
molecules

Review

Anthocyanins Recovered from Agri-Food By-Products Using
Innovative Processes: Trends, Challenges, and Perspectives for
Their Application in Food Systems

Henrique Silvano Arruda 1,2,* , Eric Keven Silva 3 , Nayara Macêdo Peixoto Araujo 2, Gustavo Araujo Pereira 4,
Glaucia Maria Pastore 2 and Mario Roberto Marostica Junior 1

����������
�������

Citation: Arruda, H.S.; Silva, E.K.;

Peixoto Araujo, N.M.; Pereira, G.A.;

Pastore, G.M.; Marostica Junior, M.R.

Anthocyanins Recovered from

Agri-Food By-Products Using

Innovative Processes: Trends,

Challenges, and Perspectives for

Their Application in Food Systems.

Molecules 2021, 26, 2632. https://

doi.org/10.3390/molecules26092632

Academic Editors: Lucia Panzella and

Luciana Mosca

Received: 31 March 2021

Accepted: 29 April 2021

Published: 30 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato
Street 80, Campinas 13083-862, Brazil; mmarosti@unicamp.br

2 Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80,
Campinas 13083-862, Brazil; nayarapeixoto14@hotmail.com (N.M.P.A.); glaupast@unicamp.br (G.M.P.)

3 Department of Food Engineering, School of Food Engineering, University of Campinas, Monteiro Lobato
Street 80, Campinas 13083-862, Brazil; engerickeven@gmail.com

4 School of Food Engineering, Institute of Technology, Federal University of Pará, Augusto Corrêa Street S/N,
Belém 66075-110, Brazil; gapereira@ufpa.br

* Correspondence: hsilvano@unicamp.br or hsilvanoarruda@gmail.com

Abstract: Anthocyanins are naturally occurring phytochemicals that have attracted growing interest
from consumers and the food industry due to their multiple biological properties and technological
applications. Nevertheless, conventional extraction techniques based on thermal technologies can
compromise both the recovery and stability of anthocyanins, reducing their global yield and/or
limiting their application in food systems. The current review provides an overview of the main inno-
vative processes (e.g., pulsed electric field, microwave, and ultrasound) used to recover anthocyanins
from agri-food waste/by-products and the mechanisms involved in anthocyanin extraction and their
impacts on the stability of these compounds. Moreover, trends and perspectives of anthocyanins’
applications in food systems, such as antioxidants, natural colorants, preservatives, and active and
smart packaging components, are addressed. Challenges behind anthocyanin implementation in
food systems are displayed and potential solutions to overcome these drawbacks are proposed.

Keywords: phenolic compounds; bioactive compounds; waste valorization; emerging technologies;
green chemistry; non-thermal processes; pulsed electric field; microwave; ultrasound

1. Introduction

Sustainable development plays a crucial role in improving the social, technical, and
economic fields, aiming to create a circular economy and meet society’s needs. Therefore,
the implementation of sustainable food production systems is essential to ensure the future
needs of safe, healthy, and nutritious foods for the growing human population. In this way,
the proper use of natural resources, zero food wastes, and the adoption of food production
systems with high efficiency and low energy consumption are critical parts of sustainable
food production [1].

Food and agricultural industries generate millions of tons of wastes and by-products
annually, resulting in a significant financial burden to the processors and causing and/or
contributing to immense environmental problems [2]. However, wastes and by-products
derived from food processing are rich sources of potentially valuable bioactive compounds.
Their sustainable use to produce value-added products/ingredients could reduce environ-
mental issues, improve economic growth, and promote human health benefits through
foods enriched with bioactive compounds [3,4]. Thereby, agri-food by-products (e.g.,
wastewaters, peel and seeds of fruits and vegetables, pomaces, straws, shells, brans, leaves,
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and other derivative by-products) have emerged as potential sources for obtaining bioac-
tive compounds (e.g., phenolic compounds, anthocyanins, carotenoids, fiber, bioactive
peptides, fatty acids, etc.) and enzymes of great interest for the food, pharmaceutical, and
cosmetical industries [5,6].

Among the various value-added molecules obtained from agri-food by-products,
anthocyanins have attracted special attention from people, researchers, and industries due
to their multifaceted technological and biological properties. Anthocyanins are phytopig-
ments and bioactive compounds belonging to the flavonoid class of phenolic compounds
found in plant tissues (especially flowers and fruits). These water-soluble pigments pro-
vide a broad color spectrum ranging from red to blue, depending on pH [7]. This feature
has been exploited to develop natural colorants [8,9] and active/smart packaging for
foods [10,11]. Moreover, anthocyanins are natural antioxidants and antimicrobials that
have been used as food preservatives [12,13]. In addition to their technological appli-
cations, anthocyanins have been shown to possess protective and promoting effects on
human health by preventing and mitigating the onset and/or progression of neurode-
generative diseases, metabolic syndromes, cancers, etc., due to their multiple biological
properties [14–16].

Despite the high technological, functional, and economic potential, anthocyanins’
application as food additives in food systems is still limited. Prior steps of obtaining these
molecules condition it (e.g., extraction, purification, and stabilization) [17]. Anthocyanins
are highly unstable compounds and easily susceptible to several factors, such as temper-
ature, oxygen, enzymes, light (UV-visible), pH, ascorbic acid, and other substances (e.g.,
copigments and metals) [17,18]. Consequently, anthocyanins can be degraded by one
or more of the factors mentioned above during their extraction process. Therefore, the
choice of extraction technology and extraction conditions are key steps in the recovery
and purification of anthocyanins for food purposes. These choices should be based on
simplicity, versatility, cost, and ability to extract and preserve the target compounds [19].

The food industry is increasingly interested in innovative mild/non-thermal process-
ing technologies (e.g., ultrasound (US), pressurized liquid extraction (PLE), supercritical
fluid extraction (SFE), high hydrostatic pressure extraction (HHPE), pulsed light (PL),
pulsed electric field (PEF), high voltage energy discharge (HVED), microwave (MW),
enzyme-assisted extraction (EAE), and instant controlled pressure drop-assisted extraction
(DIC)) for anthocyanin extraction due to their ability to enhance the extraction yield, in-
crease the extraction rate, operate at room or low temperature, minimize the loss for thermal
degradation during processing, reduce the detrimental effect on the extracted compounds,
improve energy efficiency, and prioritize the use of “recognized as safe” organic solvents
as compared to conventional thermal processing [2,20]. Therefore, the combination of agri-
food by-products with innovative extraction techniques for obtaining anthocyanins can
contribute to the achievement of high-quality products and the sustainable development
of food systems.

The current review provides an overview of the main innovative processes (e.g.,
pulsed electric field (PEF), microwave (MW), and ultrasound (US)) used to recover antho-
cyanins from agri-food waste/by-products and the mechanisms involved in anthocyanin
extraction, as well as their impacts on the stability of these compounds during the extraction
process. Moreover, human clinical trials showing the potential beneficial health effects of
anthocyanins, trends, and perspectives of anthocyanins’ applications in food systems and
the challenges behind their implementation are also addressed. This review can be handy
for scientists and food manufacturers from the point of view of commercial exploitation. It
compiles and shows the main agri-food by-products sources of anthocyanins and the best
processing conditions for their recovery using different innovative extraction technologies.
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2. Anthocyanins
2.1. Chemical Structure and Properties

Anthocyanins (derived from Greek anthos = flower and kyáneos = blue) are natural
plant pigments widely found in foods and beverages. These compounds are responsible for
the red-orange to blue-violet colors in many fruits, vegetables, flowers, and leaves, and they
are found in high quantity in the pigmented leaves, followed by fruits and flowers [21,22].

Anthocyanins are water-soluble antioxidants pigments that belong to a polyphenol-
based flavonoids family due to their characteristic C15 skeleton based on C6-C3-C6 core
structure [17]. Chemically, anthocyanins are polyhydroxylated and/or polymethoxylated
glycosides derived from the 2-phenylbenzopyrilium ion (flavylium cation). As can be seen
in Figure 1, the basic anthocyanin structure consists of an aromatic ring (A-ring) bonded to
an oxygenated heterocyclic ring (C-ring) which, in turn, is also linked through its C3 to the
C1’ of a second aromatic ring (B-ring). The flavylium cation gives anthocyanins the red
color that distinguishes them from other types of flavonoids [23,24].
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Figure 1. Basic anthocyanin structure.

The anthocyanin molecule is formed of an aglycone (anthocyanidin) with the presence
or not of sugars (glycosylated anthocyanins) and organic acids groups (acylated antho-
cyanins). They can be divided into different groups based on the types of aglycones; those
most commonly found in plants are cyanidin (reddish-purple color, 50%), delphinidin
(red-blue color, 12%), pelargonidin (red-orange color, 12%), peonidin (magenta color, 12%),
malvidin (purple color, 7%), and petunidin (red color, 7%) [25,26].

There is a wide variety of anthocyanins found in nature. Estimates point to the
existence of more than 500 anthocyanins and 23 anthocyanidins [24]. The main differences
between them are due to their chemical structure features, such as the number of hydroxyl
groups and/or methoxyl groups present; the nature, number, and position of sugars groups
linked to the anthocyanin backbone; and the presence of aliphatic or aromatic acids bonded
to the sugar molecule [27,28]. The intensity and hue of the color of anthocyanins depend
on the number of hydroxyl and methoxyl groups. In general, blueness increases with the
degree of hydroxylation, while redness rises with the degree of methylation. Anthocyanins’
color is also influenced by copigmentation; for example, copigmentation of anthocyanidins
with flavonoids improves their color intensity [26].

Anthocyanins have a positive charge on their C-ring (ionic nature) that favors the
appearance of different colors in response to pH variations [29]. Polymerization, cleavage,
and derivatization are mainly reactions that occur with anthocyanins according to pH
changes and are related to their color stability, resulting in browning compounds, colorless,
and colored molecules, respectively [18]. In general, highly acidic conditions favor redness
color and the stability of the anthocyanins due to a higher formation of flavylium cations.
In contrast, alkaline conditions reduce stability, increase blueness color, and promote the
chemical degradation of the anthocyanins [25].
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In superacid conditions (pH < 3), the flavylium cation is the majority species and
favors reddish-purple color. At increasing pH conditions (pH 4–5), colorless carbinol
pseudo base predominates, and anthocyanin solution become very little colored due to the
small number of other colored species (flavylium cation and quinonoidal anion). At mildly
acidic conditions (pH 6–7), the blue-violet neutral quinonoidal species are predominant.
As the pH increases (pH 7–8), the neutral quinonoidal species’ deprotonation forms an-
ionic quinonoidal bases that promote an intense blue color. In superalkaline conditions
(pH > 8), yellowish chalcone is formed and, subsequently, anthocyanins undergo break-
down according to their substituent groups and structure (see Figure 2) [25,26]. Figure 2
shows the pH-dependent structural and color changes of anthocyanins from a red cabbage
aqueous extract.

Molecules 2021, 26, x FOR PEER REVIEW 4 of 39 
 

 

In superacid conditions (pH < 3), the flavylium cation is the majority species and fa-
vors reddish-purple color. At increasing pH conditions (pH 4–5), colorless carbinol 
pseudo base predominates, and anthocyanin solution become very little colored due to 
the small number of other colored species (flavylium cation and quinonoidal anion). At 
mildly acidic conditions (pH 6–7), the blue-violet neutral quinonoidal species are predom-
inant. As the pH increases (pH 7–8), the neutral quinonoidal species’ deprotonation forms 
anionic quinonoidal bases that promote an intense blue color. In superalkaline conditions 
(pH > 8), yellowish chalcone is formed and, subsequently, anthocyanins undergo break-
down according to their substituent groups and structure (see Figure 2) [25,26]. Figure 2 
shows the pH-dependent structural and color changes of anthocyanins from a red cabbage 
aqueous extract. 

 
Figure 2. pH-dependent chemical structures and color changes of anthocyanins from red cabbage. 
Experiment performed by Gustavo Araujo Pereira and registered by Karla Ferreira Nery Martins 
(photos). HCl and NaOH (0.1 M) were employed to alter the pH of the red cabbage aqueous extract. 

2.2. Natural Sources 
Anthocyanins are naturally found in a wide number of foods, including fruits and 

vegetables. They are predominantly found in berries, currants, grapes, tropical fruits, red 
to purplish blue-colored leafy vegetables, grains, roots, and tubers. The berries are the 
wealthiest and most well-known sources of anthocyanins, such as blackberries, blueber-
ries, strawberries, blackcurrants, cherries, chokeberries, elderberries, and gooseberries. 
Furthermore, there are other anthocyanin sources, such as red grapes, eggplant, acai, 
jabuticaba, oranges, purple corn, red wine, red cabbage, apples, radishes, pomegranate, 
black carrots, purple potatoes, and edible flowers (e.g., red hibiscus, red rose, red pineap-
ple sage, red clover, pink blossom, cornflower, blue chicory, blue rosemary, purple mint, 
purple passionflower, purple sage, common violet, and lavender) [25,26]. In addition to 
being widely consumed in fresh and frozen forms, anthocyanins-rich fruits/vegetables are 
also found in several processed and derived products, including wine, dried and canned 
fruits, yogurts, beverages, jams, and jellies [30]. Anthocyanin profile and content varies 
between the foods due to external and internal factors, such as biotic and abiotic stress, 
cultivation practices, genetics, intensity and type of radiation, temperature, processing, 
and storage [30–32]. 

Various phenolic compounds remain trapped in the food matrix during food pro-
cessing, resulting in high value-added agri-food by-products discarded as natural waste 
in the environment or used for composting. This generates great economic losses and en-

Figure 2. pH-dependent chemical structures and color changes of anthocyanins from red cabbage.
Experiment performed by Gustavo Araujo Pereira and registered by Karla Ferreira Nery Martins
(photos). HCl and NaOH (0.1 M) were employed to alter the pH of the red cabbage aqueous extract.

2.2. Natural Sources

Anthocyanins are naturally found in a wide number of foods, including fruits and
vegetables. They are predominantly found in berries, currants, grapes, tropical fruits, red
to purplish blue-colored leafy vegetables, grains, roots, and tubers. The berries are the
wealthiest and most well-known sources of anthocyanins, such as blackberries, blueberries,
strawberries, blackcurrants, cherries, chokeberries, elderberries, and gooseberries. Further-
more, there are other anthocyanin sources, such as red grapes, eggplant, acai, jabuticaba,
oranges, purple corn, red wine, red cabbage, apples, radishes, pomegranate, black carrots,
purple potatoes, and edible flowers (e.g., red hibiscus, red rose, red pineapple sage, red
clover, pink blossom, cornflower, blue chicory, blue rosemary, purple mint, purple pas-
sionflower, purple sage, common violet, and lavender) [25,26]. In addition to being widely
consumed in fresh and frozen forms, anthocyanins-rich fruits/vegetables are also found in
several processed and derived products, including wine, dried and canned fruits, yogurts,
beverages, jams, and jellies [30]. Anthocyanin profile and content varies between the foods
due to external and internal factors, such as biotic and abiotic stress, cultivation practices,
genetics, intensity and type of radiation, temperature, processing, and storage [30–32].

Various phenolic compounds remain trapped in the food matrix during food pro-
cessing, resulting in high value-added agri-food by-products discarded as natural waste
in the environment or used for composting. This generates great economic losses and
environmental problems that could be avoided using an agri-food by-product recovery
system. In general, the agri-food by-products are mainly constituted of skin/peel and
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seeds, and they are generated mainly from fruits and vegetable processing [33]. The main
and best-known agri-food by-product is the grape pomace that results from grape juice
and winemaking processing, consisting mainly of skin, seeds, stems, and remaining pulp.
Grape pomace stores many phenolic compounds. It is the most-used raw material for
anthocyanin extraction by the food industry [33,34].

Although anthocyanin content varies according to the cultivation techniques and
species, the malvidin was the major anthocyanin (0.29 to 3.33 mg/g skin) in all studied
grape cultivars, followed by petunidin, delphinidin, peonidin, and cyanidin [35]. Thirteen
anthocyanins were identified from grape pomace by HPLC-MS/MS, whose results also con-
firmed that malvidin is the predominant anthocyanin. The most intense chromatographic
signals observed were for malvidin-3-O-glucoside, malvidin-3-O-acetylglucoside, and
malvidin-3-O-p-coumaroylglucoside [36]. Meanwhile, grape seeds showed only two antho-
cyanins that were found in low concentrations, namely malvidin-rutinoside (0.024 µg/g
extract) and malvidin-hexoside (0.010 µg/g extract) [37]. Another anthocyanin source
resulting from the winemaking industry is the wine lees that, according to some au-
thors, could be alternative that is cheaper and more easily extracted than the traditional
sources [38].

Other agri-food by-products have been exploited for anthocyanin extraction, such
as black carrot pomace [39], eggplant by-product [40,41], black soybean seed coat [42],
purple corn cob and corn husk [43], onion peel [44], black rice bran [45], and some berry
by-products (e.g., blueberry [46], red raspberry [47], sweet cherry [48], sour cherry [49],
bilberry [50], blackcurrant [51], blackberry [52], jabuticaba [53], black chokeberry [54], and
mulberry [55], among others). Nonetheless, they are less explored and less known when
compared to grape pomace. Therefore, research should be intensified and driven towards
the less exploited agri-food by-products to obtain high added-value anthocyanin extracts.

2.3. Chemical Stability

Anthocyanins are highly unstable and susceptible to degradation, which varies widely
according to their chemical structure and food concentration. This strongly influences the
anthocyanin content in the final product and their benefits to human health [56]. Several
environmental factors affect anthocyanin color and stability. The most important and
studied of them are temperature, pH (see Section 2.1), enzymes, light, oxygen, metallic ions,
sulfites, and interaction with other food components (e.g., other flavonoids and phenolics,
ascorbic acid, sugars, etc.) as well as other factors [18,32].

Anthocyanins are largely unstable during food processing, in which the temperature
can reach around 50–150 ◦C [57]. Thermal processes are one of the main and most well-
known factors that influence the anthocyanin stability rate. They are extremely sensitive
to thermal treatment. When exposed to high temperatures and prolonged heating, the
anthocyanins undergo oxidation and structure breakdown characterized by successive reac-
tions of deglycosylation, nucleophilic attack of water, cleavage, and polymerization. These
structural changes result in the loss of sugar moieties, color, stability and, consequently,
considerably reduce anthocyanin content in the final product [32]. Anthocyanin stability is
maintained at temperatures up to 60 ◦C. High processing temperatures (>60 ◦C) promote
the anthocyanin molecules’ breakdown into colorless compounds. Therefore, prolonged
exposure to high temperatures should be avoided to reduce the chalcone formation and
losses of anthocyanin stability [58]. The lower the processing temperature, the greater the
accumulation and stability of anthocyanins (flavylium cation).

Anthocyanins are enzymatically degraded in foods due to glycosidases and polyphe-
nol oxidases that promote their decolorization. The β-glycosidases hydrolyze glycosidic
bonds between the glycosyl residue and an anthocyanins aglycone, releasing their less sta-
ble counterpart, anthocyanidins. On the other hand, in the presence of oxygen, polyphenol
oxidases catalyze the hydroxylation of monophenols to o-diphenols and the oxidation of
o-diphenols to o-quinones compounds promoting anthocyanin degradation and catalyzing
the formation of brown-colored compounds. Furthermore, peroxidases have also been
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reported to promote anthocyanin degradation [59,60]. Therefore, the inactivation of these
enzymes can be a good strategy to improve anthocyanin stability.

The accumulation of anthocyanins is also directly influenced by their exposure to
light. In plants, this exposure favors their biosynthesis, resulting in colored pigments,
while over food processing/storage, light accelerates their degradation. Light intensity
and spectrum influence the anthocyanin biosynthetic genes, improving their production.
In contrast, light irradiation promotes anthocyanin molecule excitation, leading to the
formation of carbon-centered radicals that can generate peroxyl radicals in the presence of
oxygen, accelerating anthocyanin degradation [61,62].

Oxygen is another major environmental factor influencing anthocyanin stability, and
that can result in some undesired outcomes. Anthocyanins undergo decomposition under
aerobic conditions. The molecular oxygen promotes harmful effects in the anthocyanin
molecule [60]. In the presence of oxygen, ascorbic acid-induced degradation of antho-
cyanin results in the formation of hydrogen peroxide and oxidative cleavage of the C-ring,
producing brown pigments that are undesirable changes in food, especially in juices [63].
Moreover, the synergism between oxygen and high temperatures is the factor that most
accelerates anthocyanin degradation [64]. The removal of oxygen protects the anthocyanins
against oxidative degradation and slows down thermal degradation.

The interaction between anthocyanins and sulfites leads to the formation of color-
less adducts because of the interruption of the conjugated π-electron system [18]. As a
consequence, sulfite addition should be avoided in anthocyanin-rich processed products.

On the other hand, anthocyanin association reactions can improve their stability and
color by protecting C2 of the flavylium chromophore from the nucleophilic attack of water.
These associations can occur in three ways: (1) self-association (anthocyanins are associated
with each other via hydrophobic interactions that occur between their aromatic nuclei),
(2) copigmentation (anthocyanins are associated with other compounds, such as other
phenolic compounds), and (3) metal complexing (anthocyanins are associated with metals,
such as magnesium and aluminum, via interactions of their o-hydroxy groups). Meanwhile,
copigmentation can be intramolecular or intermolecular. Intramolecular copigmentation is
characterized by stacking the hydrophobic acyl moiety covalently bound to sugar and the
flavylium nucleus. In contrast, intermolecular copigmentation occurs when anthocyanins
interact with some colorless compounds (e.g., aurones, flavones, and flavanols) through
van der Waals interactions between the planar polarizable nuclei of the anthocyanin with
these compounds [17,32]. Therefore, the copigments approach can be a promising tool for
improving anthocyanins color and stability.

As a general remark, food processing should minimize these aforementioned undesir-
able changes to obtain high-quality anthocyanins-rich foods/extracts.

2.4. Biological Activities

Anthocyanins are widely studied as bioactive agents to manage and/or prevent the
onset/development of several diseases, such as chronic degenerative diseases including
cardiovascular diseases, cancers, type 2 diabetes mellitus, neurodegenerative diseases, and
dyslipidemias [28]. Several biochemical parameters have been related to the prevention or
development of these diseases. Some biochemical parameters, such as tumor necrosis factor-
alpha (TNF-α), interleukins (ILs), nuclear factor-kappa B (NF-kB), and cyclooxygenase 2
(COX-2), are involved in the inflammatory responses. In contrast, the increase in reactive
oxygen species (ROS) and malonaldehyde, and the reduction in the activity/expression of
antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), etc., are related
to oxidative processes [65–67].

The biological activities of anthocyanins are dependent mainly on their structure and
chromatic features. For example, the three hydroxyl groups in the B-ring in the molecular
structure of the delphinidin increase their efficiency against cancer cells compared with
other anthocyanins, such as cyanidin [28].
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Beneficial effects for human health related to anthocyanins have been demonstrated in
human clinical trials. Daily intake of anthocyanins improved glycemia, insulin sensitivity,
lipids and lipoproteins profiles, memory function, cardiovascular health, antioxidant status,
gut microbiota composition, etc. (for more details, see Table 1).

Table 1. A summary of human trials showing the potential health beneficial effects of anthocyanins.

Anthocyanin Anthocyanin Dose Time Subject Profile Study Type Major Findings Reference

MEDOX® (Purified
anthocyanins) a 320 mg/day 12 weeks

160 subjects with
prediabetes or early

untreated T2DM
(40–75 years;
54 males and
106 females)

Randomized,
double-blind,

placebo-controlled
trial

- ↓ HbA1c, LDL-c, and
ApoB;

- ↑ ApoA1;
- ↓ insulin resistance;
- More effective at

improving glycemic
control, insulin
sensitivity, and lipids
profile among patients
with elevated
metabolic markers.

[68]

MEDOX® (Purified
anthocyanins) a 320 mg/day 12 weeks

138 subjects with
prediabetes or

newly diagnosed
T2DM (40–75 years;

45 males and
93 females)

Randomized,
double-blind,

placebo-controlled
trial

- ↑ adipsin and ApoA1;
- ↓ visfatin, HbA1c,

C-peptide, C-peptide
index, and ApoB.

[69]

MEDOX® (Purified
anthocyanins) a 320 mg/day 12 weeks

121 patients with
fasting

hyperglycemia
(average age:
61 years old;
42 males and
79 females)

Randomized
controlled trial

- ↑ IGFBP-4 fragments;
- ↓ FGB and

postprandial
C-peptide;

- ↓ LDL-c and ApoB.

[70]

MEDOX® (Purified
anthocyanins) a 320 mg/day 4 weeks

14 healthy
(35.2 ± 3.16 years
old; 8 males and

6 females), 14 T2DM
at-risk (50.1 ± 3.15
years old; 8 males

and 6 females), and
12 T2DM

(57.7 ± 2.5 years old;
8 males and
4 females)

individuals

Open-label design

- ↓ FGB, LDL-c, and
uric acid in the T2DM
at-risk group;

- ↓ IL-6, IL-18, and
TNF-α in the T2DM
group.

[71]

MEDOX® (Purified
anthocyanins) a

20, 40, 80, 160, and
320 mg/day 14 days

111 healthy adults
(18–35 years old;

39 males and
72 females)

Randomized,
double-blind,

placebo-controlled
trial

- ↓ FBG;
- ↓ IL-6, IL-10, and

8-iso-PGF2α;
- IL-10 and 8-iso-PGF2α

decreased with
increasing
anthocyanin dose.

[72]

MEDOX® (Purified
anthocyanins) a

40, 80, and
320 mg/day 12 weeks

169 dyslipidemic
subjects (35–70

years old; 45 males
and 124 females)

Randomized,
double-blind,

placebo-controlled
trial

- ↑ SOD activity in the
high dose group after
6 weeks
(320 mg/day);

- IL-6, TNF-α,
8-iso-PGF2α, 8-OHdG,
and MDA decreased
with increasing
anthocyanin dose.

[65]

MEDOX® (Purified
anthocyanins) a

40, 80, and
320 mg/day 12 weeks

176 dyslipidemic
subjects (35–70

years old; 46 males
and 130 females)

Randomized,
double-blind,

placebo-controlled
trial

- ↓ plasma levels of 6
ceramide species (Cer
16:0, 18:0, 20:0, 22:0,
24:0 and 24:1) in a
dose-dependent
manner;

- Cer 16:0 and Cer 24:0
reduction was
correlated with the
decreases in
non-HDL-c, ApoB and
TC in the high dose
group (320 mg/day).

[73]
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Table 1. Cont.

Anthocyanin Anthocyanin Dose Time Subject Profile Study Type Major Findings Reference

MEDOX® (Purified
anthocyanins) a

40, 80, and
320 mg/day 12 weeks

176 dyslipidemic
subjects (57.41 ±
7.95 years old; 46

males and 130
females)

Placebo-controlled,
double-blind,

randomized trial
with multiple doses

- ↑ cholesterol efflux
capacity, HDL-c, and
ApoA1 in the high
dose group
(320 mg/day);

- Cholesterol efflux
capacity, HDL-c, and
ApoA1 increased with
increasing
anthocyanin dose.

[74]

MEDOX® (Purified
anthocyanins) a 320 mg/day 24 weeks

150 hypercholes-
terolemic subjects

(40–65 years old; 63
males and 87

females)

Randomized,
double-blind,

placebo-controlled
trial

- ↓ NAP-2, ENA-78,
IL-8, SDF-1α, and
MCP-1;

- ↓ LDL-c;
- ↑ HDL-c;
- ↓ hs-CRP, IL-1β, and

soluble P-selectin.

[75]

MEDOX® (Purified
anthocyanins) a 320 mg/day 4 weeks

12 lean (33.0 ±
3.2 years old; 6

males and 6
females), 9

overweight (49.9 ±
4.2 years old; 5

males and 4
females), and 8

obese (43.3 ± 4.5
years old; 4 males

and 4 females)
participants

Clinical trial

- ↓MCP-1 across all
groups;

- ↓ IL-6 in the obese
group;

- Trend for reducing
TNF-α across all
groups.

[76]

MEDOX® (Purified
anthocyanins) a 320 mg/day 4 weeks

51 subjects (25
normal subjects
(38.2 ± 2.7 years

old; 13 males and 12
females) and 26

MetS subjects (56.6
± 2.6 years old; 14

males and 12
females))

Clinical trial

- ↓ FBG, TG, and LDL-c
in the MetS group;

- ↓ hs-CRP in the MetS
group;

- ↓ ADP-induced
platelet activation (↓
P-selectin expression)
in the MetS group.

[77]

MEDOX® (Purified
anthocyanins) a 320 mg/day 4 weeks

35 subjects (15
normal subjects
(37.3 ± 2.9 years

old; 10 males and 5
females) and 20

MetS subjects (56.2
± 2.9 years old; 11

males and 9
females))

Clinical trial

- ↓ FBG, TC, TG, and
LDL-c in the MetS
group;

- ↑ PPAR-γ expression
in the MetS group;

- ↓ hs-CRP, TNF-α,
IL-6, and IL-1A in the
MetS group;

- ↓ COX-2 and
PECAM-1 in both
groups;

- ↑ SOD in the MetS
group.

[78]

MEDOX® (Purified
anthocyanins) a 320 mg/day 4 weeks

26 pro-thrombotic
overweight and

obese individuals
(39 ± 11 years old; 9

males and 17
females)

Randomized,
double-blind,

placebo-controlled,
crossover design

dietary intervention
trial

- ↓ ADP-induced
platelet
activation-related
conformational
change and
degranulation (↓
PAC-1 and P-selectin
expression);

- ↓ thrombogenic
progression (↓
monocyte-platelet
aggregate formation
and PECAM-1
expression);

- ↓ platelet aggregation,
collagen, and
arachidonic acid.

[79]
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Table 1. Cont.

Anthocyanin Anthocyanin Dose Time Subject Profile Study Type Major Findings Reference

MEDOX® (Purified
anthocyanins) a 320 mg/day 4 weeks

16 sedentary
pro-thrombotic

individuals (38 ± 12
years old; 3 males
and 13 females)

Randomized,
double-blind,

placebo-controlled,
cross-over design

dietary intervention
trial

- ↓ ADP-induced
platelet
activation-related
conformational
change and
degranulation (↓
PAC-1 and P-selectin
expression);

- ↓ thrombogenic
progression (↓
monocyte-platelet
aggregate formation
and PECAM-1
expression).

[80]

MEDOX® (Purified
anthocyanins) a 320 mg/day 16 weeks

27 individuals with
MCI (n = 8) or stable

non-obstructive
coronary artery
disease (n = 19)

(55–70 years old; 18
males and 9

females)

Open-label study

- ↓ RANTES;
- Improved verbal

memory function
(learning, recall, and
recognition) and
cognitive speed.

[81]

Anthocyanins-rich
blackcurrant extract

150, 300, and
600 mg Acute

14 men and 9
postmenopausal

women (46 ±
14 years old)
consuming a

high-carbohydrate
meal

Randomized,
double-blind,
crossover trial

- ↓ postprandial
glycemia, serum
insulin, and serum
GIP in the high dose
group (600 mg).

[82]

Anthocyanins-rich
blackcurrant extract

3.2 mg/kg/day
(~240 mg/day) 5 weeks

34 healthy
individuals (38 ± 11
years old; 21 males

and 13 females)

Double-blind
placebo-controlled

trial design

- ↓ post-exercise-
induced MDA and
plasma
ROS-generating
capability;

- ↓ post-exercise plasma
TNF-α and IL-6;

- ↑ post-exercise plasma
IL-10;

- ↑ salivary mucosal
anti-bacterial defense
proteins (BD2 and
secretory IgA).

[66]

Anthocyanins-rich
black soybean testa

extract
31.45 mg/day 8 weeks

63 overweight or
obese individuals

(30.59 ± 9.25 years
old; 50 males and 30

females)

Randomized,
double-blinded,

placebo-controlled
clinical trial

- ↓ waist circumference,
hip circumference, TG,
LDL-c, and
non-HDL-c;

- ↓ TC/HDL-c and
LDL-c/HDL-c.

[83]

Anthocyanins-rich
Queen Garnet plum

juice
200.8 mg/day 4 days

16 overweight
subjects (65.9 ± 6.0
years old; 3 males

and 13 females)
consuming a

high-fat high energy
meal

Crossover,
randomized,
controlled,

double-blind
clinical trial

- ↑ 2 h postprandial
flow-mediated
dilatation and
microvascular
post-occlusive reactive
hyperemia;

- ↓ hs-CRP and IL-6.

[84]

Anthocyanins-rich
Queen Garnet plum

juice
47 and 201 mg/day 8 weeks

31 subjects with
MCI (75.3 ± 6.9

years old; 12 males
and 19 females)

Randomized,
controlled,

double-blind
clinical trial

- ↓ TNF-α in the high
dose group
(201 mg/day).

[85]

Anthocyanins from
blueberry 258 mg/day 16 weeks

37 older adults with
MCI (≥68 years old;

17 males and 20
females)

Randomized,
double-blind,

parallel groups,
placebo-controlled

trial

- Improved semantic
access and
visual-spatial
memory;

- Trend for enhanced
psychomotor speed of
processing;

- Cognitive benefits
were correlated with
parent anthocyanin
compounds.

[86]
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Table 1. Cont.

Anthocyanin Anthocyanin Dose Time Subject Profile Study Type Major Findings Reference

Anthocyanins-rich
black rice extract 19.08 mg/day 12 weeks

48 subjects with
subjective memory
impairment (63.88
± 7.59 years old; 16

males and 32
females)

Double-blind
randomized,

placebo-controlled
trial

- Improved subjective
memory;

- Trend for improving
cognitive function.

[87]

Anthocyanins-rich
cherry juice 138 mg/day 12 weeks

49 older adults with
mild-to-moderate

dementia (≥70
years old; 25 males

and 24 females)

Randomized
controlled clinical

trial

- Improved verbal
fluency, short-term
memory, and
long-term memory;

- ↓ Systolic blood
pressure.

[88]

Anthocyanins-rich
bilberry extract 840 mg/day 6 weeks

13 patients with
current

mild-to-moderate
ulcerative colitis

(19–61 years old; 10
males and 3

females)

Open, prospective,
non-blinded, and

non-controlled pilot
trial

- ↓ IFN-γ-receptor 2,
IFN-γ, and TNF-α
expression in the
colon;

- ↓ phosphorylated
(activated) p65-NF-κB
in the colon;

- ↓ STAT1 expressing
cells;

- ↓ serum MCP-1 and
TNF-α;

- ↓ Th17-specific
cytokine protein
expression (IL-22) in
the colon;

- ↑ IL-10 expression in
the colon.

[67]

Anthocyanins-rich
blackcurrant extract 210 mg/day 7 days

14 older adults (73.3
± 1.7 years old; 6

males and 8
females)

Randomized,
double-blind,

placebo-controlled,
crossover design

study

- ↓ carotid-femoral
pulse-wave velocity,
central blood pressure,
brachial systolic blood
pressure, brachial
mean blood pressure,
brachial pulse
pressure, and
augmentation index.

[89]

Anthocyanins-rich
red fruit juice b 205.5 mg/day 8 weeks

57 healthy male
volunteers (20–50

years old)

Prospective,
randomized,

placebo-controlled
parallel design

- ↑ NQO-1 and HO-1
transcript levels in
peripheral blood
lymphocytes;

- Modified microbial
community;

- ↑ relative abundance
of beneficial bacteria
Adlercreutzia;

- Potentially harmful
taxa were not
enriched.

[90]

Anthocyanins-rich
aronia extract 30 mg/day 12 weeks

66 healthy male
volunteers

(18–45 years old)

3-arm, randomized,
double-blind,

placebo-controlled,
parallel trial

- ↑ flow-mediated
dilation;

- Modulated gut
microbiota
composition;

- ↑ growth of
butyrate-producing
bacteria Anaerostipes.

[91]
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Table 1. Cont.

Anthocyanin Anthocyanin Dose Time Subject Profile Study Type Major Findings Reference

Anthocyanins-rich
bilberry extract 88.5 mg/day 12 weeks

109 healthy adults
(20–60 years old; 34

males and 75
females)

Randomized,
double-blind,

placebo-controlled,
parallel-group

comparison trial

- ↓ post-visual display
terminal load HFC-1;

- Ameliorated and
relieved the tonic
accommodation of
ciliary muscles caused
by visual display
terminal tasks and
near-vision tasks.

[92]

Delphinol®

(Purified
anthocyanins) c

60 mg/day 8 weeks
16 healthy female

subjects (27–57
years old)

Randomized,
double-blind,

placebo-controlled
pilot study

- ↑ skin brightness and
collagen content;

- ↓ facial skin redness.
[93]

Where: ↓ indicates reduction; ↑ indicates increase; 8-iso-PGF2α, 8-iso-prostaglandin F2α; 8-OHdG, 8-hydroxy-2′-deoxyguanosine; ADP,
adenosine diphosphate; Apo, apolipoproteins; BD2, beta-defensin 2; COX-2, cyclooxygenase 2; ENA-78, epithelial neutrophil-activating
peptide; FBG, fasting blood glucose; GIP, glucose-dependent insulinotropic polypeptide; HbA1c, glycated hemoglobin A1c; HDL-c, high-
density lipoprotein cholesterol; HFC-1, high-frequency component 1; HO-1, heme oxygenase 1; hs-CRP, high-sensitivity C-reactive protein;
IFN-γ, interferon-gamma; IgA, immunoglobulin A; IGFBP-4, insulin-like growth factor binding protein 4; IL, interleukins; LDL-c, low-
density lipoprotein cholesterol; MCI, mild cognitive impairment; MCP-1, monocyte chemoattractant protein 1; MDA, malonaldehyde; MetS,
metabolic syndrome; NAP-2, neutrophil-activating peptide 2; NF-κB, nuclear factor-kappa B; NQO-1, NAD(P)H quinone oxidoreductase 1;
PAC-1, procaspase 1; PECAM-1, platelet endothelial cell adhesion molecule 1; PPAR-γ, peroxisome proliferator-activated receptor gamma;
RANTES, regulated on activation, normal T-cell expressed and secreted; ROS, reactive oxygen species; SDF-1α, stromal cell-derived factor
1-alpha; SOD, superoxide dismutase; STAT1, signal transducer and activator of transcription 1; T2DM, type 2 diabetes mellitus; TC, total
cholesterol; TG, triglycerides; TNF-α, tumor necrosis factor-alpha. a The MEDOX® food supplement capsules (Medapalett Pharmaceuticals,
Biolink, Sandnes, Norway) contain purified anthocyanins isolated from bilberries (Vaccinium myrtillus) and blackcurrant (Ribes nigrum)
(33.0% of 3-O-β-glucosides, 3-O-β-galactosides, and 3-O-β-arabinosides of cyanidin; 58.0% of 3-O-β-glucosides, 3-O-β-galactosides, and
3-O-β-arabinosides of delphinidin; 2.5% of 3-O-β-glucosides, 3-O-β-galactosides, and 3-O-β-arabinosides of petunidin; 2.5% of 3-O-β-
glucosides, 3-O-β-galactosides, and 3-O-β-arabinosides of peonidin; 3.0% of 3-O-β-glucosides, 3-O-β-galactosides, and 3-O-β-arabinosides
of malvidin; and 1.0% of 3-O-rutinoside of cyanidin and delphinidin). b The anthocyanins-rich red fruit juice (Eckes-Granini GmbH,
Niederolm, Germany) was produced from red grape juice, lingonberry juice from concentrate, apple, blueberry, and strawberry puree,
Aronia juice from concentrate, and acerola puree (100% fruit content). The total anthocyanin content of red fruit juice was 274 mg/L,
comprising 33% of malvidin-3-glucoside, 14.3% of cyanidin-3-galactoside, 11.6% of peonidin-3-glucoside, 10.3% of petunidin-3-glucoside,
7.7% of delphinidin-3-glucoside, 6.8% of cyanidin-3-arabinoside, 6.4% of cyanidin-3-glucoside, 3.8% of delphinidin-3-arabinoside, 2.5% of
malvidin-3-galactoside, 2% of petunidin-3-galactoside, and 1.6% of delphinidin3-galactoside. c The Delphinol® food supplement capsules
(Oryza Oil & Fat Chemical Co., Ltd., Aichi, Japan) contain purified anthocyanins isolated from maqui berry (Aristotelia chilensis). Each
capsule contains ≥ 35% anthocyanin glycosides and ≥25% delphinidin glycosides.

After daily intake of 320 mg of purified anthocyanins for 12 weeks, diabetics and
prediabetic subjects showed improvement in insulin secretion, insulin sensitivity, and
lipid profile. The results showed a reduction in glycated hemoglobin A1c level (HbA1c),
low-density lipoprotein cholesterol (LDL-cholesterol), and apolipoprotein B (ApoB), while
increasing ApoA1. These effects may be attributed to the molecular mechanisms of glycol-
ipid metabolism, such as activation of adenosine monophosphate-activated protein kinase
(AMPK) that inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (lim-
iting enzyme of cholesterol synthesis), or by regulating transcriptional factor Forkhead box
O1 (FoxO1) of adipose triglyceride lipase (main lipase involved in triglycerides breakdown
in adipocytes), inhibiting cholesterol synthesis and adipocyte lipolysis [68,69].

Human clinical trials further support that purified anthocyanins may improve adipocyte
dysfunction by regulating adipokines expression (e.g., adipsin and visfatin). Adipsin plays
an important role in maintaining the pancreatic β-cell function, whose failure in the human
system promotes the deficiency in adipsin and, therefore, results in insulin resistance and
the progression of type 2 diabetes mellitus. Meanwhile, increased visfatin expression is
associated with obesity and type 2 diabetes mellitus. The daily administration of 320 mg
purified anthocyanins for 12 weeks increased the serum adipsin and reduced the serum
visfatin in diabetic patients. Besides that, it significantly improved the HbA1c and ApoA1
and decreased C-peptide, C-peptide index, and ApoB [69].

Previous human clinical studies have suggested that patients with metabolic syn-
drome showed significatively reduced inflammation and improved lipid profile, evidenced
by decreased serum cholesterol, LDL-cholesterol, triglycerides, fasting blood glucose,
and inflammatory biomarkers after daily intake of 320 mg of purified anthocyanins for
4 weeks. These beneficial effects have been associated with anthocyanins’ capacity in
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regulating the expression/activation/activity of pro-inflammatory mediators, such as NF-
κB signaling pathways, pro-inflammatory cytokines (e.g., TNF-α, IL-6, and IL-1A), and
pro-inflammatory enzymes (e.g., COX-2). The anthocyanins also inhibited the production
of pro-inflammatory molecules, such as high-sensitivity C-reactive protein (hs-CRP), the
best validated inflammatory biomarker, while increasing SOD expression. Moreover, antho-
cyanin supplementation upregulated proliferator-activated receptor-γ (PPAR-γ) expression.
PPAR-γ plays a crucial role in lipid and glucose homeostasis by modulating dietary fats
and glucose metabolism, adipocyte differentiation, and inflammatory responses [77,78].

Dietary supplementation studies have shown that intake of increasing anthocyanin
concentrations for 12 weeks significantly improved the antioxidant status in patients
with dyslipidemia through the reduction in oxidative stress-related biomarkers, such
as malonaldehyde, urine 8-iso-prostaglandin F2α (8-iso-PGF2α), and urine 8-hydroxy-
2′-deoxyguanosine (8-OHdG) and promoted the increase in the total SOD activity. Fur-
thermore, anthocyanin supplementation also improved the anti-inflammatory capacity
through decreased inflammatory cytokines expression (e.g., IL-6 and TNF-α), improved
lipids profile, and cholesterol efflux capacity due to the reduction in ceramide species
levels [65,73].

The consumption of anthocyanins-rich cherry juice (about 138 mg of anthocyanins/day)
for 12 weeks has been shown to attenuate cognition losses in older adults with mild-to-
moderate dementia Alzheimer’s type by improving cognitive tasks, such as verbal fluency
and short and long-term memory [88]. Daily intake of purified anthocyanins (320 mg/day
for 16 weeks), anthocyanins-rich black rice extract (19.08 mg of anthocyanins/day for
12 weeks), and blueberry anthocyanins (258 mg of anthocyanins/day for 16 weeks) also
improved the cognitive performance in subjects with subjective memory impairment or
mild cognitive impairment [81,86,87]. Anthocyanins can eliminate and block the action of
free radicals in the brain, protect neurons susceptible to inflammatory processes, enhance
existing neuronal function, increase cerebrovascular blood flow, and stimulate neurogenesis
in areas of the brain related to cognition, among other mechanisms [15,88]. However, there
is no evidence that anthocyanins can halt disease progression [88].

Clinical trials have also demonstrated that anthocyanin supplementation can improve
cardiovascular function [79,80,84,89,91], modulate gut microbiota composition [90,91],
alleviate ulcerative colitis symptoms [67], enhance exercise recovery effectiveness [66],
reduce ocular fatigue [92], and maintain a healthy skin facial condition [93]. Therefore,
the consumption of anthocyanins-rich fruits/extracts showed beneficial effects on glucose
and lipid metabolism, oxidative stress, inflammatory cascade, and gut microbiota profile
and, thereby their daily intake may have a key role in the prevention or treatment of
type 2 diabetes mellitus, obesity, dyslipidemias, metabolic syndrome, neurodegenerative
disorders, cardiovascular diseases, cancers, and other chronic degenerative diseases, as
well as in maintaining overall health and wellbeing. Nevertheless, further research is
required to elucidate the effective anthocyanin concentrations required to perform their
biological effects and action mechanisms of anthocyanins in the body.

3. Innovative Processes for Anthocyanin Extraction from Agri-Food By-Products
3.1. Pulsed Electric Field

Pulsed electric field (PEF) is an innovative non-thermal processing technology re-
garded as environmentally friendly due to its low energy expenditure water depletion [1].
PEF technology has been successfully used to extract anthocyanins from different matri-
ces [94–98]. As shown in Table 2, PEF technology improved anthocyanin extraction from
different agri-food by-products compared to conventional extraction technologies or even
other innovative extraction technologies (e.g., US and high voltage electrical discharges).
The potentiation of anthocyanin extraction promoted by PEF technology is due to the
increase in mass transfer and, consequently, anthocyanins release into the medium, caused
by the formation of temporary (reversible) or permanent (irreversible) pores in the cell
membranes, a phenomenon known as electroporation [17].
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Table 2. Summary of the main recent findings showing the effects of the pulsed electrical field (PEF) technology on
anthocyanin extraction from agri-food by-products.

Waste/By-Product Extraction Process Parameters Major Findings Reference

Raspberry by-product

Electric field intensity: 1 and
3 kV/cm

Specific energy input: 1, 6, and
12 kJ/kg

Frequency: 20 Hz
Pulse width: 20 µs

- Improved anthocyanin extraction
(up to 25.7%);

- PEF process intensification did not
increase anthocyanin extraction;

- Mild PEF (1 kV/cm and 6 kJ/kg)
was sufficient to achieve higher
anthocyanin extraction.

[47]

Sweet cherry by-product

Electric field intensity: 0.5, 1, and
3 kV/cm

Specific energy input: 10 kJ/kg
Frequency: 5 Hz

Pulse width: 20 µs

- No effect on the number and type
of anthocyanins extracted;

- Improved anthocyanin extraction
(up to 38.4%);

- PEF process intensification did not
increase anthocyanin extraction;

- Cyanidin-3-glucoside content
reduced as the electric field
intensity increased.

[48]

Sour cherry by-product

Electric field intensity: 1, 3, and
5 kV/cm

Specific energy input: 10 kJ/kg
Frequency: 10 Hz
Pulse width: 20 µs

- Improved anthocyanin extraction
(up to 54%);

- PEF process intensification did not
increase anthocyanin extraction.

[99]

Blueberry by-product

Electric field intensity:
10–35 kV/cm

Pulse number: 2–14
Pulse width: 2 µs

- PEF process intensification
improved anthocyanin extraction
(up to 20 kV/cm and 10 pulses);

- High electric field intensity
(>20 kV/cm) and pulse number
(>10 pulses) drastically reduced
anthocyanin extraction;

- PEF technology was more effective
than US.

[100]

Blueberry by-product

Electric field intensity: 3 kV/cm
Specific energy input: 1, 5, and

10 kJ/kg
Frequency: 10 Hz
Pulse width: 20 µs

- No effect on the number and type
of anthocyanins extracted;

- Improved anthocyanins extraction
(up to 75%);

- Anthocyanin extraction increased
with PEF process intensification;

- No evidence of individual
anthocyanin degradation due to
PEF application.

[46]

Blueberry by-product

Electric field intensity: 1, 3, and
5 kV/cm

Specific energy input: 10 kJ/kg
Frequency: 10 Hz
Pulse width: 20 µs

- Improved anthocyanin extraction
(up to 111%);

- Anthocyanin extraction increased
with PEF process intensification.

[101]

Blueberry by-product

Electric field intensity: 1, 3, and
5 kV/cm

Specific energy input: 10 kJ/kg
Frequency: 10 Hz
Pulse width: 20 µs

- No effect on the number and type
of anthocyanins extracted;

- Improved anthocyanin extraction
(up to 95%);

- Anthocyanin extraction increased
with PEF process intensification.

[102]
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Table 2. Cont.

Waste/By-Product Extraction Process Parameters Major Findings Reference

Blueberry pomace

Electric field intensity: 10, 15, and
20 kV/cm

Specific energy input: up to
41.03 kJ/kg

Pulse number: 10, 50, and 100
Pulse width: 2 µs

- Anthocyanin extraction increased
with PEF process intensification;

- PEF technology was more effective
than US and high voltage electrical
discharges.

[103]

Peach pomace

Electric field intensity:
0.8–10 kV/cm

Specific energy input: 0.02–20 kJ/kg
Frequency: 0.1 Hz
Pulse width: 4 µs

- Improved anthocyanin extraction
(up to 11.8-fold);

- PEF process intensification
significantly reduced anthocyanin
extraction.

[98]

Grape pomace

Electric field intensity: 1.2, 1.8, and
3.0 kV/cm

Specific energy input: 18 kJ/kg
Pulse number: 200–2000

Pulse width: 100 µs

- Improved anthocyanin extraction
(up to 18.9%);

- The increase in electric field
intensity (1.2–3.0 kV/cm) had no
effect on anthocyanin extraction.

[104]

Grape pomace
Electric field intensity: 13.3 kV/cm
Specific energy input: 0–564 kJ/kg

Frequency: 0.5 Hz

- Improved anthocyanin extraction
(up to 5.3-fold);

- Anthocyanin extraction increased
with PEF process intensification;

- PEF technology was more effective
for anthocyanin extraction than US
(up to 22%) and high voltage
electrical discharges (up to 55%).

[105]

Grape peel

Specific energy input: 289.8 (PEF-I)
and 37.8 W (PEF-II)

Pulse number: 25.2 (PEF-I) and 9.7
(PEF-II)

Frequency: 10 Hz
Pulse width: 6 µs

- Improved anthocyanins extraction
(up to 4-fold);

- PEF-I treatment was more effective
for anthocyanin extraction than US.

[106]

Plum peel

Specific energy input: 228 (PEF-I)
and 17.8 W (PEF-II)

Pulse number: 25.2 (PEF-I) and 9.7
(PEF-II)

Frequency: 10 Hz
Pulse width: 6 µs

- PEF technology was not able to
increase anthocyanin extraction
compared to control.

[106]

Cell membranes are the cell barriers that govern the target compounds’ extraction
yield. Thus, extraction rate depends on the cell membrane permeability [107]. The cell
membrane acts like a capacitor with a low dielectric constant, in which the cell membrane
conductivity is extremely lower than that of the surrounding medium and cytoplasm.
However, when the cell is exposed to a strong external electric field, ions migrate from the
fluid and accumulate at the cell membrane interface, forming free charges of opposite sign
at the two interfaces (inner/outer) of the membrane itself that increases transmembrane
potential on the cell surface. Due to the very low thickness of a typical plant cell membrane
(approximately 5 nm), electrostatic attraction of opposite charges occurs along the cell
membrane, inducing cell membrane compression, reducing the membrane thickness. When
the electric field strength exceeds a certain critical limit (Ec), usually around 0.2–1 V/m
for plant cells, the elastic properties of the cell membrane does not resist the electrostatic
attraction that leads to reversible (E ≈ Ec) or irreversible (E >> Ec) formation of micropores
in weaker areas of the cell membrane, increasing cell permeability. Thereby, PEF treatment
enhances the migration of target compounds located in the cytoplasm across the cell
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membrane, which boosts mass transfer and, consequently, increases the extraction rates
and yield [108,109].

Plant cell membrane permeabilization is easier to reach than in microbial cells due
to their larger cell size, requiring lower critical electric field strengths (0.5–2 kV/cm) for
electroporation and, consequently, lower energy consumption [1,108]. The PEF extraction
process is based on the direct application of very short duration pulses (usually micro to
milliseconds) of current high-electric voltage to a matrix placed between two electrodes [2].
Electric field strength, treatment time, specific energy input, pulse number, and temper-
ature are the main parameters that affect the performance of PEF extraction. Overall,
electroporation intensifies as the intensity of these parameters increases and, thereby en-
hancing the target compounds extraction [107,110]. Indeed, some studies have shown an
increase in anthocyanin extraction from agri-food by-products as these parameters are
intensified. When evaluating the PEF treatment effect on blueberry by-product, Pataro
et al. [46] reported that anthocyanin extraction enhances (up to 75%) as specific energy
input increases (1–10 kJ/kg). In this study, PEF technology did not affect the number
and type of anthocyanins extracted and did not induce any degradation/modification
of individual anthocyanins [46]. Similar findings were obtained by Bobinaitė et al. [102].
They demonstrated that the higher the electric field intensity (1–5 kV/cm) applied, the
greater the anthocyanin extraction from the blueberry by-products (up to 95% higher
than conventional extraction). In particular, malvidin and peonidin glycosides extraction
were not significantly affected by electric field intensity, while delphinidin, cyanidin, and
petunidin glycosides significantly increased when higher electric field intensities were
applied. Moreover, it is worth pointing out that the authors did not report PEF technology’s
effect on the number, type, and stability of individual anthocyanins extracted [102]. In
another study, Lončarić et al. [103] verified that the intensification of electric field intensity
(10–20 kV/cm) and pulse number (10–100) enhances anthocyanin recovery from blue-
berry pomace. Moreover, PEF technology was more efficient at extracting anthocyanins
from blueberry pomace than other innovative technologies (US and high voltage electrical
discharges) [103]. Likewise, Zhou et al. [100] reported enhanced anthocyanin recovery
from blueberry by-product by PEF technology compared to US extraction. In this study,
anthocyanin extraction improved as pulse number (up to 10 pulses) and electric field
intensity (up to 20 kV/cm) increased [100]. Similarly, PEF technology was more effective
for anthocyanin extraction from grape pomace than conventional (up to 430%), US (up to
22%), and high voltage electrical discharges (up to 55%) extraction. This study evidenced
that the higher the specific energy input applied, the greater the total and individual
anthocyanins (delphinidin-3-glucoside, petunidin-3-glucoside, peonidin-3-glucoside, and
malvidin-3-glucoside) extraction [105]. These findings agreed with Medina-Meza and
Barbosa-Cánovas [106] and Corrales et al. [95]. They indicated higher anthocyanin yields
from grape pomace using PEF treatment than control, US, and high hydrostatic pressure
extractions. Moreover, PEF treatment of higher intensity (289.8 W and 25.2 pulses) resulted
in better extractability of anthocyanins from grape pomace [106].

Nonetheless, the PEF extraction process intensification does not always improve an-
thocyanin extraction yields. Lamanauskas et al. [47] observed that the PEF treatment of
red raspberry by-products increased anthocyanin extraction up to 25.7% compared to
conventional extraction. However, the intensification of electric field intensity (1–3 kV/cm)
and specific energy input (1–12 kJ/kg) did not promote any significant modification in the
content of anthocyanins extracted. PEF treatment of sweet cherry by-product increased an-
thocyanin extraction by up to 38.4%, with no effect on the number and type of anthocyanins
extracted. Moreover, the anthocyanin yield remained unchanged as the electric field inten-
sity increased (0.5–3 kV/cm) [48]. PEF-treated sour cherry by-product had an anthocyanin
yield 44–54% higher than conventional extraction and electric field intensity (1–5 kV/cm)
did not significantly influence anthocyanin extraction [99]. Likewise, PEF treatment im-
proved total and individual anthocyanins (delphinidin-3-glucoside, petunidin-3-glucoside,
peonidin-3-glucoside, and malvidin-3-glucoside) extraction from grape pomace by up
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to 18.9%, but electric field strength intensification (1.2–3 kV/cm) did not allow for any
significantly higher anthocyanin extraction yield [104].

Depending on the PEF extraction process intensity, there may be a reduction in antho-
cyanin extraction yields with the PEF process intensification. Increasing the intensity of
some PEF extraction process parameters (e.g., electric field intensity and specific energy in-
put) showed a tendency to reduce anthocyanin recovery from red raspberry by-product [47]
and sweet cherry by-product [48]. When evaluating the PEF treatment effect on blueberry
by-product, Zhou et al. [100] reported that anthocyanin extraction enhances up to a cer-
tain point as pulse number (up to 10 pulses) and electric field intensity increases (up
to 20 kV/cm). However, the application of higher electric field intensity (>20 kV/cm)
and pulse number (>10 pulses) drastically and progressively reduced anthocyanin extrac-
tion [100]. PEF application increased anthocyanin extraction from peach pomace by up
to 11.8-fold compared to conventional thermal extraction. However, intensification of
specific energy input (0.02–20 kJ/kg) drastically and progressively reduced anthocyanin
extraction yields in PEF technology. These findings suggest that anthocyanins from peach
pomace are highly sensitive to degradation by PEF treatment intensification with a degra-
dation constant equal to 8.2 kg/kJ [98]. In another study, Pataro et al. [48] noticed that
the cyanidin-3-glucoside content extracted from sweet cherry by-product decreases as the
electric field intensity increases (0.5–3 kV/cm).

In general, the intensification of PEF extraction process parameters promoted higher
anthocyanin extraction yields from blueberry and grape by-products. At the same time,
it did not affect anthocyanin recovery from red raspberry, sweet cherry, and sour cherry
by-products. On the other hand, PEF intensification had negative effects on anthocyanin
extraction from peach pomace. Overall, electric field intensity and specific energy input
applied to the agri-food by-products ranged from 0.5–20 kV/cm and 0.02–20 kJ/kg, respec-
tively. Nevertheless, the behavior of anthocyanin extraction greatly differed according to
the matrix as mentioned above. The influence of PEF treatment on anthocyanin extraction
depends on distinct factors, such as the relative location in the plant cell, cell size distri-
bution between peel and pulp, ability to bind to the matrix, chemical structure, stability,
etc. [46,99]. Peel cells are lower than pulp cells. Thus, it is likely that a lower degree of cell
disintegration occurs in peel cells, making anthocyanin extraction from peels more diffi-
cult [46]. Monoglucosides anthocyanins are more easily extracted than acylated glucoside
anthocyanins since the latter seems to be physically entrapped within the matrix or form
hydrogen bonds with cell wall polysaccharides [95]. When evaluating the effect of PEF
treatment (10 kV/cm electric field intensity, 5 µs pulse width, and 10 Hz pulse frequency)
on individual anthocyanins, Sun et al. [111] verified that cyanidin-3-glucoside was more
susceptible to PEF degradation than cyanidin-3-sophoroside. In addition to sugar moieties
and phenolic groups bonded to the C-ring, anthocyanin stability depends on -OH and
-OCH3 groups at position R1 and C3′ and R2 and C5′ from the B-ring. The anthocyanin
stability enhances as the number of -OH, -OCH3 and acyl groups increases (stability order:
malvidin > peonidin > petunidin> cyanidin > delphinidin) [95]. Electrode materials from
PEF devices have also been shown to influence anthocyanin recovery. Sun et al. [111]
noticed that stainless steel was the electrode material that allowed greater anthocyanin
retention after PEF treatment. In contrast, pure titanium and titanium-based alloy materials
led to greater anthocyanin degradation. Moreover, PEF technology can show a very distinct
effect in different fruit varieties of the same species [112]. Furthermore, the critical electric
field strength required to promote electroporation in cell membranes can differ for each
agri-food by-product. As discussed previously, the closer the electric field strength values
to the critical value (Ec), the greater the extent of the electroporation phenomenon and,
consequently, higher compounds release into the extraction medium [108,109]. However,
when the electric field strength values overcome the critical value (Ec), the excess energy
can promote structural changes and/or degradation of organic molecules [100]. Thereby,
the use of excessively high electric field strengths can lead to drastic and progressive
anthocyanin degradation.
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The results compiled here demonstrate that high electric field strengths are demanded
to promote complete electroporation of cell membranes from blueberry and grape by-
products. In contrast, moderate electric field strengths are required for red raspberry, sweet
cherry, and sour cherry by-products, and low electric field strengths for peach pomace.
Anthocyanins are mainly located in peels of blueberry and grape, and there is a great
difference in peel and pulp cell size. Therefore, anthocyanins from smaller and denser cells
of peels are released more difficulty than those from larger and juicer cells of pulp [46].
As blueberry and grape by-products are mainly composed of peels, higher electric field
strengths are required to promote peel cell disintegration and consequent anthocyanin
release. Zhou et al. [100] showed that very high electric field strengths are needed to cause
anthocyanin degradation from blueberry by-products. In contrast, increasing extraction
yields were reported by Barba et al. [105] for grape pomace anthocyanins even when a
high electric field intensity (13.3 kV/cm) was applied together with increasing specific
energies input (0–564 kJ/kg). Meanwhile, moderate PEF treatment can affect anthocyanin
stability from sweet cherry by-product during extraction since cyanidin-3-glucoside con-
tent progressively reduced as the electric field intensity increased (0.5–3 kV/cm) [48]. On
the other hand, Plazzotta et al. [98] proved that low electric field strengths (<0.8 kV/cm)
are needed to extract anthocyanins from peach pomace since the application of electric
field strengths higher than 0.8 kV/cm drastically degraded its anthocyanins. Studying
the anthocyanin degradation kinetics, the authors found a high degradation constant
(8.2 kg/kJ), showing that peach pomace anthocyanins are very sensitive to PEF treatment
intensification [98]. Similarly, previous studies demonstrated that degradation constants
of cyanidin-3-glucoside exposed to PEF treatment were boosted as electric field strength
increased [113,114]. When the electric field strength is high enough, electrochemical re-
actions can occur (particularly electrolysis of solvent and electrode corrosion), leading to
the production of high concentrations of metallic ions and reactive oxygen species (es-
pecially hydroxyl radicals and hydrogen peroxide). Metallic ions, it turns, can catalyze
the decomposition of hydrogen peroxide into hydroxyl radicals via the Fenton reaction.
Hydroxyl radicals have been identified as the main reactive oxygen species related to ben-
zene ring cleavage in phenolic compounds [107,111]. Indeed, increased hydroxyl radicals
formation has been observed after PEF treatment [111,115]. Sun et al. [115] proposed a
mechanism for the PEF-induced cyanidin-3-sophoroside degradation based on the action
of reactive oxygen species formed by electrochemical reactions at the electrode-medium
interface during PEF treatment. According to the authors, hydrogen peroxide promotes
a nucleophilic attack at the C2 of the C-ring leading to the cleavage of the heterocyclic
ring between C2 and C3 through the Baeyer–Villiger oxidation reaction and consequent
formation of benzoyloxyphenylacetic acid ester of cyanin type (called cyanone). Then,
cyanone is oxidized by other oxidants (e.g., hydroxyl radicals) at either of two phenolic
hydroxyl groups on A-ring forming several quinonoid cyanone isomers. Zhang et al. [113]
verified that protocatechuic acid, 2,4,6-trihydroxybenzoic acid, and eight other unknown
compounds were the main degradation products of cyanidin-3-glucoside exposed to PEF
treatment. Protocatechuic acid, phloroglucinaldehyde, a dimer, chalcone-3-sophoroside,
and four quinonoid cyanone isomers were identified by Sun et al. [115] as the main PEF
degradation products of cyanidin-3-sophoroside. These studies also pointed out that the
degradation mechanism and pathways of anthocyanins by PEF treatment were different
from thermal treatment [113,115]. Therefore, the reactive oxygen species’ action on antho-
cyanins could explain their degradation during PEF processing, particularly when high
electric field strengths are employed.

In addition to enhancing the anthocyanin recovery from agri-food by-products without
affecting the number and type of anthocyanins extracted [46,48,102–104], PEF technology
can be used to improve the extraction of individual anthocyanins selectively. For example,
the PEF treatment of grape pomace remarkably enhanced the monoglucoside anthocyanin
extraction compared to acylated glucoside anthocyanins [95]. Bobinaitė et al. [102] observed
that higher PEF treatment intensities particularly increased the extraction of delphinidin,
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cyanidin, and petunidin glycosides from blueberry by-products. Barba et al. [105] found
PEF treatment intensification remarkably enhanced malvidin-3-glucoside extraction com-
pared to the content of other individual anthocyanins. Moreover, PEF technology can be
more selective to extract anthocyanins rather than other phenolic compounds. Brianceau
et al. [104] noticed that PEF treatment increased the total anthocyanins/total flavan-3-ols ra-
tio regarding the non-treated sample in grape pomace. Likewise, Barba et al. [105] verified
that PEF-treated grape pomace had a higher total anthocyanins/total phenolic compounds
ratio than reference extraction.

Finally, the application of high-intensity PEF technology to extract anthocyanins
from agri-food by-products can lead to some anthocyanin degradation. Nevertheless,
low/moderate-intensity PEF treatments improved anthocyanin recovery without inducing
any anthocyanin degradation/modification. Therefore, PEF is a promising innovative
technology to extract anthocyanins from agri-food by-products.

3.2. Microwave

Microwave (MW) is another innovative and green extraction technology considered to
be more advantageous than conventional extraction technologies due to its high extraction
rate, less use of solvents, and shorter extraction time [109]. Anthocyanins from different
plant sources have been successfully extracted by using MW technology [116–120]. MW
technology enhanced anthocyanin extraction from various agri-food by-products compared
to conventional extraction technologies or even other innovative extraction technologies
(e.g., US) (for more details, see Table 3). MW technology improves anthocyanin extraction
due to its ability to increase mass transfer rates and, consequently, anthocyanins release into
the extraction medium because of the cell interruption caused by internal overheating [17].

Table 3. Summary of the main recent findings showing the effects of the microwave (MW) technology on anthocyanin
extraction from agri-food by-products.

Waste/By-Product Extraction Process Parameters Major Findings Reference

Blueberry peel

Microwave power: 500 W
Temperature: 40–100 ◦C

Irradiation time: 2–40 min
Solvent: Choline chloride:lactic acid (1:1)

containing 25% (v/v) water

- Maximum anthocyanin extraction was achieved
at 60 ◦C and 15 min;

- Improved anthocyanin extraction (up to 62.7%);
- MW can degrade anthocyanins during the

extraction process.

[121]

Blueberry bagasse
Microwave power: 525 and 700 W

Irradiation time: 3 min
Solvent: Acidified water

- MW process intensification reduced anthocyanin
extraction. [122]

Fig peel

Microwave power: 400 W
Temperature: 40–115 ◦C

Irradiation time: 5–35 min
Solvent: Acidified hydroethanolic mixtures

(0–100% ethanol)

- Maximum anthocyanin extraction was achieved
at 5 min, 64.21 ◦C, and 100% ethanol;

- MW technology was more effective for
anthocyanin extraction than thermal (38%) and
US extraction (16.73%);

- MW process intensification can reduce
anthocyanin extraction.

[123]

Eggplant peel

Microwave power: 100–300 W
Irradiation time: 5–15 min

Solvent: Acidified hydroethanolic mixtures
(55–95% ethanol)

- Anthocyanin extraction improved as the
microwave power increased and irradiation time
and ethanol concentration reduced;

- Maximum anthocyanin extraction was achieved
at 298.84 W, 5.78 min, and 55.56% ethanol;

- MW process intensification can reduce
anthocyanin extraction.

[40]
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Table 3. Cont.

Waste/By-Product Extraction Process Parameters Major Findings Reference

Black soybean seed coat

Microwave power: 340–680 W
Irradiation time: 2.5–7.5 min

Solvent: Hydroethanolic mixtures
(20–60% ethanol)

- Maximum anthocyanin extraction was achieved
at 510 W, 7.5 min, and 60% ethanol;

- Improved anthocyanin extraction (up to
4.72-fold);

- Microwave power intensification (>510 W)
caused anthocyanin degradation.

[42]

Grape pomace
Microwave power: 600–1000 W

Irradiation time: 5–10 min
Solvent: Acidified water

- Overall, MW process intensification improved
anthocyanin extraction;

- Irradiation time intensification (>7 min) caused
anthocyanin degradation.

[124]

Grape pomace
Microwave power: 300–600 W

Irradiation time: 1–3 min
Solvent: Water

- Maximum anthocyanin extraction was achieved
at 428 W and 2.23 min;

- MW process intensification can reduce
anthocyanin extraction.

[125]

Grape pomace

Microwave power: 100–300 W
Irradiation time: 10–15 min

Solvent: Choline chloride:citric acid (2:1)
containing 10–50% (v/v) water

- Anthocyanin extraction enhanced as the
microwave power increased and irradiation time
decreased;

- Maximum anthocyanin extraction was achieved
at 300 W, 10 min, and 30% water.

[126]

Bilberry pomace
Microwave power: 300–600 W

Irradiation time: 1–16 min
Solvent: Solvent-free

- Anthocyanin recovery enhanced as the
microwave power increased;

- The higher the microwave power, the shorter the
irradiation time required for anthocyanin
extraction;

- Maximum anthocyanin extraction was achieved
at 600 W and 6.5 min.

[50]

Sour cherry peel

Microwave power: 350–500 W
Irradiation time: 0.5–1.5 min

Solvent: Acidified hydroethanolic mixtures
(20–80% ethanol)

- MW process intensification improved
anthocyanin extraction;

- Maximum anthocyanin extraction was achieved
at 500 W, 1.5 min, and 80% ethanol.

[49]

Blackcurrant bagasse

Microwave power: 385–700 W
Irradiation time: 10–20 min

Solvent: Acidified hydroethanolic mixtures
(0–90% ethanol)

- Maximum anthocyanin extraction was achieved
at 551 W, 16.4 min, and 60% ethanol;

- MW process intensification can reduce
anthocyanin extraction.

[51]

Peach pomace

Microwave power: 180–900 W
Irradiation time: 10–50 s

Solvent: Hydroethanolic mixture
(70% ethanol)

- Improved anthocyanin extraction (up to 26-fold);
- Anthocyanin extraction enhanced as the

microwave power reduced and irradiation time
increased;

- Maximum anthocyanin extraction was achieved
at 180 W and 50 s.

[127]

Onion peel

Microwave power: 700–1000 W
Irradiation time: 3–5 min

Solvent: Hydroethanolic mixtures
(40–75% ethanol)

- Maximum anthocyanin extraction was achieved
at 700 W, 5 min, and 75% ethanol;

- MW process intensification can reduce
anthocyanin extraction.

[44]

Black rice bran
Microwave power: 298–800 W

Irradiation time: 13–147 s
Solvent: Acidified water

- Maximum anthocyanin extraction was achieved
at 648 W and 83 s;

- MW process intensification can reduce
anthocyanin extraction.

[45]

Black carrot pomace

Microwave power: 340–680 W
Irradiation time: 5–15 min

Solvent: Hydroethanolic mixtures
(10–30% ethanol)

- Maximum anthocyanin extraction was achieved
at 348 W, 9.86 min, and 19.8% ethanol;

- MW technology was more effective for
anthocyanin extraction than conventional (133%)
and US extraction (24.12%);

- Microwave power intensification reduced
anthocyanin extraction.

[39]

As discussed earlier, cell membranes are the cell barriers that control solute perme-
ability and, therefore, extraction yields. Thus, cell rupture is needed to boost anthocyanin
extraction from plant matrices. When microwave irradiation is applied to a matrix or
extraction medium, microwave energy is absorbed by polar compounds causing ion con-
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duction and dipole rotation [109]. In ionic conduction, the electric field produced by the
microwaves induces electrophoretic migration of charge carriers (e.g., ions and electrons),
generating friction between the moving ions and the medium that causes heating. Mean-
while, in dipole rotation, heating occurs due to the collision between dipolar molecules
and surrounding molecules caused by the dipolar species’ oscillation when they attempt
to align themselves with the alternating electric field produced by microwaves [128]. In
plant matrices, the water naturally present inside their structure selectively absorbs the
microwave energy favoring localized heating above or near the boiling point of water. This
internal overheating causes the expansion and rupture of cell structures (especially cell
walls and cell membranes) by disrupting the dipole attractions, hydrogen bonds, and van
der Waals forces, which facilitates the release of target compounds bound to the matrix
and solvent penetration into the plant materials, resulting in the improved mass transfer of
these compounds into the extraction medium [17,109]. Moreover, MW-induced tempera-
ture rise modifies the solvent properties, reducing its viscosity and surface tension while
increasing its diffusivity and molecular mobility, improving the mass transfer rates [19].

MW extraction process is based on the focused or non-focused application of non-
ionizing electromagnetic waves of frequency ranging from 300 MHz to 300 GHz on a
sample [17]. Solvent type is a crucial parameter in MW extraction since its ability to
solubilize the target compounds and absorb microwave energy is critical for recovering
these compounds. Regarding the solubility, it is preferable to use solvents that have the
Hildebrand solubility parameter (measure the cohesion (interaction) energy of the solvent-
solute mixture) similar to those of the target compounds [128]. On the other hand, the
ability of a solvent to absorb electromagnetic energy and dissipate heat depends on its
dielectric constant (ε′) and dielectric loss factor (ε”). The dielectric constant is a parameter
proportional to the amount of energy absorbed. Meanwhile, the dielectric loss factor
denotes a solvent′s ability to dissipate input dielectric energy as heat. Polar solvents with a
high dielectric constant (e.g., water and ethanol, ε′ = 78.5 and 24.3 at 25 ◦C, respectively)
have a better capacity to absorb electromagnetic energy and reemit it as heat, whereas
apolar solvents with a low dielectric constant (e.g., hexane, ε′ = 1.87 at 25 ◦C) are almost
insensitive to this energy, besides not being considered green solvents [128,129]. Thereby,
solvents with a high dielectric constant are recommended for MW extraction purposes.
Nevertheless, the relationship between dielectric properties from the plant material and
solvent is also essential. When plant material has better dielectric properties than solvent,
that is, when the dielectric loss tangent (δ = ε′/ε”) of plant material is higher than the
solvent, the plant material better absorbs the microwave energy than the solvent. This
allows plant material to reach higher temperatures than the solvent, increasing the inside
cell pressure that results in the cell membrane’s rupture and the release of target compounds
into the extraction solvent [128]. This factor can be managed by changing the extraction
temperature. Lee et al. [130] reported that the dielectric loss tangent of plant material (okra)
raised as temperature increased, while for the solvent (water), this parameter reduced as
temperature increased. Similar outcomes were found by Mao et al. [131] for orange, apple,
and mango pomaces. Therefore, higher extraction temperatures can improve the dielectric
properties of plant material regarding the solvent.

In addition to solvent, microwave power, irradiation time, and extraction temperature
also significantly impact the performance of MW extraction [132]. Overall, cell structure
disintegration intensifies as the intensity of these parameters increases, thereby improving
the extraction yields of target compounds [119]. Indeed, several studies conducted with
MW have shown an increase in anthocyanin extraction from agri-food by-products as these
parameters are intensified. When evaluating the MW treatment effect on eggplant peel,
Doulabi et al. [40] reported that the anthocyanin extraction enhances as the microwave
power increases (100–300 W). Şahin et al. [49] verified that anthocyanin recovery from sour
cherry peels gradually enhanced as the microwave power (350–500 W) and irradiation time
(0.5–1.5 min) increased. Similarly, the intensification of microwave power (600–1000 W)
and irradiation time (up to 7 min) progressively increased anthocyanin recovery from
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grape pomace [124]. Likewise, the higher the microwave power (300–600 W), the greater
the anthocyanin extraction from bilberry pomace [50]. Grape pomace also had higher
anthocyanin yields as the microwave power increased (100–300 W) [126]. Meanwhile,
longer irradiation times gradually improved anthocyanin recovery from wine lees (30–90 s
at 300 W) [133], sour cherry pomace (30–90 s at 900 W) [134], and saffron floral bio-residues
(0.5–5 min at 800 W) [135].

Although the MW intensification generally enhances the anthocyanin extraction, a
decreased anthocyanin recovery can occur depending on the intensity of the process param-
eters. Grillo et al. [121] reported that anthocyanin extraction from blueberry peel enhances
up to a certain point (up to 62.7% higher than conventional extraction) as extraction temper-
ature (up to 60 ◦C) and irradiation time (up to 15 min) increases and decreases afterward.
Similar behavior was observed by Backes et al. [123] for fig peel anthocyanins, where the
extraction yields enhanced (38% and 16.73% compared to the US and conventional thermal
extractions, respectively) as the extraction temperature was increased (up to 64.21 ◦C),
but begins to decrease with the rise of extraction temperature (>64.21 ◦C) and irradiation
time (>5 min). In another study, Kumar et al. [42] showed that anthocyanin recovery
from black soybean seed coat progressively raised (up to 4.72-fold compared to conven-
tional solvent extraction) with increasing microwave power. However, it diminished at
microwave powers greater than 510 W. Likewise, anthocyanin yields from blackcurrant
bagasse were boosted as the microwave power (up to 551 W) and irradiation time (up
to 16.4 min) increased and, then, it begins to decrease [51]. The anthocyanin extraction
from grape pomace also improved as the microwave power and time extraction increased.
However, when it was applied microwave powers and irradiation times higher than 428 W
and 2.23 min, respectively, anthocyanin extraction gradually decreased [125]. Similar be-
havior was obtained by Halee et al. [45] for anthocyanins from black rice bran, in which
enhanced anthocyanin yields were achieved as the microwave power (up to 648 W) and
irradiation time (up to 83 s) increased and subsequently declined. Meanwhile, Ferreira
et al. [122] pointed out that an increase in microwave power (from 525 to 700 W) led to
lower anthocyanin recovery from blueberry bagasse. Increased microwave power (from
700 to 1000 W) also caused a reduction in anthocyanin extraction from onion peel, while
longer irradiation time (5 min) improved it [44]. MW application increased anthocyanin
extraction from peach pomace by up to 26-fold compared to control extraction. However,
the intensification of microwave power (180–900 W) drastically and progressively reduced
anthocyanin extraction yields, while irradiation time (10–50 s) had the opposite effect [127].
Higher anthocyanin yield was also found in MW-treated black carrot pomace compared to
conventional (133%) and US (24.12%) extractions. Nevertheless, it was noted that increas-
ing microwave powers (340–680 W) and irradiation times superior to 9.86 min harmed
anthocyanin recovery [39]. Doulabi et al. [40] and Backes et al. [136] noticed that the longer
the irradiation time, the lower the anthocyanin recovery from eggplant peel and fig peel,
respectively. Likewise, excessively long irradiation times beyond optimal point can also
result in a reduction in the anthocyanin extraction from grape pomace [124,125], blueberry
peel [121], blackcurrant bagasse [51], black rice bran [45], black carrot pomace [39], and
corn husk [43].

In general, the excessive intensification of MW extraction process parameters re-
sulted in reducing anthocyanin extraction yields from agri-food by-products due to their
degradation. In the literature, it is well established that anthocyanins are thermolabile
compounds [115,137]. Several studies have shown that anthocyanins’ degradation rate aug-
ments as the temperature increases [138–140]. Thus, it is recommended to use non-thermal
MW processes to extract anthocyanins, that is, extraction temperatures below 60 ◦C, to
minimize losses due to thermal degradation. In addition to extraction temperature, extrac-
tion time also significantly impacts MW extraction. Overall, increased extraction times
lead to a progressive release of target compounds from the sample matrix into the extrac-
tion solvent [19]. Nevertheless, longer extraction times do not always favor anthocyanin
recovery. On the contrary, it can even cause their reduction. After a certain extraction
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time, the analyte concentrations in the sample and solvent reach a final equilibrium [19].
The excess time after this equilibrium can cause anthocyanin degradation due to higher
exposure of these extracted compounds to severe conditions of the extraction procedure,
such as high temperatures and microwave powers. However, anthocyanin degradation
can occur even when non-thermal MW processes are employed and the irradiation times
are optimized, mainly if high microwave powers are applied. When the microwave power
is excessively high, internal overheating can occur, leading to carbonization and other
reactions such as isomerization and/or degradation of sample components [129]. Indeed,
high temperatures can be reached when samples are subjected to MW treatment. For
example, extraction mixtures of coffee cherry peel by-product, bilberry pomace and orange
peel, grape pomace, and wine lees achieved up to 89, 90, 93.5, and 117 ◦C during MW
extraction, respectively [50,124,131,133,141]. Zhao et al. [137] reported that malvidin-3-
glucoside and malvidin-3,5-diglucoside exposed to thermal and MW treatments shared
some degradation products, demonstrating that the thermal pathway has a key role in
the degradation of MW-treated anthocyanins. Sun et al. [115] and Zhao et al. [137] have
deduced the thermal degradation pathways of anthocyanins. According to the authors,
anthocyanins’ thermal degradation pathway occurs through the successive loss of sugar
moieties (for anthocyanins with two or more sugar moieties) and subsequent opening of
the C-ring, forming a carbinol pseudo base. Next, chalcone is formed by hydrolysis of
the remaining sugar moiety and later cleaved between C2 and C3. Then, intermediate
products from A-ring and B-ring are oxidized into different compounds depending on
the anthocyanin. Other parallel thermal degradation pathways of anthocyanins are also
described [115,137]. The thermal degradation pathway seems to be the main phenomenon
related to anthocyanin degradation in MW-treated samples. However, anthocyanin degra-
dation during MW extraction can be at least partially explained by oxidative phenomena.
When extreme MW processing conditions are applied, decomposition reactions of water
molecules can occur, leading to the increasing production of reactive oxygen species, es-
pecially hydroxyl radicals [137]. Indeed, it has been reported that the hydroxyl radicals
formation is boosted as the microwave power and irradiation time increases [142]. Quan
et al. [142] postulated that the oxidative degradation pathway of anthocyanins under MW
treatment is given by the Baeyer–Villiger-type oxidation (for more details regarding this
pathway, see Section 3.1). Therefore, the action of high temperatures together with reactive
oxygen species on anthocyanins could explain their degradation during MW extraction,
particularly when high microwave powers are employed.

In addition to MW process parameters, anthocyanins’ structural features also sig-
nificantly impact their recovery from plant matrices. Herrman et al. [143] noticed that
3-deoxyanthocyanins (anthocyanin analogs that are unsubstituted at C3 of the C-ring)
are more stable to MW treatment than common anthocyanins. The authors also pointed
out that acylated anthocyanins were more stable than non-acylated ones [143]. Similar
behavior was reported by Liazid et al. [144] in grape skin anthocyanins, in which MW
treatment remarkably enhanced the acylated glucoside anthocyanin recovery regarding
monoglucoside anthocyanins compared to the solid-liquid maceration classical method.
Wang et al. [145] observed that delphinidin was more stable than petunidin under MW
treatment. Meanwhile, Sivamaruthi et al. [146] verified that petunidin was more stable
than cyanidin after MW exposure.

Finally, the employment of high-intensity MW technology to extract anthocyanins
from agri-food by-products can lead to drastic anthocyanin degradation. However, in gen-
eral, non-thermal MW treatments associated with low/moderate microwave powers result
in higher anthocyanin yields without inducing any anthocyanin degradation/modification.
Therefore, non-thermal MW treatment is a promising innovative technology to recover
anthocyanins from agri-food by-products.
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3.3. Ultrasound

The use of acoustic energy for recovering phytochemical compounds from plant
matrices has strongly increased in the past decade due to its versatility in developing
non-thermal extraction processes [147,148]. In this way, several thermolabile bioactive
compounds such as phenolic compounds may have their biological activity maintained
after this high-energy extraction technique [149]. Extracts obtained from ultrasound-based
extraction processes have a high potential for developing nutraceuticals and functional
food products. Furthermore, extraction processes based on ultrasound (US) technology
enable low-cost industrial manufacturing lines, mainly due to the reduction in solvent used
and extraction time, contributing to the lower energy expenditure [150]. US technology also
meets one of the most critical demands from modern consumers to develop sustainable
green processes [151,152]. Therefore, the combination of US-based extraction techniques
using agri-food by-products is a promising approach for obtaining extracts rich in phenolic
compounds such as anthocyanins.

US technology is based on the acoustic cavitation phenomenon observed in a liquid
medium subjected to sonication treatment. The application of a low-frequency (16 to
100 kHz) and high-power (>10 W) ultrasound into liquid systems promotes the generation
of acoustic fields which are associated with the occurrence of mechanical waves and
vibrations [150,153]. The formation and subsequent collapse of microbubbles characterize
the acoustic cavitation phenomenon. The acoustic cavitation microbubbles convert acoustic
energy provided by the acoustic field into mechanical and thermal energies. The implosive
collapse of microbubbles produces punctual zones of very high temperature (approximately
10,000 K) and pressure (about a few tens of GPa) [154]. Thus, during their collapse, shock
waves and microjets are observed in the sonicated liquid system, resulting in turbulence
and temperature rise. The acoustic cavitation shear stress effect on the surface of cells and
particles is known as sonoporation [155,156]. Acoustic cavitation enables the formation
of micropores and even the disruption of cellular structures. Therefore, the sonoporation
effect is a powerful mechanism for extracting bioactive compounds from plant matrices
because it favors the release of phytochemicals found inside plant cells into the extraction
solvent [157]. Likewise, the sonication treatment also favors phytochemicals diffusion
into the liquid medium due to the temperature increase and turbulence provided by
acoustic cavitation [20,152]. However, US processing can generate free radicals such as
hydroxyl radicals, promoting the degradation of bioactive compounds extracted from
plant matrices [158]. The greater formation of these radicals is associated with the US
process intensification. In this way, US-based extraction processes must be designed
considering the opposite effects of acoustic energy on the recovering and degrading of
target compounds concerning the generation of free radicals. On the other hand, the
number of free anthocyanins can be reduced after US processing due to the formation
of protein/carbohydrate-polyphenol conjugates induced by acoustic energy [159–162].
Xue et al. [163] induced the formation of conjugates between soy protein isolate and
cyanidin-3-galactoside using an ultrasound intensity of 105.86 W/cm2 for 20 min. However,
the antioxidant capacity of proteins can be enhanced due to the formation of covalent
conjugates with polyphenols [160].

Table 4 summarizes some interesting recent studies regarding the application of US
technology to recover anthocyanins from agri-food by-products. Acoustic energy-based ex-
traction processes are promising extraction techniques for phenolic compounds. Compared
to conventional exhaustive extraction techniques based on solid-liquid extraction principles
such as percolation, Soxhlet, and others. US-assisted extraction processes are more energy
efficient regarding the shorter processing time. Another critical issue is related to green
solvents, making these processes more sustainable and greener [164]. Grillo et al. [121]
tested different natural deep eutectic solvents for the US-assisted recovery of anthocyanins
from blueberry peels, the main by-product of blueberry fruit industrial processing. The
authors emphasized the importance of developing new, environmentally friendly bio-based
solvents to enhance the efficiency and selectivity of innovative extraction processes.
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US technology presents anthocyanin degradation mechanisms similar to PEF and MW
technologies (see Sections 3.1 and 3.2, respectively). Chemical and thermal degradations are
observed for anthocyanin molecules after applying acoustic cavitation treatment similarly
to PEF and MW mechanisms, respectively. Tiwari et al. [165] reported that anthocyanin
degradation during US processing occurs due to extreme mechanical and thermal stress
generated by the acoustic cavitation phenomenon. The main US process variables are
ultrasonic power, temperature, and processing time, which are directly associated with
chemical and thermal degradations. The increase in ultrasonic power increases the acoustic
cavitation intensity, contributing to the temperature rise and favoring the formation of free
radicals. The use of an external source of heat to maintain a working temperature may
also contribute to thermal degradation. In this sense, the development of non-thermal
US-assisted extraction processes may preserve anthocyanins’ chemical stability. Processing
time is associated with the exposition time of the plant material to mechanical and thermal
stress due to the application of acoustic energy. Thus, longer processing times may be
responsible for severe degradations in anthocyanins. Xue et al. [166] examined the one-way
effect of the ultrasonic power (100 to 500 W), temperature (40 to 60 ◦C), and processing
time (10 to 50 min) on the anthocyanin recovery from the raspberry by-product. For
each US process variable, the authors observed an optimum condition of anthocyanin
extraction yield (300 W, 50 ◦C, and 40 min) followed by an accentuated decrease, which
certainly indicated the anthocyanin degradation. Otherwise, the US process intensification
employing longer processing time did not promote anthocyanin degradation during their
extraction from jabuticaba by-products at 50 W/L and 25 kHz after 40 min [167]. Thus,
the US process intensification by increasing extraction parameters does not always lead
to enhancements in anthocyanin extraction yields. Therefore, in this section, we focus on
explaining the different US process conditions and their impact on energy delivered to
the extraction system, since distinct results are observed for this innovative technology
depending on process configuration.

In general, US treatment can be performed using an ultrasonic bath and ultrasonic
probe. The main difference between them is associated with the source of acoustic energy.
However, both configurations are based on a piezoelectric transducer as a generator of
ultrasound power [168]. Ultrasonic probe-based systems are more employed to extract
bioactive compounds than ultrasonic baths due to the higher ultrasonic intensity [150].
Higher ultrasound energy densities or specific energies are obtained from the ultrasonic
probe because ultrasonic bath systems present a greater liquid volume medium, which
reduces the ultrasonic energy performance for the same processing time. Thus, in ultra-
sonic probe-based systems, a more efficient cavitation effect is observed because the energy
delivered is concentrated in a lower liquid volume [168]. Tarone et al. [53] studied the
impact of ultrasound intensity (1.1, 3.7, 7.3, and 13.0 W/cm2) and solvent composition con-
cerning water/ethanol ratio (0, 25, 50, 75, and 100 g water/100 g) on anthocyanin recovery
from jabuticaba by-products using an ultrasonic probe of 13 mm at 19 kHz. Non-thermal
US-assisted extractions were performed for 3 min with a maximum temperature of 33 ◦C.
Ultrasound intensity had a positive effect on the extraction yield. In general, the ultrasound
intensity increase promoted a greater mass transfer into the liquid medium. However,
the solvent composition modulated the anthocyanin extraction from jabuticaba peel. The
mixture of 50 g water/100 g of solvent was more efficient (up to 350%) compared to the
extremes of solvent composition (0 and 100 g water/100 g). The US process intensification
by increasing the acoustic cavitation intensity has a slight impact on anthocyanin recovery
compared to solvent composition. These results suggest chemical degradation due to high
mechanical and thermal stress combined with the greater formation of free radicals. Galván
D’Alessandro et al. [54] examined the impact of US processing on anthocyanin degradation
extracted from black chokeberry wastes employing a US water bath at 30.8 kHz. According
to the results reported by them, anthocyanins were degraded after 60 min at 70 ◦C and
ultrasound nominal power of 100 W using as solvent a mixture of 50% ethanol in water.
The authors attributed to thermal effects the decrease in anthocyanin yield with processing
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time. Although Galván D’Alessandro et al. [54] had used an external source of heat to
maintain their extraction conditions at 70 ◦C and observed a reduction in anthocyanin yield,
they used an ultrasound water bath of 1 L. In contrast, Tarone et al. [53] used a probe of 13
mm inside a Falcon tube with 25 mL of solvent. The mode of application of the acoustic
energy has a fundamental role in the ultrasound energy performance for the extraction.
The acoustic energy amount delivered by the ultrasonic probe was applied into a small
liquid volume compared to the ultrasonic bath, which presented a scale 40 times larger.

US-based extraction techniques have been combined with the use of enzymes to
potentialize the rupture of the wall cell of plant materials. The modulation of the plant cell
membrane permeability through sonoporation, which can promote even the cell lysis, is
the most important effect associated with US treatment for the recovery of phytochemical
compounds [166]. Zhang et al. [55] evaluated the US-assisted enzymatic extraction of
anthocyanins from mulberry wine by-products using pectinase and pectinase compound
enzymes. They optimized the technological conditions to increase anthocyanin recovery
for functional food purposes. Optimum conditions for extraction were observed at 52 °C,
315 W, 94 min, and using an enzyme dosage of 0.22%. The authors concluded that US-
assisted enzymatic extraction is an efficient, economical, and environmentally friendly
extraction technique. Likewise, Xue et al. [166] verified that the US-assisted enzymatic
extraction technique was efficient and environmentally friendly for recovering cyanidin-3-
glucoside with a purity of 93.46%, and cyanidin-3-rutinoside with a purity of 94.16% from
raspberry wine by-products after 30 min at 44 ◦C and 290 W using a pectinase dosage of
0.16%. US-assisted enzymatic extraction technique was up to 177% more efficient than
conventional hot water extraction technique regarding anthocyanin yield results.

Finally, from the recent studies concerning the application of US technology for recov-
ering anthocyanins from agri-food by-products, we verified that this innovative technology
presents a high potential to produce extracts with a high content of anthocyanins and other
phenolic compounds. However, the mode of application of acoustic energy may lead to
severe anthocyanin degradation mainly due to the intense mechanical and thermal stress
associated with the acoustic cavitation phenomenon. The development of non-thermal
US-assisted extractions is a promising alternative for reducing anthocyanin degradation.

Table 4. Summary of the main recent findings showing the effects of the ultrasound (US) technology on anthocyanin
extraction from agri-food by-products.

Waste/By-Product Extraction Process Parameters Major Findings Reference

Blueberry peel

Ultrasound nominal power: 100 and 500 W
Processing time: 40 min

Temperature: 40 ◦C
Solvent: Five natural deep eutectic solvents

Ultrasonic equipment: Probe at 20 kHz

- The US-based extraction technique achieved
21.18 mg/g total anthocyanin content after 30 min of
sonication at 500 W power while conventional
extraction based on a stirring and heating system
extracted 22.70 mg/g after 2 h at 55 ◦C and 200 rpm.

[121]

Blueberry pomace

Ultrasound nominal power: 400 W
Processing time: 15–35 min

Temperature: 50–70 ◦C
Solvent: Acidified hydroethanolic mixture

(70% ethanol)
Ultrasonic equipment: Probe

- Delphinidin-3-O-glucoside,
delphindin-3-O-arabinoside, petunidin-3-O-glucoside,
cyanidin-3-O-arabinoside, cyanidin-3-O-glucoside,
malvidin-3-O-glucoside, and
malvidin-3-O-arabinoside were recovered;

- Compared to conventional solvent extraction,
US-assisted extraction resulted in higher
anthocyanin recovery.

[169]

Jabuticaba by-product

Ultrasound intensity: 1.1–13.0 W/cm2

Processing time: 3 min
Solvent: Hydroethanolic mixtures

(0–100% ethanol)
Ultrasonic equipment: Probe at 19 kHz with a

diameter of 13 mm

- The higher ultrasound intensities presented the lowest
values for bioactive compounds and antioxidant
capacity;

- Extracts presented a brownish color indicating
degradation of their compounds and loss of color due
to the increase in the cavitation effect;

- Solvent composition had a strong influence on
anthocyanin recovery.

[53]
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Table 4. Cont.

Waste/By-Product Extraction Process Parameters Major Findings Reference

Jabuticaba by-product

Power density: 50 and 60 W/L
Processing time: 10–40 min

Solvent: Acidified water (pH 1.5, 3.0, and 7.0)
Ultrasonic equipment: Ultrasound bath at 25 and

40 kHz

- Ellagic acid and cyanidin-3-O-glucoside were the
major phenolic compounds extracted from jabuticaba
by-product;

- Processing time and solution pH were the most
significant variables.

[167]

Black chokeberry waste

Ultrasound nominal power: 0–100 W
Processing time: 0–240 min

Temperature: 20–70 ◦C
Solvent: Hydroethanolic mixtures (0–50%

ethanol)
Ultrasonic equipment: Ultrasound bath at

30.8 kHz

- At high temperatures, anthocyanin yield was
decreased with processing time suggesting their
thermal degradation.

[54]

Blackberry waste

Ultrasound nominal power: 1500 W
Processing time: 15 min

Temperature: 4 ◦C
Solvent: Water

Ultrasonic equipment: Probe at 20 kHz with a
diameter of 25 mm

- Ultrasonicated blackberry waste had low antioxidant
compounds compared to blackberry waste. However,
these compounds showed a high in vitro
bioaccessibility.

[170]

Blackberry by-product

Ultrasound nominal power: 580 W
Processing time: 90 min

Temperature: 80 ◦C
Solvent: Hydroethanolic mixtures (50% and 70%

ethanol) and acidified water (pH 2)
Ultrasonic equipment: Ultrasound bath at 37 kHz

- Hydroethanolic mixtures were more efficient to extract
anthocyanins;

- Cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside,
cyanidin-3-O-malonyl-glucoside, and
cyanidin-3-O-dioxalylglucoside were identified in the
extracts.

[52]

Pomegranate by-product

Ultrasound nominal power: 70–210 W
Duty cycle: 20–80%

Processing time: 1–10 min
Solvent: Hydroethanolic mixture (50% ethanol)

Ultrasonic equipment: Probe at 20 kHz

- The pulsed US-assisted extraction of bioactive
compounds from pomegranate peel was an emerging
green, energy, and time-efficient extraction process for
the extraction of food bioactives;

- Multicriterial numerical optimization suggested 116 W
sonication power with 80% duty cycle for 6 min for
extraction of 22.51 mg cyanidin-3-glucosides/100 g
pomegranate peel.

[171]

Eggplant by-product

Ultrasound nominal power: Not specified
Processing time: 15–45 min
Temperature: 25 and 50 ◦C

Solvent: Acidified hydroethanolic mixtures (70%
and 96% ethanol)

Ultrasonic equipment: Ultrasound bath

- Five anthocyanins were identified:
delphinidin-3-O-rutinoside-5-glucoside,
delphinidin-3-O-glucoside,
delphinidin-3-O-rutinoside, cyanidin-3-O-rutinoside,
and petunidin-3-O-rutinoside;

- US-assisted extraction was preferable to conventional
solid-liquid extraction due to the lower temperature
used and higher delphinidin 3-O-rutinoside content.

[41]

Eggplant by-product

Ultrasound nominal power: Not specified
Processing time: 15–45 min

Temperature: 50–70 ◦C
Solvent: 50–90% (v/v) methanol or 2-propanol

in water
Ultrasonic equipment: Ultrasound bath at 12.5,

25, and 37.5 kHz

- Solvent concentration exhibited a negative effect on
the anthocyanin content;

- Ultrasonic frequency, processing time, and extraction
temperature had a positive effect on the anthocyanin
recovery.

[172]

Grape pomace

Ultrasound nominal power: 150–300 W
Processing time: 2.5–10 min

Temperature: 25–55 ◦C
Solvent: Water

Ultrasonic equipment: Probe at 20 kHz with a
diameter of 13 mm

- The aqueous extracts of grape by-product presented
higher levels of antioxidant capacity (1.4-fold),
anthocyanins (1.3-fold), and total phenolic (1.2-fold) by
comparing with the conventional extraction technique.

[173]

Raspberry by-product

Ultrasound nominal power: 100–500 W
Pectinase dosage: 0.05–0.25%
Processing time: 10–50 min

Temperature: 40–60 ◦C
Solvent: Acidified hydroethanolic mixture

(60% ethanol)
Ultrasonic equipment: Probe

- Cyanidin-3-glucoside with a purity of 93.46% and
cyanidin-3-rutinoside with a purity of 94.16% were
obtained from raspberry by-products;

- The optimum extraction parameters were obtained at
44 ◦C, 290 W, 30 min, and pectinase dosage of 0.16%.

[166]
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Table 4. Cont.

Waste/By-Product Extraction Process Parameters Major Findings Reference

Mulberry by-product

Ultrasound nominal power: 200–400 W
Pectinase dosage: 0.15–0.25%
Processing time: 60–120 min

Temperature: 40–60 ◦C
Solvent: Acidified water

Ultrasonic equipment: Ultrasound bath

- The optimum extraction conditions were 52 °C, 315 W,
94 min, and enzyme dosage of 0.22%;

- Cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside
are the two main anthocyanins in mulberry
by-product.

[55]

Peach waste

Ultrasound nominal power: 80–400 W
Processing time: 20–120 s

Temperature: 25–55 ◦C
Solvent: Hydroethanolic mixture (70% ethanol)

Ultrasonic equipment: Probe at 24 kHz with a
diameter of 10 mm

- Lower ultrasound powers and longer processing times
contributed to a greater anthocyanin recovery.

[127]

4. Trends, Challenges, and Perspectives for Anthocyanins Application in
Food Systems

Anthocyanins’ properties have allowed food scientists to apply them in food systems
such as natural colorants, antioxidants, and smart packaging agents. Certainly, science and
industries have evaluated the potential use of these biomolecules in different food systems
and with different purposes. In this sense, we present a brief discussion about the tradi-
tional claims of the use of anthocyanins and the recent innovative uses of these phenolic
compounds, as well as the current challenges for their implementation in food systems.

Anthocyanin water-soluble pigments are relatively unstable, with the greatest stability
occurring under acidic conditions. Temperature, pH, and oxygen concentration are the
variables that mainly affect their stability [174]. Food technologists have been developing
new processes and applications to overcome these limitations. Fortunately, the pH of foods
is on average between 4.0 and 6.5, while carbonated beverages and citrus and grape juices
show pH ranging from 2.8 to 3.5. Furthermore, non-acylated anthocyanins can condense
with themselves (self-association) or with other organic molecules (copigmentation), which
tend to form more stable complexes (this occurs during winemaking, for example) [175].

Radishes, red potatoes, red cabbage, black carrots, purple corn, and purple sweet
potatoes contain acylated anthocyanins with high stability during processing and storage
when compared to non-acylated counterparts. These acylated molecules can be used as
natural colorant agents, especially in juices and water-based systems with pH lower than
3 [174,176]. Furthermore, acylated anthocyanins showed high resistance to in vitro simulated
gastrointestinal digestion compared to less complex anthocyanins from red wine [177,178].
This improves the bioavailability of anthocyanins and, as a consequence, their beneficial
health effects. It demonstrates that despite the low stability of certain anthocyanins, we can
use anthocyanins’ molecular structure features and their interaction with the medium and
other organic macromolecules to overcome the stability issues [179–181].

An interesting example of color anthocyanins-based additives is the grape skin ex-
tract (European Economic Community, number E163), which contains mainly malvidin-
3-glucoside. This color agent, commercially known as enocyanin, is restricted to color
non-carbonated and carbonated drinks, beverage bases, and alcoholic beverages. Eno-
cyanin (purplish-red liquid) is obtained from an aqueous extract of red grape pomace, a
by-product, that remains after the grapes press process during juice manufacture [174].
Grape skin extract and its microencapsulated form have been applied as an antioxidant,
antimicrobial, and health-promoting agent [182,183], demonstrating the multi-properties
of anthocyanins. Eminol® is another anthocyanin-rich extract obtained from red grape
pomace through a patented extraction process (Grupo Matarromera, ES 2 309 032). This
extract was added to four different food matrices: milkshake, custard dessert, omelet,
and pancake. The authors observed that these matrices protect the anthocyanins against
intestinal degradation, improving their bioaccessibility [184].

Black sorghum grain contains 3-deoxyanthocyanins that show higher heat resistance
and stability over a wide pH range than C3-substituted anthocyanin analogs because
of their particular structure. These biomolecules accumulate especially in the bran (a
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by-product of sorghum milling) of the black sorghum grain [143]. The luteolinidin, api-
geninidin, and tricitinidin are examples of 3-deoxyanthocyanins. These compounds change
color when exposed to electromagnetic radiation (photochromic properties), which has
interested the food and pharmaceutical industries [185].

Anthocyanins and their derivatives have been traditionally applied/reported in food
systems to improve their sensory and stability properties during processing and storage.
These biomolecules have been applied as natural colorants, preservatives, antioxidants,
antimicrobials, and health-promoting agents, as well as in active and smart packaging and
pH indicator systems (for more details, consult the reviews by Yong and Liu [186] and
Echegaray et al. [17]). Figure 3 shows innovative uses, recently published in reports, of
anthocyanins in food systems.
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Figure 3. Anthocyanins can be recovered from food agri-food by-products. It is an important strategy
to improve the food chain, especially to develop a sustainable food system, by using innovative
processes and a food waste recovery approach. The second part of this figure (right) brings the
anthocyanin uses commonly described by literature and industry, such as natural colorants, preser-
vatives, antioxidants, antimicrobials, and health-promoting agents, as well as the innovative uses
recently described in scientific reports; for instance, the pH anthocyanin-based smart packaging, and
anthocyanin structure modification. Microencapsulation with macromolecules, such as proteins and
polysaccharides, has been reported to enhance the anthocyanins’ stability during food processing and
storage and over the human gastrointestinal digestion system. Food systems present different behav-
ior and, as a consequence, the food technologists should carefully develop anthocyanin formulations
appropriate to these specific systems using, for example, the strategies presented herein. Certainly,
novel purposes will appear over time about these multi-property biomolecules. Nevertheless, the
literature data clearly demonstrate that the food industry may extensively explore anthocyanins as
food additives and functional ingredients.

The dairy industry is constantly developing products, so it is not a surprise that the
use of anthocyanins in dairy products has been evaluated in recent decades, especially as
colorants and antioxidants agents. Furthermore, the biological activities of anthocyanins
can be easily explored in the dairy industry by adding these phenolic compounds. Milk
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(α-, β- and κ-casein) and whey proteins (β-lactoglobulin e α-lactalbumin) can interact with
anthocyanins by hydrophilic and hydrophobic groups, which have been associated with
the increase in anthocyanin stability (thermal, light, and oxidative) during processing and
storage. The protective effect of milk proteins on anthocyanin stability can be improved by
preheating the milk. Preheated milk presented β-casein and β-lactoglobulin conformational
structures that are more open, exposing the interior residues, enhancing the interaction
between these proteins and anthocyanins [179–181].

Heated milk is recommended for yogurt processing because of the whey protein
complex (formed in thermal treatment) depositing on casein micelles, which increases
the process yield and product quality. In this way, the use of anthocyanins as a natural
colorant in yogurts is interesting. The milk protein-anthocyanins complex and the pH
of fermented milk (approximately 3.0–4.5) can increase the biomolecules’ stability, as
previously mentioned [187]. Certainly, the temperature of preheating treatment affects
the proteins’ structural conformations and, consequently, the binding affinity with the
anthocyanins [188].

It is important to point out that food matrices can effectively protect anthocyanins
during food processing/storage and over gastrointestinal digestion. Anthocyanins are
stable during gastric digestion, but they show low intestinal stability because of the neutral
pH (7.0). Anthocyanins are not essential nutrients, but their daily intake is an essential
component of a healthy lifestyle that can confer protection against non-communicable
diseases. Therefore, the bioavailability of anthocyanins has been evaluated in the past few
years. The food components, such as proteins and polysaccharides, represent an interesting
method to control the delivery of anthocyanins in the digestive tract and protect and
anchor them in different types of use [184]. These chemical interactions between matrices’
components and anthocyanins can result in some variation in the hue of anthocyanins
at different pHs and, as a consequence, affect the color variation, which is important, for
example, in pH-indicator systems or milk-based beverages [189].

The bioavailability of anthocyanins is greatly reduced over gastrointestinal digestion,
as previously mentioned. This directly affects the bioactivities of these biomolecules.
Microencapsulation of anthocyanins can be an interesting strategy to improve their stability
and delivery in the human body. Microparticles can be designed with different wall
materials, such as casein, whey proteins, and polysaccharides exploring physicochemical
properties of these macromolecules in digestive systems [190]. Furthermore, the intake of
anthocyanins together with dietary lipids, such as coconut oil, can result in a protective
effect of lipids on bioaccessible polyphenols. It seems that the stability and recovery of
anthocyanins increase with fat content in the food matrix. This effect has been attributed
to the hydrophobic interactions between anthocyanins and lipids. The anthocyanins
incorporate into the lipid phase of the micelles, which increase their stability [191].

Recently, a research group from Australia presented an interesting way to use an-
thocyanins from red cabbage, building an active use by-date indicator for milk. They
developed an anthocyanin-agarose film capable of changing its color in the presence of
lactic acid from microbial metabolism. This allows the consumer to determine the quality of
milk easily (fresh, spoiling, and spoiled milk) by the naked eye. The anthocyanin-agarose
film indicates the quality of milk according to pH changes: fresh milk (blue color at pH
6.8–6.0), spoiling (purple color at pH 6.0–4.5), and spoiled milk (pink color at pH 4.0–4.5).
The milk quality can be monitored in real time using this type of smart packaging, and
this is very important to reduce food waste and improve the food supply chain [192].
Anthocyanins have been explored as freshness monitoring agents in, for instance, milk,
fish, and pork meat [189]. Unlike milk, spoiled fish and pork meat show an increase in pH
because of the release of volatile nitrogenous compounds, such as ammonia, during the
spoilage process [11,193].

In addition to interaction with organic macromolecules, copigmentation, and shelf-
association, anthocyanins’ structure can be chemically modified to improve their physic-
ochemical properties, such as stability and solubility. Marathe et al. [194] enzymatically
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esterified purified anthocyanins from floral waste with lauric acid using lipase. This esteri-
fication improved the stability (thermal and oxidative) of anthocyanins compared to their
non-esterified form. Furthermore, the anthocyanin fatty acid esters bio-synthetized showed
enhanced lipophilicity, which allowed the authors to apply them in emulsion-based sys-
tems (e.g., cupcakes, sandwich biscuit cream, etc.). This approach can be interesting to be
applied in dairy products, for example.

In this review, we reported the use of innovative processes (mild/non-thermal and
environmentally friendly processes) to recover anthocyanins from agri-food by-products.
Grape skin extract and 3-deoxyanthocyanins from the bran of black sorghum grain are
excellent examples of obtaining anthocyanins from agri-food by-products. In this way, we
can use cheap and abundant material to produce high-value goods and decrease the envi-
ronmental impact promoted by food industry activities. Certainly, anthocyanin recovery
from agri-food by-products is the first step of the challenge of using these biomolecules in
food systems. The stability (in different food systems and over gastrointestinal digestion)
and regulatory aspects are the main issues that should be the focus of scientists and the
industry [23,195].

One challenging issue is to develop a food system in which the anthocyanins can be
used as a natural colorant and, at the same time, the interaction between anthocyanins and
food components does not alter their hue and protects them during processing/storage
and over gastrointestinal digestion. For example, suppose anthocyanins are applied in
a milk-based beverage. In that case, their color/hue may change, which can negatively
affect the acceptability, but on the other hand, the interaction with milk proteins can
improve their stability. The use of anthocyanins to simultaneously meet these purposes,
ingredient/additive (natural colorant) and bioactive compound (biological properties),
should be jointly approached. They have been evaluated separately, but we have enough
technology to integrate both properties in only one food system.

The use of anthocyanins as additives brings new insights to the food industry because
of their multiple properties. They can be used to meet technological criteria and simulta-
neously increase food’s functionalities. This is the most important advantage related to
the use of natural compounds as food additives or active compounds in the food indus-
try. In the era in which food technology and health sciences are walking together each
day, the use of natural compounds to improve food properties is an inevitable trend. We
have been reading in scientific articles that synthetic food additives should be replaced by
natural ones because they are unsafe. Nonetheless, synthetic and natural food additives
are both safe, according to regulatory aspects. Therefore, what drives this trend is the
various technological and functional properties of natural compounds as compared with
synthetic ones.

5. Conclusions

In this review, we showed that several human clinical trials have demonstrated the
key role of anthocyanin intake as health-promoting agents by preventing different non-
communicable chronic diseases (e.g., diabetes, obesity, dyslipidemias, metabolic syndrome,
cancers, neurodegenerative disorders, and cardiovascular diseases, among others) and
promoting overall wellbeing. The beneficial health effects of anthocyanins are related to
their capacity of modulating gut microbiota composition/activity and signaling pathways
involved in glucose and lipid metabolism, inflammation, oxidative damage, autophagy,
and apoptosis. In addition to being employed as bioactive/drug agents, market trends
have pointed out the use of anthocyanins in food systems as natural colorants, antioxi-
dants, preservatives, antimicrobials, and active and smart packaging components (e.g.,
pH-sensing films). The great deal of evidence showing the beneficial health effects coupled
with the growing market demand for natural additives has boosted the search for new
anthocyanin sources. In this context, different agri-food by-products, particularly berry
wastes generated from the fruit juicing process, proved to be cheap, feasible, and available
sources for obtaining anthocyanins-rich extracts. Innovative mild/non-thermal process-
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ing technologies (e.g., PEF, MW, and US) have been demonstrated to be effective, rapid,
low-cost, and eco-friendly methods to recover anthocyanins from agri-food by-products.
However, it should be emphasized that the process conditions’ intensity together with
parameters combination and mode of application can significantly compromise the antho-
cyanin extraction yields due to the oxidative and/or thermal degradation that occur when
in overly intensive conditions. Another issue that deserves attention in future studies is
the need for the development/enhancement of technologies that increase anthocyanins’
stability during food processing/storage and over gastrointestinal digestion to improve
their applicability, bioavailability, and bioactivity.
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Extraction Methods for Extraction of Polyphenolic Compounds from Blueberry Pomace. Foods 2020, 9, 1521. [CrossRef] [PubMed]

104. Brianceau, S.; Turk, M.; Vitrac, X.; Vorobiev, E. Combined densification and pulsed electric field treatment for selective polyphenols
recovery from fermented grape pomace. Innov. Food Sci. Emerg. Technol. 2015, 29, 2–8. [CrossRef]

105. Barba, F.J.; Brianceau, S.; Turk, M.; Boussetta, N.; Vorobiev, E. Effect of Alternative Physical Treatments (Ultrasounds, Pulsed
Electric Fields, and High-Voltage Electrical Discharges) on Selective Recovery of Bio-compounds from Fermented Grape Pomace.
Food Bioprocess Technol. 2015, 8, 1139–1148. [CrossRef]

106. Medina-Meza, I.G.; Barbosa-Cánovas, G.V. Assisted extraction of bioactive compounds from plum and grape peels by ultrasonics
and pulsed electric fields. J. Food Eng. 2015, 166, 268–275. [CrossRef]

107. Xi, J.; Li, Z.; Fan, Y. Recent advances in continuous extraction of bioactive ingredients from food-processing wastes by pulsed
electric fields. Crit. Rev. Food Sci. Nutr. 2020, 1–13. [CrossRef]

108. Ricci, A.; Parpinello, G.P.; Versari, A. Recent Advances and Applications of Pulsed Electric Fields (PEF) to Improve Polyphenol
Extraction and Color Release during Red Winemaking. Beverages 2018, 4, 18. [CrossRef]

109. Pattnaik, M.; Pandey, P.; Martin, G.J.O.; Mishra, H.N.; Ashokkumar, M. Innovative Technologies for Extraction and Microencap-
sulation of Bioactives from Plant-Based Food Waste and their Applications in Functional Food Development. Foods 2021, 10, 279.
[CrossRef]

110. Martínez, J.M.; Delso, C.; Álvarez, I.; Raso, J. Pulsed electric field-assisted extraction of valuable compounds from microorganisms.
Compr. Rev. Food Sci. Food Saf. 2020, 19, 530–552. [CrossRef]

111. Sun, J.; Bai, W.; Zhang, Y.; Liao, X.; Hu, X. Effects of electrode materials on the degradation, spectral characteristics, visual colour,
and antioxidant capacity of cyanidin-3-glucoside and cyanidin-3-sophoroside during pulsed electric field (PEF) treatment. Food
Chem. 2011, 128, 742–747. [CrossRef]

112. Donsì, F.; Ferrari, G.; Fruilo, M.; Pataro, G. Pulsed electric field-assisted vinification of aglianico and piedirosso grapes. J. Agric.
Food Chem. 2010, 58, 11606–11615. [CrossRef]

113. Zhang, Y.; Sun, J.; Hu, X.; Liao, X. Spectral alteration and degradation of cyanidin-3-glucoside exposed to pulsed electric field. J.
Agric. Food Chem. 2010, 58, 3524–3531. [CrossRef]

114. Zhang, Y.; Liao, X.; Ni, Y.; Wu, J.; Hu, X.; Wang, Z.; Chen, F. Kinetic analysis of the degradation and its color change of
cyanidin-3-glucoside exposed to pulsed electric field. Eur. Food Res. Technol. 2007, 224, 597–603. [CrossRef]

115. Sun, J.; Bai, W.; Zhang, Y.; Liao, X.; Hu, X. Identification of degradation pathways and products of cyanidin-3- sophoroside
exposed to pulsed electric field. Food Chem. 2011, 126, 1203–1210. [CrossRef]
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121. Grillo, G.; Gunjević, V.; Radošević, K.; Redovniković, I.R.; Cravotto, G. Deep Eutectic Solvents and Nonconventional Technologies
for Blueberry-Peel Extraction: Kinetics, Anthocyanin Stability, and Antiproliferative Activity. Antioxidants 2020, 9, 1069. [CrossRef]
[PubMed]

122. Ferreira, L.F.; Minuzzi, N.M.; Rodrigues, R.F.; Pauletto, R.; Rodrigues, E.; Emanuelli, T.; Bochi, V.C. Citric acid water-based
solution for blueberry bagasse anthocyanins recovery: Optimization and comparisons with microwave-assisted extraction (MAE).
LWT 2020, 133, 110064. [CrossRef]

123. Backes, E.; Pereira, C.; Barros, L.; Prieto, M.A.; Genena, A.K.; Barreiro, M.F.; Ferreira, I.C.F.R. Recovery of bioactive anthocyanin
pigments from Ficus carica L. peel by heat, microwave, and ultrasound based extraction techniques. Food Res. Int. 2018, 113,
197–209. [CrossRef]

124. Da Rocha, C.B.; Noreña, C.P.Z. Microwave-Assisted Extraction and Ultrasound-Assisted Extraction of Bioactive Compounds
from Grape Pomace. Int. J. Food Eng. 2020, 16, 20190191. [CrossRef]

125. Varadharajan, V.; Shanmugam, S.; Ramaswamy, A. Model generation and process optimization of microwave-assisted aqueous
extraction of anthocyanins from grape juice waste. J. Food Process Eng. 2017, 40, e12486. [CrossRef]
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