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Background: Currently no methods are available to predict the clinical outcome of individual

horses with equine sarcoid (ES) disease.

Objective: To investigate if whole blood microRNA (miRNA) profiles can predict the long-term

development of ES tumors.

Animals: Five horses with regression and 5 with progression of ES lesions monitored over

5-7 years and 5 control horses free of ES for at least 5 years.

Methods: For this cohort study, RNA extracted from whole blood samples from the regression,

progression, and control groups was used for high throughput sequencing. Known and novel

miRNAs were identified using miRDeep2 and differential expression analysis was carried out by

the DESeq2 algorithm. Target gene and pathway prediction as well as enrichment and network

analyses were conducted using TarBase, mirPath, and metaCore from GeneGo.

Results: Fourteen miRNAs were differentially expressed between regression and progression

groups after accounting for the control condition: 4 miRNAs (28.6%) were upregulated and

10 miRNAs (71.4%) were downregulated with >2-fold change. Seven of the 10 downregulated

miRNAs are encoded in an miRNA cluster on equine chromosome 24, homologous to the well-

known 14q32 cluster in humans. Their target genes show enrichment for pathways involved in

viral carcinogenesis.

Conclusions and Clinical Importance: Whole blood miRNA expression profiles are associated

with long-term ES growth in horses and warrant further validation as prognostic biomarkers in a

larger study cohort. Deregulation of miRNAs on equine chromosome 24 might represent a trig-

ger for ES development.
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1 | INTRODUCTION

Equine sarcoid (ES) disease is the most common neoplastic skin condi-

tion of horses.1,2 Its pathogenesis is complex with host genetic suscepti-

bility and bovine papilloma virus (BPV) 1 and 2 infection representing

the most important inciting factors. The risk for being affected by ES

may be influenced by specific alleles or haplotypes at the major

histocompatibility complex,3–5 but recent population genetics and

genome-wide association studies suggest that susceptibility to ES has a

polygenic basis.6–8 Once affected by ES, the clinical course of the dis-

ease can differ dramatically among individuals. Approximately 48% of

single occult and verrucous sarcoids in young horses may show com-

plete spontaneous regression over 5-7 years.9 Such milder forms of ES,

however, can transform into aggressive types such as fibroblastic, mixed

fibroblastic, or malevolent sarcoids. They may spread extensively or be

Abbreviations: BPV, bovine papilloma virus; ES, equine sarcoid; HPV, human

papilloma virus; LRT, likelihood ratio test; miRNA, microRNA; PCA, principal

component analysis; RIN, RNA integrity number.
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located in anatomically difficult areas, and thus compromise the health,

welfare, and value of the affected animal.10

The diverse clinical forms of ES are still poorly understood.

Although it is well accepted that exogenous factors such as trauma,

including diagnostic biopsies or surgical intervention, can trigger or

exacerbate the disease,11,12 far less is known about the endogenous

factors that may influence disease outcome. Unlike other neoplastic

diseases, histological characterization is not useful to discriminate

between milder and more aggressive sarcoid phenotypes; increased

density of dermal fibroblasts is common to all forms and other

microscopic alterations are too variable to differentiate clinical

types.13 The DNA of BPV is consistently present in ES, but BPV

viral load and abnormal p53 expression do not appear to be associ-

ated with ES progression.14 In contrast, an in vitro study suggested

that inhibition of BPV gene expression might reverse the trans-

formed phenotype of sarcoid fibroblasts and therefore limit prolifer-

ation and invasiveness.15 Recently, abnormal DNA methylation

patterns have been detected in sarcoid samples and these epige-

netic changes might help to assess growth behavior of the tumors.16

In summary, it remains unknown why some horses show severe

exacerbations and others are clinically stable or even experience

spontaneous regression.

MicroRNAs (miRNAs) are small, 20-23 nucleotide long, noncoding

RNA molecules that mainly downregulate the expression of their target

genes. MicroRNA expression is dysregulated in various malignancies,17

and tumor-type specific miRNA fingerprints have been proposed as

promising diagnostic and prognostic cancer biomarkers.18 Changes in

miRNA expression have been observed in ES tissue and BPV-

transformed equine fibroblast cell lines.19,20 Furthermore, miRNA fin-

gerprints have prognostic potential in human papilloma virus (HPV)-

associated cancers.21–23

Thus, our aim was to compare miRNA expression profiles in

whole blood of horses with regression versus progression of ES dis-

ease and ES-free control horses, assess their potential as noninvasive

predictors of the course of ES disease, and predict their possible bio-

logical function.

2 | MATERIAL AND METHODS

2.1 | Study cohort

This study was fully approved by the Ethical Committee of the Canton

of Bern (VD 2227.0, VD 2227.1 und VD 2227.2, BE110/15). Animals

were client-owned (regression and progression groups) or clinic-

owned horses (control group) that were cared for according to local

regulations. Whole blood samples collected into EDTA tubes for a

previous longitudinal study9 were available for discovery of prognostic

miRNA fingerprints. They had been taken from 61 Franches-

Montagnes horses that had been diagnosed with ES at the age of

3 years (1st examination and blood collection). After 5-7 years, a stan-

dardized clinical follow-up with a focus on ES lesion behavior was per-

formed on all horses. Horses were defined as suffering from ES based

on the characteristic clinical appearance of skin lesions and excluded

when the diagnosis of ES was unclear because of atypical appearance

or location of the lesions. Animals were then grouped based on pro-

gression versus regression of lesions. For this study, 5 horses with

marked regression (complete disappearance of lesions at 2nd exami-

nation) and 5 horses with marked progression (exacerbation at 2nd

examination with more aggressive phenotype[s]) were selected.

Whole blood samples also were collected from a control group con-

sisting of 5 clinic-owned horses ≥12 years of age that were free of

sarcoid lesions for at least 5 years and free of other signs of systemic

disease at the time of examination. In control horses, whole blood col-

lection into EDTA tubes was performed by the end of the 5-year

observation period. Because of the high costs associated with next

generation sequencing, a low number of study subjects (5 horses per

group) were selected for this exploratory cohort study. Because no

general consensus currently exists on what the sample size should be

for miRNA biomarker studies, a previously recommended approach

was used.24

2.2 | RNA sample preparation and sequencing of
multiplexed small RNA samples

Whole blood samples used in this study were stored for long term

(9-11 years) for horses in the ES regression and progression groups

and for short term (6 weeks) for control horses at −80�C before the

analysis for this study. Samples were handled according to a previ-

ously established protocol for long-term stored equine whole blood.25

The blood was gently thawed on ice and transferred to a PAXgene

blood RNA tube 16 hours before the start of RNA extraction with a

PAXgene Blood miRNA Kit (Qiagen, Hombrechtikon, Switzerland).

The RNA concentrations were measured with Qubit RNA BR assay kit

(ThermoFisher, Basel, Switzerland). The RNA integrity number (RIN)

was assessed using Fragment Analyzer with the Standard Sensitivity

RNA Analysis Kit (Advanced Analytical, Heidelberg, Germany). A total

of 14.6-54.6 ng of small RNA was used for stranded single-end library

preparation (NEBNext Multiplex Small RNA Library Prep Set for Illu-

mina) and sequenced (HiSeq3000, Illumina).

2.3 | Raw data preprocessing

An average of approximately 17 million reads was collected for each of

the 15 libraries. Raw sequencing data quality was assessed using

FastQC software.26 Truncated adapter sequences were reported by

FastQC to be over-represented. Cutadapt (v 1.8)27 was used to trim

the full and truncated adapter sequences and to filter out reads <15 bp

with the following options: --trim-n a<adapters> FASTA file> -m 15 aq

20, in which “-m” denotes the minimum fragment length in bp and

“-q” denotes the minimum read quality score encoded in asci (phred

quality + 33) format. The raw sequence dataset is available at the

European Bioinformatics Institute http://www.ebi.ac.uk/ena/data/

view/PRJEB27174.

2.4 | MicroRNA annotation

Sequencing reads that passed quality control were mapped to the

horse reference genome (EquCab2) available from NCBI using the

miRDeep2 (v0.0.7) package.28 The processed reads from all 15 FASTQ
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files were mapped by the mapper.pl script of the miRDeep2 tool using

a configuration file containing a list of all FASTQ file names and a

3-letter code for each sample (used to label each read according to

the phenotype [regression, progression, and control]). The module

mapped the reads to the genome with Bowtie129 keeping only the

alignments with 0 mismatches (option -n) in the seed region and reads

that did not map to >5 different loci in the genome (option -m). The

module was run with the following parameters: -d -v -u -e -h -o 16 -m

-n -q -p. This procedure generated nonredundant reads with the

counts, source, and genomic location of the mapped reads. The miR-

Deep2 then was used to annotate putative novel miRNAs as well as

validate predicted miRNAs from miRBase30 using (1) mapped reads

from the mapper.pl output, (2) equine mirBase predicted miRNAs, and

(3) human miRBase predicted miRNAs.28 The putative novel miRNAs

predicted by miRbase were assigned a score based on the 5p and 3p

support and secondary structure that conformed to biogenesis miR-

NAs. Putative novel miRNAs predicted by miRDeep2 with a score of

4 were retained for further analysis because the signal over noise ratio

for this cutoff was >10 at 14.3. Known equine and human miRNAs

were obtained from the miRBase database, release 21.30 Furthermore,

overlapping novel miRNAs (by at most 1 nucleotide) were merged by

BEDtools.31 The code used to implement this approach is outlined in

Supporting Information File S1.

2.5 | Differential expression analysis of miRNA

The expression level quantification of novel (including merged ones)

and known miRNA, predicted by miRDeep2, was performed by the

quantifier.pl script applying the parameters -k -j. This script produced

a raw counts file that then was used as input into the DESeq R/Bio-

conductor package for further statistical analysis.32 Differential

expression tests in DESeq were conducted only for miRNA genes with

read counts in ≥1 of the samples. For DESeq2, the “DESeq” function

was used to estimate size factors, dispersions, and finally fit a model.

The DeSeq2 likelihood ratio test (LRT) was used to contrast the condi-

tions (regression - control) - (progression - control) and obtain differ-

ential expressed miRNA among the 3 levels. The bioconductor

package DegReport was used to visualize the results.33 MiRNAs were

considered as differentially expressed if the absolute value of

log2-fold change was >1 and the P value adjusted for multiple testing

was <.05.

2.6 | MicroRNA target genes, enrichment, pathway,
and network analysis

Enrichment analysis with GeneCodis34–36 was performed using target

genes of differentially expressed miRNAs determined by TarBase v7.0

(Diana Tools),37,38 which catalogs only published, experimentally vali-

dated miRNA:gene interactions. Pathway prediction of the union of

genes regulated by the differentially expressed miRNAs was per-

formed by mirPath v.3 (Diana Tools).38 MetaCore v.6.32 (Thomson

Reuters) software was used to build networks of the differentially

expressed miRNAs. Expanded networks (auto expand algorithm

default: 50 nodes) were built using known and predicted targets of

the differentially expressed miRNAs.

3 | RESULTS

3.1 | Study cohort

The regression group consisted of 3 mares and 2 stallions, and the

progression group of 3 mares and 2 geldings. All horses were

Franches-Montagnes horses and 3 years of age at the time of sam-

pling. Sarcoid types consisted only of occult and verrucous lesions in

both groups at the 1st presentation and verrucous, nodular, and fibro-

blastic lesions in the progression group at the 2nd examination. Ana-

tomical sites and types of the lesions as well as treatment attempts

are presented in Supporting Information Table S1. The control group

consisted of 2 mares, 2 stallions, and 1 gelding aged 12-23 years

(mean � SD, 16 � 4.36 years). The control group comprised

3 Franches-Montagnes and 2 Swiss Warmblood horses.

3.2 | RNA quality and quantity control

The concentration of RNA used for library preparation ranged from

14.0 to 59.6 ng/μL (mean � SD, 34.1 � 14.5 ng/μL). The RNA con-

centration in whole blood was 33.7 � 16.5 ng/μL in ES-affected

horses and 35.1 � 11.2 ng/μL in control horses (Supporting Informa-

tion Table S1). The RIN ranged from 1.0 to 8.3 (3.2 � 2.4). Mean RIN

was 2.2 � 2.4 in whole blood of ES-affected horses and 5.2 � 0.6 in

control horses (Supporting Information Table S1). Because the correla-

tion between the coefficient of variation of expressed miRNAs and

RIN quality of the input RNA was 0.2, control for RIN in differential

gene expression analysis was not performed.

3.3 | Read sequence data quality control

Approximately 17 million reads from the 15 libraries were collected

and after trimming for adapters and low-quality bases, approximately

11 million reads remained. The number of unique reads mapped by

Bowtie1 to the horse reference genome was 981 012. A summary of

miRNA read sequencing is shown in Supporting Information Table S2.

Figure 1 displays the read length distribution for adapter and quality-

trimmed reads for the 3 groups of samples.

3.4 | Read mapping and putative novel miRNA
identification

The miRDeep2 algorithm reported 786 putative novel miRNAs with miR-

Deep2 score between 0 and 10 (Supporting Information Table S3) and

detected 271 novel miRNAs and 313 known miRNAs that passed the rel-

atively stringent score cutoff of 4. These then were used for studying the

differential expression with the DeSeq2 tool. The novel miRNAs also

were blasted against the Rfam database for potential hits to rRNA or

tRNA, which did not result in any significant matches. These resulting high

confidence novel miRNAs are listed in Supporting Information Table S4.

3.5 | Differential expression analysis with DeSeq2

The 522 miRNAs with raw counts values quantified by miRDeep (from

15 samples) were used for differential analysis. After filtering rows

with zero expression from the 522 miRNAs, 514 miRNA genes
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remained. A principal component analysis (PCA) plot was generated to

determine the overall sample clustering based on the 200 most vari-

able miRNAs. Three outliers were removed based on PCA clustering

(Supporting Information Figures S1 and S2). The 3 outliers were

ES_1595_E belonging to the control group, ES_1660_E belonging to

the progression group, and ES_1677_E belonging to the regression

group. The miRNA read counts from the remaining 12 samples were

used for the differential expression.

As recommended by DESeq2 for this type of experimental design,

a LRT was performed to test for differences in gene expression among

the sample groups (in this case, a condition factor with 3 levels: regres-

sion, progression, and control). Fourteen differentially expressed miR-

NAs were detected between the regression and progression group

which were accounted for by control condition (Table 1). The differen-

tial expression was identified with an adjusted P value <.05 and a fold

change of approximately >2. Four miRNAs (28.6%) were upregulated

and 10 miRNAs (71.4%) were downregulated in the regression group

(Table 1). The degPlot function from DEGreport was used to view the

expression of the top 10 differentially expressed miRNAs (Figure 2).

The degPatterns function from the R package DEGreport was used to

extract and plot genes that had a similar trend across the 3 conditions

(control [CTL], progression [PRG], and regression [RGR] on the x-axis;

Supporting Information Figure S3).

3.6 | MicroRNA target genes, enrichment, and
pathway analysis

Using TarBase v7.0 (Diana Tools), 265 target genes with prediction

score ≥0.9 (suggested threshold for stringent analysis) were predicted

for the 14 differentially expressed miRNAs in the regression versus pro-

gression groups (Supporting Information Table S5). These target genes

then were used for enrichment and pathway analysis. The results of the

singular enrichment analysis of target genes using GeneCodis for gene

ontology biological process and molecular function showed enrichment

for cancer and cancer-related pathways (Supporting Information

Table S6). MirPath v.3 (Diana Tools) predicted 67 pathways for all dif-

ferentially expressed miRNAs in the regression versus progression

group (P < .05) with the pathway “viral carcinogenesis” being between

the top 2 pathways (Table 2).

3.7 | Biomarker-disease associations and network
analysis for downregulated miRNAs in the regression
versus progression group

To determine the comprehensive functional character of the differen-

tially expressed miRNAs, ontology enrichment analysis was performed

FIGURE 1 Read length distribution of all miRNA raw read libraries of

control horses (CTL), horses with progressive sarcoids (PRG), and
horses with regressive sarcoids (RGR). len, length

TABLE 1 Differentially expressed known and putative novel miRNAs in horses with regressive (regression-control) and progressive sarcoids

(progression-control)

baseMean log2-FoldChange P value P adj

Eca-miR-381 63.6763 −3.4913 2.23E-09 9.97E-07

Eca-miR-134 39.5413 −3.5363 3.13E-07 6.99E-05

Eca-miR-127 138.0183 −3.6306 6.20E-07 9.24E-05

Eca-miR-382 15.4181 −4.2427 1.56E-05 .00174842

Eca-miR-379 10.6011 −5.0780 3.49E-05 .003

20_15133 37.1299 1.7902 .0001 .009

Eca-miR-107b 218.9891 −1.3709 .0002 .01

Eca-miR-146a 1252.0312 −1.7017 .0002 .01

Eca-miR-125a-5p 25.2910 1.1047 .0007 .03

Eca-miR-432 2.9624 −5.3878 .0007 .03

Eca-miR-24 1371.2551 0.0419 .0009 .03

Eca-miR-323-5p 14.6754 −3.2733 .001 .04

Eca-miR-1249 2192.4562 0.7270 .001 .04

Eca-miR-378 1234.2905 −1.5619 .001 .04

Abbreviation: P adj = adjusted P value.
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with target genes of up- and downregulated miRNAs by the MetaCore

software algorithm of GeneGo. The direct target genes of downregu-

lated miRNAs in the regression group were top sarcoma and connec-

tive/soft tissue neoplasm biomarkers according to GeneGo disease

ontology (Figure 3).

The 10 miRNAs found to be downregulated in whole blood of the

regression versus progression group are likely to be associated with a

more favorable prognosis. Downregulation of some of their human

analogs in plasma also has been associated with a more favorable

prognosis in human cancers (Supporting Information Table S7).

Literature-based network analysis using GeneGo for downregulated

miRNAS in whole blood of horses with regression of ES disease pre-

dicted miR-146a, miR-381, and miR-107 as central regulatory ele-

ments (Figure 4). MiR-146a, miR-381, and miR-107 deregulation also

has been associated with HPV-associated cancers (Supporting Infor-

mation Table S7). Furthermore, the expression of c-Myc, a major

oncogene, is predicted to be regulated by 2 of the downregulated

miRNAs (miR-134 and miR-382), which in human beings are described

FIGURE 2 The top 10 differentially expressed miRNA patterns in control horses (CTL) and horses with progressive (PRG), and regressive sarcoids

(RGR). The y-axis shows normalized counts of the respective miRNA

TABLE 2 Pathway prediction for the differentially expressed miRNAs

in horses with regressive sarcoids versus progressive sarcoids
according to mirPath v.3 (Diana Tools) (P ≤ .05). The number of
miRNAs associated with each pathway and number of genes involved
in each pathway are indicated. The top 10 pathways are listed

KEGG pathway P value
Number
of genes

Number
of miRNAs

Proteoglycans in cancer 4.38E-18 106 10

Viral carcinogenesis 3.44E-09 103 10

Fatty acid metabolism 3.52E-09 22 4

Prion diseases 3.52E-09 15 7

Hippo signaling pathway 3.55E-07 70 9

Chronic myeloid leukemia 7.46E-07 45 8

Cell cycle 1.44E-06 72 9

Fatty acid biosynthesis 2.20E-06 6 4

Lysine degradation 2.20E-06 28 6

Hepatitis B 2.20E-06 70 9

FIGURE 3 The top GeneGo disease ontology terms associated with

direct targets of downregulated miRNAs in horses with regressive
versus progressive sarcoids. The y-axis represents ranks according to
the highest log of the P value in the x-axis
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to be part of a large miRNA cluster on chromosome 14q32. This

miRNA cluster is dysregulated in several types of cancers in humans

(Supporting Information Table S8). Further miRNAs downregulated in

whole blood of horses with ES regression and belonging to this cluster

are miR-381, miR-127, miR-379, miR-432, and miR-323-5p. In the

horse, these 7 miRNAs all are encoded by 3 polycistronic miRNA clus-

ters on equine chromosome 24.39

3.8 | Enrichment and network analysis for
upregulated miRNAs in the regression versus
progression group

The direct targets of the upregulated genes show enrichment in net-

work processes such as cell cycle, DNA damage, and DNA mismatch

repair (Figure 5).

In our study, increased concentrations of novel miRNA

20_15133, eca-miR-125a, eca-miR-24, and eca-miR-1249 are associ-

ated with more favorable outcome of ES disease (regression). Plasma

concentrations of miR-24 and miR-125a were associated with out-

come in various cancers of humans and turned out to be valuable

prognostic biomarkers (Supporting Information Table S7). According

to the network analysis, miR-24 and miR-125a seem to be major

effector miRNAs. They are predicted to regulate the expression of

E2F3, which interacts directly with the retinoblastoma protein (pRB)

to control the expression of genes involved in cell cycle regulation

according to GeneCards human gene database, and of STAT3, which

is aberrantly activated in many cancers in humans40 (Figure 6).

3.9 | Literature research of deregulated miRNAs

A literature research of the 14 dysregulated miRNAs is depicted in

Supporting Information Tables S7 and S8. Supporting Information

Table S7 summarizes the current scientific knowledge of the 14 dysre-

gulated miRNAs in cancers of humans and horses, their possible onco-

genic and tumor-suppressive properties depending on tissue and

tumor type, and their suitability as noninvasive diagnostic and prog-

nostic biomarkers based on selected publications. Supporting Informa-

tion Table S8 summarizes which miRNAs are part of the miRNA

cluster on equine chromosome 24 homologous to the human 14q32

cluster and depicts their deregulation in different cancer types in

humans.

4 | DISCUSSION

Whole blood miRNA expression profiles of horses with ES regression

resembled those of control horses and were clearly distinct from

those of the progression group (Figure 2). Fourteen miRNAs were dif-

ferentially expressed in horses with ES regression versus progression

and are potential prognostic biomarkers that may allow noninvasive

prediction of clinical outcome in ES-affected horses using only a blood

sample. These miRNAs may possess oncogenic or tumor-suppressing

properties in a tissue-dependent manner (Supporting Information

Table S7), and their biological functions as circulating miRNAs need to

be further elucidated.

Among the set of differentially expressed and potentially prog-

nostic miRNAs, 7 miRNAs (eca-miR-127, eca-miR-134, eca-miR-

323-5p, eca-miR-379, eca-miR-381, eca-miR-382, and eca-miR-432)

belong to members of the human 14q32 miRNA network and all were

downregulated in whole blood of horses with ES regression. In human

beings, the 14q32 locus harbors a large bipartite miRNA aggregate

which is recognized as the largest identified miRNA cluster to date

comprising more than 50 members.41 It frequently is silenced in

FIGURE 4 Network for downregulated miRNA genes in horses with

regressive versus progressive sarcoids. This figure illustrates the
complex interactions of the downregulated miRNA genes in the
regression versus progression group. MiR-146a, miR-381, and miR-
107 seem to represent central hubs that may influence the expression
of various, cancer-relevant proteins, among them c-Myc, a major
oncogene, and p53, one of the most important tumor suppressor
genes

FIGURE 5 Top GeneGo disease ontology terms associated with

direct targets of upregulated miRNAs in horses with regressive versus
progressive sarcoids. The y-axis represents ranks according to the
highest log of the P value in the x-axis. BER, base excision repair;
JAK/STAT, janus kinases/signal transducer and activator of
transcription proteins; MAPK, mitogen-activated protein kinase;
MMR, mismatch repair; NER, nucleotide excision repair
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cancer41–48 but can be upregulated in certain tumor types.49–51 The

miRNA network on the 14q32 locus has been implicated in a variety

of cancer types in humans and deregulations have been linked

to clinical outcome in osteosarcoma,47 ovarian cancer,48 lung

adenocarcinoma,49 and melanoma.41 In the horse, the genomic organi-

zation of the miRNA genes corresponding to the human 14q32 locus

is not perfectly conserved. However, 3 corresponding polycistronic

miRNA clusters on equine chromosome 24 encode all of the 7 previ-

ously mentioned equine miRNAs.39 In total, equine chromosome

24 harbors 40 miRNA genes in 4 polycistronic clusters.39 Of the

56 miRNA genes in the human 14q32 cluster,41 37 homologous

equine miRNAs are found in the equine chromosome 24 region. Thus,

we consider the miRNA cluster in the equine chr24:

42937011-42745108 region homologous to the human 14q32

miRNA cluster. Interestingly, human chromosome 14q32 is 1 of the

most common HPV integration sites in cervical cancer. The corre-

sponding miRNA cluster on equine chromosome 24 might represent a

predilection site for BPV integration in ES disease.52 The differential

expression of miRNAs belonging to the miRNA cluster on chromo-

some 24 in whole blood of horses with sarcoids also might reflect a

dysregulation at the tumor tissue level: Eca-miR-381 and eca-miR-

134 both are upregulated in sarcoid tissue of horses requiring treat-

ment.20 Ours is the first study to report an association of dysregula-

tion of an miRNA cluster on chromosome 24 with cancer in horses.

Some of the differentially expressed miRNAs in our study have

been linked to HPV-induced carcinogenesis in cancers of humans, as

also is predicted by pathway analysis: miR-381 belongs to HPV core

miRNAs and is downregulated in cervical squamous cell carcinoma

and HPV-associated head and neck squamous cell carcinoma.53,54 In

human oropharyngeal carcinoma, HPV positivity is associated with

miR-107 downregulation, possibly because of HPV-enhanced immune

response, whereas overexpression of miR-107 was associated with

decreased overall and disease-free survival.23 The main HPV oncopro-

teins, E6 and E7, can strongly influence miRNA expression in HPV-

induced cancers: miR-24 is upregulated by E6 and E7 expression and

may promote cell proliferation by targeting the cell cycle inhibitor

p27.55 In contrast, miR-1249 is downregulated in HPV-positive

human kerationcytes in response to HPV16 E6/E7 oncoprotein

expression.56 It needs to be further evaluated whether these mecha-

nisms of miRNA dysregulation also apply to BPV oncoproteins in ES

disease. Recently, miRNA deregulation has been attributed to the

presence of BPV genomes in BPV-transformed equine fibroblasts.19

According to network analysis, eca-miR-24 and eca-miR-125a-5p

turned out to be central regulatory elements, presumably by regulat-

ing the expression of E2F3 and STAT3, and their upregulation has

been associated with advantageous outcome of ES disease. Both

miRNAs already have been shown to be dysregulated at tissue or cell

culture level: eca-miR-24 has been found to be downregulated in

BPV-transformed equine fibroblasts.19 Eca-miR-125a-5p is highly

expressed in sarcoid tissue and downregulated in serum of horses

with aggressive, fibroblastic ES lesions (unpublished data—manuscript

in preparation).

In our study, miRNA fingerprints in horses with ES regression ver-

sus progression were evaluated in whole blood. Typically, serum is the

preferred body fluid for noninvasive miRNA profiling.57 The value,

advantages, and limitations of whole blood samples as input material

for miRNA studies are controversial, because changes in blood cell

counts can strongly influence miRNA expression (such as to an

immune response against neoplastic disease).58 Other studies, how-

ever, highlight the potential of whole blood compared to serum: whole

blood contains higher miRNA concentrations59 and important sources

of pre-analytical errors related to serum processing, such as hemolysis,

can be avoided.60 Furthermore, tumor-specific exosomal miRNA

might only be detectable in serum if a well-perfused neoplastic mass

of substantial size is present, whereas cellular blood cell-derived

miRNA fingerprints may already be detectable in sufficient amounts

at earlier stages of tumor development,61 and with masses that are

poorly perfused, such as ES lesions. Moreover, sarcoids in horses are

not accompanied by changes in blood cell counts unless marked

superficial ulceration is present, which was not the case in any of the

initially mild ES lesions in our study. Thus, the use of whole blood as

input material for miRNA analysis seemed superior to serum, particu-

larly in light of the presence of only small and mild ES lesions in the

regression and progression groups at the time of sample collection.

As for any retrospective study, our study has some limitations.

Diagnosis of ES in our study was clinical, even though a definitive

diagnosis of ES requires histopathology. However, clinical diagnosis

has good reliability and because trauma of any nature carries the risk

of exacerbating ES,10,12 biopsies were not performed. Furthermore,

surgical excision of the relatively mild lesions in our study (Supporting

Information Table S1) was not indicated in any of the horses at the

time of first presentation.

Because of the retrospective and longitudinal nature of our study,

blood samples of different quality collected at different time points

throughout the study period had to be utilized. Long-term stored

whole blood samples collected at the beginning of the study period

FIGURE 6 Network for upregulated miRNA genes in horses with

regressive versus progressive sarcoids. According to network analysis
using GeneGo miR-24 and miR-125a-5p are predicted to be major
effector miRNAs in the group of upregulated miRNAs in the
regression group by controlling expression of E2F3 and STAT3
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were used in the ES-affected horses, in contrast to the short-term

stored samples from control horses collected by the end of the study

period. This difference in sample quality explains the higher RIN values

in the control group. Still, we considered having a reliable control group

consisting of daily monitored clinic-owned horses, which did not

develop sarcoids at any point throughout the 5-year study period,

more important than including a control group from the previously

described Franches-Montagnes study population,9 from which a blood

sample collected at the beginning of the study period would have been

available, which was however only examined on 2 occasions through-

out the 5-7 year study period. In the latter group, smaller transiently

occurring sarcoid lesions might have been easily missed and could have

substantially biased the results of the study. Comparison of miRNA dif-

ferential expression in blood of horses with ES collected at the begin-

ning, at several time points during, and at the end of the study period

might have shed further light on changes of miRNA fingerprints during

the course of ES disease and might have allowed us to draw additional

conclusions regarding their possible biological functions. Further longi-

tudinal studies therefore should investigate miRNA differential expres-

sion repeatedly and closely during the clinical course of ES.

Some reports state that miRNA quantification is influenced by

overall RNA integrity,62 and that RNA degradation compromises the

reliability of miRNA analysis.63 More recent studies, however, show

that miRNA profiles themselves are not affected by the extent of

RNA degradation.64,65 In our study, we could confirm that RIN did not

have any impact on differential gene expression analysis. Thus, our

study shows that despite the compromised quality of a subset of

blood samples because of long-term storage, a robust miRNA study

still could be conducted. This observation encourages the use of valu-

able blood samples from bioarchives for future longitudinal studies.

The mean age of the control horses was significantly higher than

the mean age of horses in the ES groups. Sarcoids often develop in

young horses,4 thus only ES-free middle-aged and old horses

(≥12 years) were included in the control group. We did not want to

include younger age-matched controls because of the risk of develop-

ing ES lesions and becoming false-negative controls. Age may affect

miRNA expression profiles in human beings.66,67 Its effect on the

results of the present study was considered to be less important than

the need for a reliable control group.

Our study provides a set of 14 blood-derived miRNAs signifi-

cantly associated with prognosis of ES disease in a limited number of

samples with markedly favorable (regression) versus aggressive (pro-

gression) clinical courses. These miRNA fingerprints warrant further

validation as prognostic biomarkers in a larger study cohort. Admit-

tedly, to date, miRNA differential expression analysis remains an elab-

orate diagnostic technique and for now may not serve as a practical

test and prognostic biomarker in equine practice. However, in the

future, qRT-PCR may replace next generation sequencing to assess

miRNA expression levels, which would render the procedure less cost

prohibitive and time consuming. Additional studies focusing on corre-

lation of whole blood miRNA expression and miRNA and target gene

expression at the tissue level as well as monitoring of changes of

miRNA expression over time may shed more light on the speculated

biological functions of these blood cell-derived miRNAs, particularly, if

dysregulation of the miRNA cluster on equine chromosome 24 by

integration of the BPV genome is a possible mechanism that drives

disease progression. Regardless of the biological function of blood-

derived miRNAs, these potential biomarkers might offer novel per-

spectives in the clinical setting, such as for prepurchase examinations

or therapeutic decision-making.
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