we performed

the Bayesian equivalents of the above outlined analyses. JASP 0.9.0.1 (JASP Team, 2018; RRID:

SCR_015823) was used to perform all Bayesian analyses, using default settings. Thus, for Bayesian

t-tests a Cauchy prior width of 0.707 was chosen. Qualitative interpretations of Bayes Factors are

based on criteria by Lee and Wagenmakers (2013).

Software
MRI data preprocessing and analysis was performed using FSL 5.0.11 (FMRIB Software Library;

Oxford, UK; www.fmrib.ox.ac.uk/fsl; Smith et al., 2004; RRID:SCR_002823). Custom Python 2.7.13

(Python Software Foundation, RRID:SCR_008394) scripts were used for additional analyses, data han-

dling, statistical tests and data visualization. The following Python libraries and toolboxes were used:

NumPy 1.12.1 (van der Walt et al., 2011; RRID:SCR_008633), SciPy 0.19.0 (Jones et al.,

2001; RRID:SCR_008058), Matplotlib 1.5.1 (Hunter, 2007; RRID:SCR_008624), Statsmodels 0.8.0

(www.statsmodels.org) and Scikit-learn 0.18.1 (Pedregosa et al., 2011; RRID:SCR_002577).
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Additionally, Slice Display (Zandbelt, 2017), a MATLAB 2017a (The MathWorks, Inc, Natick, Massa-

chusetts, United States, RRID:SCR_001622) data visualization toolbox, was used for displaying

whole-brain results. JASP 0.9.0.1 (JASP Team, 2018; RRID:SCR_015823) was used for Bayesian anal-

yses and RM ANOVAs. Stimuli were presented using Presentation software (version 18.3, Neurobe-

havioral Systems, Inc, Berkeley, CA, RRID:SCR_002521).

Supplemental analyses
Pupil dilation is associated with larger BOLD responses
In order to provide additional support for the hypothesis that pupil dilation differences may partially

underlie expectation suppression in V1, we examined the relationship between pupil dilation and

the BOLD response. First, we extracted per trial pupil size data and parameter estimate maps from

the fMRI main task data for V1. Pupil size data were preprocessed as described in Pupillometry, and

extracted from a three-second time window, starting with trailing image onset and ending 2.5 s after

trailing image offset; thus, the time window covered the full duration shown in Figure 3 after trailing

image onset. fMRI data were preprocessed as outlined in fMRI data preprocessing. Next, for each

trial we fitted a GLM with only one trial as regressor of interest and all remaining trials as regressors

of no interest (Mumford et al., 2012). Per participant, we extracted the per trial parameter estimate

maps, averaged within the V1 ROI, and z scored the mean parameter estimates per condition sepa-

rately in order to remove potential effects of mean differences between the conditions. We also z

scored the pupil size estimates per condition for the same reason. Next, we fitted per participant a

GLM with the mean BOLD parameter estimates (one per trial) as predicted variable and a regressor

with pupil size for each expectation and attention condition combination (i.e., four regressors of

interest) as predictors. Statistical inference across subjects was performed by subjecting the thus

obtained parameter estimates of the four regressors of interest to a 2 � 2 repeated measures

ANOVA, as with our main ROI analysis; that is, with attention and expectation as factors. Further-

more, in order to assess whether the BOLD response was influenced by pupil dilation at all we per-

formed one-sample t-tests comparing the obtained parameter estimates against zero for each

condition separately. Additionally, we performed a similar analysis, but split the fMRI data into stim-

ulus-driven vs. non-stimulus-driven V1 gray matter voxels (see Stimulus specificity analysis for details

on the ROI mask creation). This analysis thus results in a 2 � 2 � 2 repeated measures ANOVA with

expectation, attention and stimulus-responsiveness as factors.

Increased pupil dilations were associated with larger BOLD responses regardless of whether stim-

uli were attended and expected (attended expected: t(31) = 3.006, p=0.005, dz = 0.531; attended

unexpected: t(31) = 4.392, p=1.2e-4, dz = 0.776; unattended expected: t(31) = 5.228, p=1.1e-5,

dz = 0.924; unattended unexpected: W = 452, p=2.1e-4, rB = 0.712). Results are shown in Figure 3—

figure supplement 1. Pupil dilation led to slightly stronger BOLD increases when objects were unat-

tended than attended (F(1,31) = 5.563, p=0.025, h2=0.152), but independent of whether stimuli were

expected or unexpected (F(1,31) = 0.054, p=0.817, h2=0.002; interaction: F(1,31) = 2.261, p=0.143,

h
2=0.068). Thus, pupil dilation had a positive effect on overall BOLD responses in V1.

Pupil dilation influences BOLD responses more in non-stimulus-driven V1
voxels
Next, we assessed whether the same association would hold in stimulus-driven and non-stimulus

driven V1 voxels. Figure 3—figure supplement 2 shows that there was indeed a reliable, positive

association between BOLD responses and pupil dilation within both stimulus-driven and non-stimu-

lus-driven voxels. Again, larger pupil dilations were predictive of enhanced BOLD responses when

object stimuli were attended and unattended, as well as for expected and unexpected objects (all

t-tests p<0.05). Interestingly, this association was somewhat larger in non-stimulus-driven than stimu-

lus-driven voxels (F(1,31) = 9.267, p=0.005, h2=0.230), suggesting that the association between BOLD

and pupil dilation is particularly strong for those neural populations that are not driven by our object

stimuli. This is in line with earlier observations that non-stimulus-driven activations (possibly reflecting

neuromodulation) are greater in regions that represent more peripheral parts of the visual field

(Jack et al., 2006). There was also a stronger association of pupil dilation and BOLD responses

when objects were unattended (F(1,31) = 5.042, p=0.032, h2=0.140), but the magnitude of the
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association was not affected by whether a stimulus was expected or not (F(1,31) = 0.008, p=0.928,

h
2=2.6e-4). Moreover, no interaction effect was observed (all interactions p>0.1).

Thus, to summarize, our results show that pupil dilation has a substantial, positive association

with V1 BOLD responses, regardless of whether stimuli were attended and expected, for both stimu-

lus-driven and non-stimulus-driven neural populations. This result is expected, given that pupil dila-

tion has been related to other processes known to correlate with BOLD responses such as mental

effort, arousal and attention (for a review see: Mathôt, 2018). Moreover, increases in retinal illumina-

tion due to larger pupil dilation can also result in increased BOLD activity (Haynes et al., 2004).

These results support our suggestion that larger pupil dilations in response to unexpected stimuli,

possibly reflecting general arousal mechanisms, may partially account for expectation suppression in

V1. However, it should also be noted that the association between pupil dilation and the BOLD

response is not solely observed when objects were attended, as pupil dilation is likely a general

reflection of vigilance and arousal (Reimer et al., 2014; Vinck et al., 2015), which is expected to

fluctuate also when the objects are not attended. That this association is more pronounced in non-

stimulus-driven voxels, further supports the possibility that expectation suppression in V1, including

the suppression observed in non-stimulus-driven voxels, may partially reflect non-perceptual effects

such as arousal changes, which are reflected by larger pupil dilations in response to surprising

stimuli.

No differences in pupil dilation during baseline
We assessed pupil size during baseline to ensure that differences in pupil dilation between expecta-

tion conditions or attention tasks do not simply reflect difference in baseline (e.g., pre-stimulus

arousal differences). Pupil data were preprocessed using the same pipeline as described in Pupillom-

etry, except for that pupil size was extracted in raw units during the baseline period. Per participant,

pupil size was then averaged for each attention and expectation condition separately. Mean pupil

estimates were then compared between conditions using a 2 � 2 repeated measures ANOVA, with

expectation and attention as factors. Additionally, a Bayesian repeated measure ANOVA was con-

ducted to quantify the evidence for the absence of a difference in pupil size during baseline.

Results showed that there was no difference in baseline pupil size before attended compared to

unattended stimuli (F(1,31) = 5.226, p=0.484, h2=0.016, BFinclusion = 0.254), nor before expected com-

pared to unexpected stimuli (F(1,31) = 0.001, p=0.926, h2=2.8e-4, BFinclusion = 0.136; interaction:

F(1,31) = 6.2e-4, p=0.955, h2=1.0e-4, BFinclusion = 0.042). Figure 3—figure supplement 3 shows the

pupil size in raw units during the baseline period. Thus, data suggest that pupil size, and thereby

likely arousal, during baseline was of a similar magnitude during both attention tasks and expecta-

tion conditions, thereby rendering an explanation of the observed phasic differences in pupil size

based on differences in baseline pupil size unlikely.
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learning in Python. Journal of Machine Learning Research : JMLR 12:2825–2830.

Preuschoff K, ’t Hart BM, Einhäuser W. 2011. Pupil dilation signals surprise: evidence for noradrenaline’s Role in
Decision Making. Frontiers in Neuroscience 5:1–12. DOI: https://doi.org/10.3389/fnins.2011.00115, PMID: 21
994487

Rao RPN. 2005. Bayesian inference and attentional modulation in the visual cortex. Neuroreport 16:3–8.
DOI: https://doi.org/10.1097/01.wnr.0000183900.92901.fc

Rao RP, Ballard DH. 1999. Predictive coding in the visual cortex: a functional interpretation of some extra-
classical receptive-field effects. Nature Neuroscience 2:79–87. DOI: https://doi.org/10.1038/4580, PMID: 101
95184

Reimer J, Froudarakis E, Cadwell CR, Yatsenko D, Denfield GH, Tolias AS. 2014. Pupil fluctuations track fast
switching of cortical states during quiet wakefulness. Neuron 84:355–362. DOI: https://doi.org/10.1016/j.
neuron.2014.09.033, PMID: 25374359

Reimer J, McGinley MJ, Liu Y, Rodenkirch C, Wang Q, McCormick DA, Tolias AS. 2016. Pupil fluctuations track
rapid changes in adrenergic and cholinergic activity in cortex. Nature Communications 7:1–7. DOI: https://doi.
org/10.1038/ncomms13289

Richter D, Ekman M, de Lange FP. 2018. Suppressed sensory response to predictable object stimuli throughout
the ventral visual stream. The Journal of Neuroscience 38:7452–7461. DOI: https://doi.org/10.1523/
JNEUROSCI.3421-17.2018, PMID: 30030402

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M,
Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM. 2004.
Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23:S208–
S219. DOI: https://doi.org/10.1016/j.neuroimage.2004.07.051, PMID: 15501092

Stokes M, Anderson M, Chandrasekar S, Motta R. 1996. A standard default color space for the internet – sRGB.
w3.org. https://www.w3.org/Graphics/Color/sRGB [Accessed July 26, 2019].

Richter and de Lange. eLife 2019;8:e47869. DOI: https://doi.org/10.7554/eLife.47869 26 of 27

Research article Neuroscience

https://doi.org/10.1093/cercor/bhw374
http://www.ncbi.nlm.nih.gov/pubmed/27909007
https://doi.org/10.1016/j.neulet.2009.06.030
http://www.ncbi.nlm.nih.gov/pubmed/19539701
http://www.ncbi.nlm.nih.gov/pubmed/19539701
https://doi.org/10.1111/ejn.12859
https://doi.org/10.1111/ejn.12859
http://www.ncbi.nlm.nih.gov/pubmed/25754528
https://doi.org/10.1016/j.neuron.2012.04.034
http://www.ncbi.nlm.nih.gov/pubmed/22841311
https://doi.org/10.1093/cercor/bhr310
http://www.ncbi.nlm.nih.gov/pubmed/22047964
https://doi.org/10.1016/j.cub.2015.12.038
https://doi.org/10.1016/j.cub.2015.12.038
http://www.ncbi.nlm.nih.gov/pubmed/26832438
https://doi.org/10.1126/science.1061133
http://www.ncbi.nlm.nih.gov/pubmed/11520991
https://doi.org/10.3389/fpsyg.2013.00863
http://www.ncbi.nlm.nih.gov/pubmed/24324449
https://doi.org/10.1093/cercor/bhr119
http://www.ncbi.nlm.nih.gov/pubmed/21690262
https://doi.org/10.1017/CBO9781139087759
https://doi.org/10.6084/m9.figshare.688002
https://doi.org/10.6084/m9.figshare.688002
https://doi.org/10.5334/joc.18
https://doi.org/10.5334/joc.18
https://doi.org/10.1073/pnas.1112895108
http://www.ncbi.nlm.nih.gov/pubmed/22084090
https://doi.org/10.20982/tqmp.04.2.p061
http://mumford.fmripower.org/perchange_guide.pdf
http://mumford.fmripower.org/perchange_guide.pdf
https://doi.org/10.1016/j.neuroimage.2011.08.076
https://doi.org/10.1016/j.neuroimage.2011.08.076
http://www.ncbi.nlm.nih.gov/pubmed/21924359
https://doi.org/10.1007/s00429-010-0260-2
https://doi.org/10.1007/s00429-010-0260-2
http://www.ncbi.nlm.nih.gov/pubmed/20512372
https://doi.org/10.3389/fnins.2011.00115
http://www.ncbi.nlm.nih.gov/pubmed/21994487
http://www.ncbi.nlm.nih.gov/pubmed/21994487
https://doi.org/10.1097/01.wnr.0000183900.92901.fc
https://doi.org/10.1038/4580
http://www.ncbi.nlm.nih.gov/pubmed/10195184
http://www.ncbi.nlm.nih.gov/pubmed/10195184
https://doi.org/10.1016/j.neuron.2014.09.033
https://doi.org/10.1016/j.neuron.2014.09.033
http://www.ncbi.nlm.nih.gov/pubmed/25374359
https://doi.org/10.1038/ncomms13289
https://doi.org/10.1038/ncomms13289
https://doi.org/10.1523/JNEUROSCI.3421-17.2018
https://doi.org/10.1523/JNEUROSCI.3421-17.2018
http://www.ncbi.nlm.nih.gov/pubmed/30030402
https://doi.org/10.1016/j.neuroimage.2004.07.051
http://www.ncbi.nlm.nih.gov/pubmed/15501092
https://www.w3.org/Graphics/Color/sRGB
https://doi.org/10.7554/eLife.47869


Summerfield C, Trittschuh EH, Monti JM, Mesulam MM, Egner T. 2008. Neural repetition suppression reflects
fulfilled perceptual expectations. Nature Neuroscience 11:1004–1006. DOI: https://doi.org/10.1038/nn.2163,
PMID: 19160497

Turk-Browne NB, Scholl BJ, Chun MM, Johnson MK. 2009. Neural evidence of statistical learning: efficient
detection of visual regularities without awareness. Journal of Cognitive Neuroscience 21:1934–1945.
DOI: https://doi.org/10.1162/jocn.2009.21131

van der Walt S, Colbert SC, Varoquaux G. 2011. The NumPy array: a structure for efficient numerical
computation. Computing in Science & Engineering 13:22–30. DOI: https://doi.org/10.1109/MCSE.2011.37

Vinck M, Batista-Brito R, Knoblich U, Cardin JA. 2015. Arousal and locomotion make distinct contributions to
cortical activity patterns and visual encoding. Neuron 86:740–754. DOI: https://doi.org/10.1016/j.neuron.2015.
03.028, PMID: 25892300

Yon D, de Lange FP, Press C. 2019. The predictive brain as a stubborn scientist. Trends in Cognitive Sciences 23:
6–8. DOI: https://doi.org/10.1016/j.tics.2018.10.003, PMID: 30429054

Yu AJ, Dayan P. 2005a. Uncertainty, neuromodulation, and attention. Neuron 46:681–692. DOI: https://doi.org/
10.1016/j.neuron.2005.04.026, PMID: 15944135

Yu AJ, Dayan P. 2005b. Inference, attention, and decision in a bayesian neural architecture. Advances in Neural
Information Processing Systems 17:1577–1584.

Zandbelt B. 2017. Slice display. Figshare. http://doi.org/10.6084/m9.figshare.4742866.v1

Richter and de Lange. eLife 2019;8:e47869. DOI: https://doi.org/10.7554/eLife.47869 27 of 27

Research article Neuroscience

https://doi.org/10.1038/nn.2163
http://www.ncbi.nlm.nih.gov/pubmed/19160497
https://doi.org/10.1162/jocn.2009.21131
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1016/j.neuron.2015.03.028
https://doi.org/10.1016/j.neuron.2015.03.028
http://www.ncbi.nlm.nih.gov/pubmed/25892300
https://doi.org/10.1016/j.tics.2018.10.003
http://www.ncbi.nlm.nih.gov/pubmed/30429054
https://doi.org/10.1016/j.neuron.2005.04.026
https://doi.org/10.1016/j.neuron.2005.04.026
http://www.ncbi.nlm.nih.gov/pubmed/15944135
http://doi.org/10.6084/m9.figshare.4742866.v1
https://doi.org/10.7554/eLife.47869

