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SUMMARY

There is clear evidence of intergenerational transmission of life values, cognitive
traits, psychiatric disorders, and even aspects of daily decision making. To inves-
tigate biological substrates of this phenomenon, the brain has received
increasing attention as a measurable biomarker and potential target for interven-
tion. However, no previous study has quantitatively and comprehensively inves-
tigated the effects of intergenerational transmission on functional and structural
brain networks. Here, by employing an unusually large cohort dataset (N = 84
parent-child dyads; 45 sons, 39 daughters, 81 mothers, and 3 fathers), we show
that patterns of functional and structural brain networks are preserved over a
generation. We also demonstrate that several demographic factors and behav-
ioral/physiological phenotypes have a relationship with brain similarity. Collec-
tively, our results provide a comprehensive picture of neurobiological substrates
of intergenerational transmission and demonstrate the usability of our dataset
for investigating the neurobiological substrates of intergenerational transmis-
sion.

INTRODUCTION

There is clear evidence of intergenerational transmission of socio-economic status (de Graaf and Kalmijn,

2001), intelligence (Deary et al., 2006), personality (Grønhøj and Thøgersen, 2009), parenting style (Kal-

muss, 1984), job-selection (Corak, 2013), and psychiatric disorders (Demirkan et al., 2011). This correspon-

dence between parents and their children is not confined to the period in which children are young and live

with their parents, but is found over the course of their lives (Miller and Glass, 1989). Although genetic and

non-genetic environmental effects are clearly transferred to children from their parents, the mechanisms of

parent-child similarity are poorly understood (Ho et al., 2016).

In recent years, the brain has received increasing attention as a target for monitoring and intervention

because genetic and epigenetic effects occur at the molecular level and are distal from complex behavior

(Flint et al., 2014). Several previous studies have shown that functional connectivity (FC or edge) during

wakeful rest obtained by functional magnetic resonance imaging (fMRI) is associated with individual differ-

ences in diverse cognitive traits (Biswal et al., 2010; Dubois and Adolphs, 2016; Finn et al., 2015; Fox and

Greicius, 2010; Rosenberg et al., 2016; Takagi et al., 2019; 2018; 2017; van den Heuvel et al., 2009; Yahata

et al., 2016). In parallel to functional brain information, individual differences in brain structure have also

been characterized and related to diverse cognitive traits (Kanai and Rees, 2011). Importantly, previous

studies have reported that gray matter volume (GMV) at specific locations in the brain is associated with

individual differences in cognitive traits (Busch et al., 2004; Duncan et al., 2000; Kanai and Rees, 2011; Kasai

et al., 2003; Okada et al., 2020).

In addition to individual differences in cognitive traits, previous studies also showed that FC (Achterberg

et al., 2018; Adhikari et al., 2018; Colclough et al., 2017; Elliott et al., 2018; Feng et al., 2020; Fornito

et al., 2011; Fu et al., 2015; Gao et al., 2014; Ge et al., 2017; Glahn et al., 2010; Korgaonkar et al., 2014;

Meda et al., 2014; Moodie et al., 2014; Sinclair et al., 2015; Sudre et al., 2017; Teeuw et al., 2019;
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van den Heuvel et al., 2013; Xu et al., 2017; Yang et al., 2016) and GMV (Bis et al., 2012; Blokland et al., 2012;

den Braber et al., 2013; der Meer et al., 2018; Elliott et al., 2018; Eyler et al., 2014; Franke et al., 2016; Gua-

dalupe et al., 2017; Hibar et al., 2017; 2015; Ikram et al., 2012; Jansen et al., 2015; Kremen et al., 2010; Wen

et al., 2016; Zhao et al., 2019) are heritable. These studies have typically used genome-wide association

study (GWAS) or family/twin study. Most studies have assessed the genetic effects on each edge- or re-

gion-level, i.e., univariate analysis, and have typically considered demographic or behavioral information

as covariates. Importantly, previous studies have not directly focused on the effects of intergenerational

transmission from parents to their children.

More recent studies have started to directly examine the effects of intergenerational transmission on the

brain using datasets of parent-child dyads (Ho et al., 2016; Lee et al., 2017; Quiñones-Camacho et al.,

2019; Reindl et al., 2018; Yamagata et al., 2016). For example, Lee et al. and Yamagata et al. investigated

the similarity of parent-child dyads in FC and GMV, respectively (Lee et al., 2017; Yamagata et al., 2016).

However, these studies involved several limitations. First, no study has quantitatively compared the simi-

larity of different brain networks in detail. Second, because none of these studies examined both functional

and structural data together, it remains unclear how functional and structural information are interrelated.

Third, no study has comprehensively investigated the relationship of demographic factors and behavioral/

physiological phenotypes with the similarity. Overall, it is currently unclear as to what extent and how the

brains of parent-child dyads are similar. This situation has arisen, in part, because investigating the above

questions requires a large number of parent-child dyads to provide neuroimaging datasets with rich phe-

notypes. Furthermore, such an approach requires a formal analytical framework with rigorous statistical an-

alyses and rich computational resources.

In the current study, we sought to understand the neurobiological substrates of intergenerational transmis-

sion by combining a statistical framework that allowed us to investigate network-level similarities and a rich

dataset from a subsample of a large population-based longitudinal cohort (N = 84 parent-child dyads; 81

mothers and 3 fathers) consisting of resting-state fMRI, structural MRI, and various phenotypes (Ando et al.,

2019; Okada et al., 2019). We sought to answer several questions: Can a parent-child dyad be identified

based on their brains? If so, which brain networks are more similar compared with other networks? Is the

similarity solely driven by functional or structural information? Do demographic factors and behavioral/

physiological phenotypes have a relationship with brain similarity?

We showed that it is possible to reliably identify a dyad based on the similarity of their brains. This effect

was not solely driven by either functional or structural brain similarity alone; although functional and struc-

tural information had comparable accuracy, they exhibited important differences, and played complemen-

tary roles. Children’s basic demographic factors, including age and sex, testosterone level, and question-

naire-based developmental scores affected brain similarity of dyads. Collectively, our results provide a

detailed picture of how the brains of dyads are similar, and demonstrate the usability of our unique cohort

dataset for investigating the neurobiological substrates of intergenerational transmission.

RESULTS

We tested 84 dyads who participated in the ‘‘population-neuroscience study of the Tokyo TEEN Cohort

(pn-TTC),’’ a longitudinal study exploring the neurobiological substrates of development during adoles-

cence (Ando et al., 2019; Okada et al., 2019). In the pn-TTC study, neuroimaging and non-imaging pheno-

types were collected from children every 2 years from the age of 11, and from their primary parents (Fig-

ure 1A; see STAR Methods: Overview of the dataset). Here, we used three brain datasets from the pn-

TTC study: children at the ages of 11 and 13 years, and their primary parents. The parents’ brains were

scanned when their children were 11 years old. The basic demographic data are shown in Table 1. Note

that 81 parents among 84 are mothers.

We first defined the functional and structural whole-brain patterns for each individual (Figure 1A; see STAR

Methods: Information extraction). For fMRI, we used a functional atlas defining 268 regions of interest

(ROIs) covering the entire brain (Finn et al., 2015; Shen et al., 2013). The FC between these ROIs was esti-

mated using Pearson’s correlation coefficient, resulting in a 2683 268 FCmatrix for each subject. As the FC

matrix is symmetrical, only the strictly lower triangular part of each matrix was kept, resulting in 35,778

(= 268 3 267/2) unique entries. We regressed potential confounds including total GMV and head motion.

To further avoid the effects of motion artifacts, we employed a ‘‘scrubbing’’ procedure to identify and
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exclude any frames exhibiting excessive head motion(Power et al., 2012). We also obtained GMV for each

ROI using T1w images, then averaged within each region. We used the same 268 ROIs as in the fMRI, re-

sulting in a vector with a size of 268 for each subject.

To quantitatively evaluate the brain similarity of parent-child dyads, we proposed a framework to compare

network-level similarity between parent-child dyads (Figure 1B; See STAR Methods: Similarity analysis for

details), inspired by a recently proposed approach for individual identification based on the brain (Finn

et al., 2015). To calculate the similarity of parent-child dyads, we first calculated the correlations between

a child’s FC and/or GMV vector to all parents’ vectors including the child’s own parent. We next assessed

whether the similarity of the parent-child dyad (child and his/her own parent) was larger than that of a

stranger-child dyad (child and another child’s parent). We then calculated the winning rate of the similarity

between the parent-child dyad, which was referred to as ‘‘accuracy’’, because it can be considered as a

‘‘pairwise classification accuracy’’ when we randomly sampled a parent-child dyad and another parent,

then conduct classification (See STAR Methods: Similarity analysis for details). We repeated this procedure

across all dyads and averaged these accuracies. Compared with conventional individual identification

methods, our proposed framework has more statistical power, as described later. We performed 1,000-

times bootstrapping to estimate 95% confidence intervals of accuracy by randomly subsampling 90% of

the subjects in each iteration. To determine whether accuracy was achieved at above-chance levels, we

fMRI
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Child Parent

Parent-Stranger dyads
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Figure 1. Analysis procedure of parent-child brain similarity

(A) We employed a dataset obtained from the ‘‘population-neuroscience study of the Tokyo TEEN Cohort (pn-TTC)’’

study, which consists of resting-state fMRI and T1w images of parents and their children. To obtain a functional

connectivity (FC) matrix, signals were extracted from all subjects using resting-state fMRI data from 268 ROIs. The signals

were then turned into an FC matrix via covariance estimation. To obtain gray matter volume (GMV) vectors, T1w images

were first segmented into gray matter, white matter, and cerebrospinal fluid. Using the gray matter, GMV of each ROI was

obtained by averaging values within the ROI. We used the same 268 ROIs as in the FC.

(B) For each parent-child dyad, we first calculated the similarity of FC and/or GMV vectors based on their Pearson’s

correlation. We next calculated similarities between the child and another child’s parent. We then calculated whether the

similarity of the parent-child dyad is greater than that of stranger-child dyads. Finally, we calculated the winning rate of

the parent-child dyad (‘‘accuracy’’), and repeated this procedure across all parent-child dyads.
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used 1,000-times permutation testing to generate a null distribution by randomly shuffling the parent-child

mapping.

Whole-brain analysis

We first assessed the similarity of parent-child dyads using whole-brain FC andGMV.When we used a data-

set of children at age 11, accuracies were 64.6% for FC (estimated via 1,000-times bootstrapping; 95% CI =

[62.5, 66.8]; p < 0.001, 1,000-times permutation test) and 70.3% for GMV (95% CI = [68.9, 71.8]; P < 0.001)

(Figure 2A). When we used a dataset of children at age 13, the accuracies were 66.7% for FC (95% CI = [64.5,

68.9]; P < 0.001) and 73.8% for GMV (95% CI = [72.1, 75.6]; p < 0.001) (Figure 2B). Thus, we provided the first

strong evidence that it is possible to identify parent-child dyads based on their functional and structural

brain information.

We next assessed the importance of information for performance of specific edges for FC and regions for

GMV, respectively (Figures 2C–2F). To quantify the extent to which different edges and regions contribute

to similarity, we derived two measures: the differential power (DP) which calculates how characteristic

edges and regions tend to be, and group consistency (4) which quantifies edges and regions that are highly

consistent across all parent-child pairs in a dataset (Finn et al., 2015) (see STAR Methods: Similarity anal-

ysis). For visualization purposes, we show the structural locations of DP and 4 in the 99.75th and 90th

percentile, for edges (FC) and regions (GMV) respectively. For both FC and GMV, significant edges or re-

gions tended to be distributed across the entire brain. This pattern was stable across a range of thresholds

(Figure S1). Note that for visualization purposes, we excluded the brainstem from the figure for GMV

because all regions in this area had extremely high 4 values, possibly because of the much lower magni-

tudes of signals compared with the other regions (Figure S2).

Given that head motion confounds analyses of FC (Power et al., 2012), we confirmed that qualitatively

similar results were obtained when we excluded parent-child dyads whose children’s head movements

were in the top 25%, either at age 11 or 13, resulting in the inclusion of 41.25% of the total sample (Fig-

ure S3). We also confirmed that accuracy obtained by the distribution of their frame-to-frame motion dur-

ing fMRI scans (Finn et al., 2015) was not above chance level (51.0% for age 11, 95% CI = [48.9, 53.0]; 48.7%

for age at 13, 95% CI = [47.1, 50.1]), even when we only included the high-movement dyads (47.9% for age

11, 95% CI = [44.9, 50.6]; 48.0% for age at 13, 95% CI = [45.1, 50.4]). Thus, it is unlikely that the identification

power of FC was based on idiosyncratic patterns related to motion in the scanner.

Network-based similarity

We further investigated the contributions of specific networks to this similarity. We grouped the whole re-

gion into 10 sub-networks (Horien et al., 2019) (Figure 3A), and subsequently performed the same analyses

using only the edges and regions from a given network. Note that we calculated the null distribution for

each network via permutation testing, thus taking differences of the number of edges/regions among net-

works into account.

For FC, medial frontal and frontoparietal networks led to high accuracies (Figure 3B). In contrast, for GMV,

default mode, subcortical, cerebellum, and visual networks led to high accuracy. Compared with FC, GMV

Table 1. Demographic data

N Agea (mean G s.t.d)

Sex

(Male/Female)

Socioeconomic statusb

(mean G s.t.d)

Child age at 11 (Male/Female) 84 11.59 G 0.66 (11.61 G

0.75/11.56 G 0.55)

45/39 708.4 G 262.6 (662.2 G

286.1/763.1 G 219.3)

Child age at 13 (Male/Female) 13.63 G 0.62 (13.59 G

0.65/13.66 G 0.56)

–

Parent (Male/Female) 43.35 G 3.95 (47.03 G

2.22/43.21 G 3.93)

3/81 –

aAges of parents when their children were 11 years old are shown.
bYearly household income when their children were 11 years old are shown.

ll
OPEN ACCESS

4 iScience 24, 102708, July 23, 2021

iScience
Article



achieved modestly higher accuracy than FC at age 11 (Figure 3C; paired sample ttest, t(10) = �2.16, p =

0.056, Hedge’s g = �0.72) and significantly higher accuracy at age 13 (Figure 3C; paired sample ttest,

t(10) = �3.10, p = 0.011, Hedge’s g = �0.89). To further assess the importance of each network, we next

assessed performance using between-network pairs of edges. We observed that edges between the

medial frontal–frontoparietal networks and medial frontal–motor networks resulted in higher accuracies

than the other between-network pairs (Figure S4).

The results confirmed that our proposedmethod had greater statistical power than conventional methods for

individual identification (Figure S5). Specifically, for FC, six and five of 11 networks were significant at ages 11

and 13, respectively, using the conventional method, whereas nine and 10 networks, respectively, were signif-

icant in our proposedmethod. ForGMV, six and nine of 11 networks were significant at ages 11 and 13, respec-

tively, using the conventional method, whereas all networks were significant using our proposed method.
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Figure 2. Successful identification of parent-child dyad based on their functional and structural brain information

Box plots of parent-child identification accuracy and factors affecting accuracy for (A) children at age 11 and (B) at age 13

using whole-brain (268-node) for functional connectivity (FC: red box) and gray matter volume (GMV: blue box). Directly to

the right of these boxes (gray box) are the results of the 1,000-times permutation testing. The bottom and top edges of

the box indicate the 25th and 75th percentiles obtained via bootstrapping, respectively. The crosses denote outliers, and

the whiskers extend to the most extreme data points not considered outliers. (C–F) Factors affecting identification

accuracy. For FC, the top 99.75th percentile of differential power (DP: highly discriminative; yellow) edges and group

consistency (f: highly similar, or least helpful; green) edges are shown (circle plot; in which nodes are grouped according

to anatomic location). For GMV, the top 90th percentile ROIs of DP and fwere calculated, then normalized by dividing the

number of ROIs in each anatomical group (bar plot). A legend indicating the approximate anatomical ‘‘lobe’’ is shown.

PFC, prefrontal; Mot, motor; Ins, insula; Par, parietal; Tem, temporal; Occ, occipital; Lim, limbic (including cingulate

cortex, amygdala, and hippocampus); Cer, cerebellum; Sub, subcortical (including thalamus and striatum); Bsm,

brainstem; L, left hemisphere; R, right hemisphere.
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Function and structure provide complementary information

Although FC and GMV revealed comparable performance in the above analyses, it remained unclear

whether they contained similar information. This raises the following question: If parents and their children

exhibit similar patterns of structural brain information, do they also exhibit similar patterns of functional

brain information? Indeed, although functional and structural brain information are interrelated, they

contain exclusive information that putatively characterizes distinct properties of individual differences

(Alexander-Bloch et al., 2013). To test this question, we investigated the relationship between parent-child

similarity defined by FC and that of GMV. We found that the Pearson’s correlation between the similarities

defined by FC andGMVwas low: only two of 22 networks were significant (Figure S6; p = 0.026 for visual and

p = 0.021 for whole-brain when we used data from children at age 13; the other networks were not signif-

icant, p > 0.05, 1,000-times permutation test, uncorrected). Thus, although both FC and GMV were similar

between parent-child dyads, their characteristics were dissimilar.

Given that FC and GMV appeared to contain independent information, we further investigated whether

they contained complementary information. To test this question, we conducted the same analyses using

both FC and GMV simultaneously by concatenating the two vectors (hereafter referred to as ‘‘COMB’’).

COMB achieved the highest accuracies in more than half of the cases (15/22), compared with function
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Figure 3. Network-based analyses demonstrated that almost all brain networks were highly similar between parents and their children

(A) We utilized a 268-node functional atlas. Nodes were further grouped into the 10 functional networks. Network names are shown to the left.

(B) Box plots of accuracies using within-network edges of FC analysis (top row; networks 1–10 and whole-brain (ALL); indicated below the xaxis of each graph)

and within-network nodes of GMV (bottom row). The bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The crosses

denote outliers, and the whiskers extend to the most extreme data points not considered outliers.

(C) Comparison between accuracies of child age at 11 and 13 for FC (top row) and GMV (bottom row). Each scatter shows each network and line connected

the same network. Bold lines indicate ALL. * paired sample ttest, P<0.05, n.s. non-significant, uncorrected.
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(4/22) and structure (3/22) alone (Table 2). This number is significantly greater than chance (Figure S7; p <

0.001, 1,000-times permutation test). Overall, these results suggest that patterns of functional and struc-

tural information contained complementary information in terms of parent-child brain similarity.

Relationship of demographic factors with the brain similarity

The results described above indicated strong intergenerational transmission effects on the brain from par-

ents to their children. However, it was still unclear whether all parent-child dyads were equally similar.

Therefore, we then investigated which factors influence brain similarity. Here, we focused on fundamental

demographic factors: age and sex.

We found that accuracies at age 11 were significantly lower than those at age 13 for GMV (Figure 3C bot-

tom; paired sample ttest, t(10) = �2.39, p = 0.038, Hedge’s g = �0.25), whereas they were no different for

FC (Figure 3C top; paired sample ttest, t(10) = �0.03, p = 0.97, Hedge’s g = �0.01).

We then divided the children into males and females (Figure 4). The results confirmed that both male and

female children exhibited significant accuracies for almost all networks, as in the previous analyses (Fig-

ure 4A). When we compared males and females (Figure 4B), the accuracies of female children were signif-

icantly higher than those of male children for FC, at both age 11 (paired sample ttest, t(10) =�2.34, p = 0.04,

Hedge’s g = �0.88) and age 13 (paired sample ttest, t(10) = �3.80, p = 0.003, Hedge’s g = �1.21). Female

children also exhibited higher accuracy than male children for GMV at age 13 (paired sample ttest, t(10) =

�2.47, p = 0.03, Hedge’s g =�0.83), but not at age 11 (paired sample ttest, t(10) =�0.25, p = 0.81, Hedge’s

g = 0.07).

Table 2. COMB achieved higher accuracies comparedwith FC andGMV formany networks in children at age 11 and

at age 13.

Network Age FC GMV COMB

ALL 11 64.60 [62.54,66.83] 70.30 [68.86,71.75] 70.64 [69.21,72.16]

13 66.69 [64.50,68.86] 73.82 [72.14,75.55] 73.57 [71.89,75.30]

1. MF 11 61.14 [58.83,63.66] 57.56 [56.02,58.94] 58.32 [56.77,59.66]

13 64.26 [62.20,66.36] 59.02 [57.06,60.70] 59.14 [57.14,60.92]

2. FP 11 64.35 [62.40,66.52] 60.52 [59.01,62.20] 61.90 [60.38,63.55]

13 60.57 [58.61,62.49] 60.94 [59.35,62.65] 61.79 [60.25,63.46]

3. DMN 11 62.77 [61.06,64.65] 63.49 [61.93,64.94] 63.66 [62.04,65.21]

13 59.07 [57.03,61.03] 62.53 [60.77,64.23] 62.84 [61.05,64.50]

4. Mot 11 57.95 [55.60,60.29] 61.30 [59.80,62.85] 62.27 [60.70,63.82]

13 59.78 [57.89,61.77] 63.56 [61.95,65.14] 64.27 [62.63,65.98]

5. Vis I 11 55.42 [53.19,57.59] 63.98 [62.40,65.59] 64.91 [63.23,66.58]

13 54.60 [52.61,56.77] 65.37 [63.60,67.21] 65.98 [64.20,67.77]

6. Vis II 11 56.44 [54.41,58.61] 58.14 [56.20,60.04] 58.95 [57.14,60.81]

13 56.20 [54.14,58.25] 59.07 [56.95,61.03] 60.33 [58.22,62.32]

7. Vis A 11 57.52 [55.35,59.86] 56.81 [55.51,58.02] 57.13 [55.84,58.31]

13 52.78 [50.50,55.06] 59.05 [57.28,60.56] 58.92 [57.28,60.41]

8. Cing 11 53.28 [51.08,55.66] 61.54 [59.89,62.99] 61.53 [59.91,62.94]

13 62.04 [59.93,64.34] 63.48 [61.51,65.17] 63.71 [61.68,65.46]

9. Sub 11 60.43 [58.52,62.59] 64.34 [62.67,65.95] 64.66 [62.97,66.23]

13 55.45 [53.23,57.62] 63.08 [61.41,64.65] 63.61 [62.00,65.19]

10. Cer 11 53.32 [51.23,55.37] 62.13 [60.38,63.73] 62.86 [61.24,64.54]

13 56.24 [53.87,58.68] 61.83 [59.91,63.71] 62.50 [60.67,64.34]

# Best 4 3 15

Means and 95% confidence intervals estimated via 1,000-times bootstrapping are shown. Bold underlined text indicates the

best performance. MF, medial frontal; FP, frontoparietal; DMN, default mode network; Mot, motor; Vis I, visual I; Vis II, visual

II; Vis A, visual association; Cing, cingulo-opercular; Sub, subcortical; Cer, cerebellum.
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When we compared accuracies at age 11 and age 13 for male and female children separately (Figure 4C),

female children at age 13 had significantly greater accuracy than those at age 11 for GMV (paired sample

ttest, t(10) = �3.75, p = 0.004, Hedge’s g = �0.76). All other comparisons were not significant: male, FC

(paired sample ttest, t(10) = 0.37, p = 0.72, Hedge’s g = 0.13); male, GMV (paired sample ttest, t(10) =

2.05, p = 0.068, Hedge’s g = 0.23); female, FC (paired sample ttest, t(10) = �0.73, p = 0.48, Hedge’s

g = �0.18).

Relationship of behavioral and physiological phenotypes with brain similarity

Finally, we examined whether behavioral and physiological phenotypes have relationship with the brain

similarity. Here, we used two important phenotypes for adolescents: hormone level and questionnaire-

based developmental score (Figure 5; see STAR Methods: Testosterone and Child Behavior Checklist).

We used COMB for this analysis as brain information.

We examined testosterone as a hormone level, because it is known that the pubertal period is a sensitive

period for testosterone-dependent organization of the brain (Sisk and Zehr, 2005). We found that children

with high testosterone exhibited significantly higher accuracy compared with children with low
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Figure 4. Male and female children show different trends of brain similarity across development

(A) Accuracies split by children’s sex for FC and GMV. For each network, accuracies for males (left boxes) and females

(right boxes) are shown.

(B) Comparison between males and females.

(C) Comparison between children age at 11 and 13. Each scatter shows each network and line connected the same

network. Bold lines indicate ALL. M(11), males at age 11; F(11), females at age 11; M(13), males at age 13; M(13), males at

age 13; * Paired sample ttest, P<0.05; **P<0.01. n.s. non-significant, uncorrected.
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testosterone at age 11 (paired sample ttest, t(10) = �2.91, p = 0.016, Hedge’s g = �1.03) but not at age 13

(paired sample ttest, t(10) = �0.60, p = 0.56, Hedge’s g = �0.22).

We next investigated the relationship of a questionnaire-based development score (Child Behavior Check-

list: CBCL) (Achenbach, 1991). The CBCL is a parental-report assessment used to screen for emotional,

behavioral, and social problems, and to predict psychiatric illnesses (Petty et al., 2008). We used the

average of two summary scores of CBCL, ‘‘Internalization’’ and ‘‘Externalization’’. Higher scores on these

scales indicate more problematic behavior. We found that children with high CBCL had significantly higher

accuracy compared with children with low CBCL at age 11 (paired sample ttest, t(10) = �2.81, p = 0.018,

Hedge’s g = �1.05) but not at age 13 (paired sample ttest, t(10) = �0.99, p = 0.34, Hedge’s g =�0.33).

Teststerone: Child age at 11

CBCL: Child age at 11

CBCL: Child age at 13

Teststerone: Child age at 13

n.s. 

P<0.10

P<0.05 
P<0.01
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Figure 5. Behavioral and physiological phenotypes have relationship with the brain similarity

Accuracies split by testosterone and CBCL. Left panels: Boxplots of accuracies split by scores of behavioral and physiological phenotypes (left: upper-half

children; right: lower-half children). Right panels: Comparisons between upper- (left) and lower-half (right) children. Each scatter shows each network and

line connected the same network. Bold lines indicate ALL. * Paired sample ttest, p<0.05. n.s. non-significant, uncorrected.
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DISCUSSION

The present study revealed that patterns of functional and structural brain information are preserved over a

generation. Although the effects of the intergenerational transmission have been investigated in various

research fields, including developmental psychology, educational psychology, and economics, no study

has comprehensively and quantitatively investigated the neurobiological substrates of intergenerational

transmission. The current results revealed that despite substantial differences between parents and their

children, their brains are sufficiently similar that we can identify parent-child dyads based on information

about their brains. We employed a rigorous statistical framework and an unusually large functional and

structural neuroimaging dataset of parent-child dyads with rich phenotypes (N = 84 parent-child dyads)

(Ando et al., 2019; Okada et al., 2019). Although both functional and structural brain information has com-

parable levels of accuracy, their characteristics were different but complementary. Demographic factors,

behavioral and physiological phenotypes also have relationship with the brain similarity. Taken together,

our results provide a detailed picture of whether, to what extent, and how brains of parent-child dyads

are similar.

Previous studies have reported that brain information is heritable. Several genome-wide association

studies (GWAS) have been conducted to identify genetic risk variants for GMV (Bis et al., 2012; der Meer

et al., 2018; Elliott et al., 2018; Franke et al., 2016; Guadalupe et al., 2017; Hibar et al., 2017; 2015; Ikram

et al., 2012; Zhao et al., 2019) and FC (Elliott et al., 2018; Feng et al., 2020). Although heritable regions

or edges have been successfully identified, most studies have been insufficiently powered because

GWAS require a large sample size (although some studies used multivariate approaches to increase statis-

tical power [Feng et al., 2020; Ge et al., 2016]). In addition, these studies typically did not consider the rela-

tionship of demographic factors and behavioral/physiological phenotypes with the similarity. In addition to

GWAS, both twin and family-based studies have reported that GMV (Blokland et al., 2012; den Braber et al.,

2013; Eyler et al., 2014; Jansen et al., 2015; Kremen et al., 2010; Wen et al., 2016) and FC (Achterberg et al.,

2018; Adhikari et al., 2018; Colclough et al., 2017; Fornito et al., 2011; Fu et al., 2015; Gao et al., 2014; Ge

et al., 2017; Glahn et al., 2010; Korgaonkar et al., 2014; Meda et al., 2014; Moodie et al., 2014; Sinclair et al.,

2015; Sudre et al., 2017; Teeuw et al., 2019; van den Heuvel et al., 2013; Xu et al., 2017; Yang et al., 2016) are

heritable. These studies typically achieve larger effect sizes than GWAS studies with smaller sample sizes,

although the possibility of inflated effect sizes due to shared environments is a concern. These studies also

typically ignore demographic, behavioral/physiological phenotypes by treating them as covariates. Impor-

tantly, none of the previous studies described here directly investigated the effects of intergenerational

transmission from parents to children.

In recent years, some studies directly investigated intergenerational transmission of brain information us-

ing parent-child dyads. Although extended pedigree studies with sufficient sample sizes could answer such

a question, it is logistically more difficult to recruit participants for pedigree studies than for studies with a

parent-child design. Thus, parent-child design studies play a complementary role in the investigation of

intergenerational transmission. For example, some studies found that, during specific tasks, brain activity

of parent-child dyads was synchronised (Quiñones-Camacho et al., 2019; Reindl et al., 2018). Other, more

relevant studies to the current studies reported that patterns of FC (Lee et al., 2017) and GMV (Yamagata

et al., 2016) were similar between parent-child dyads. However, these studies did not quantitatively and

comprehensively investigate the effects of different brain networks, and did not compare FC and GMV.

It is also unclear which factors affect brain similarities, including age, sex, hormonal level, and behavioral

traits (although Yamagata et al. investigated the effects of sex on GMV-based similarity using ROI-based

analyses [Yamagata et al., 2016]). This is partly because investigating such questions requires a large neuro-

imaging dataset of parent-child dyads with rich behavioral phenotypes. Overall, the present study is the

first to investigate whether, to what extent, and how brains of parent-child dyads are similar.

For both function and structure, the brain regions that contributed to similarity tended to be broadly

distributed across the entire brain when we used whole-brain information (Figures 2C–2F), as in previous

FC-based individual identification studies (Finn et al., 2015; Horien et al., 2019). Although this tendency

was retained when we only used the edges or regions within sub-networks, we observed slightly different

contrasts between functional and structural information (Figure 3B and Table 2). Specifically, for function,

the medial frontal and frontoparietal areas, which are known to be involved in networks related to higher

cognitive function, revealed higher accuracies than structural information. In contrast, for structure, visual,

subcortical, and cerebellum networks exhibited higher accuracies than function. This contrast is interesting
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because the prefrontal cortex is one of the last regions of the brain to reach maturation, exhibiting devel-

opment until approximately 25 years of age, whereas subcortical regions reach maturation earlier (Arain

et al., 2013). Note that for structural brain information only a small number of studies using GMV are com-

parable to the current study (Valizadeh et al., 2018; Wachinger et al., 2015), and none of them investigated

each network’s contribution in detail.

We confirmed that our results were not solely driven by structural or functional similarity alone. The neural

similarity between FC and GMV exhibited a weak correlation (Figure S6). In addition, combining FC and

GMV led to the highest accuracy for many brain regions (Table 1). These results indicate that FC and

GMV are distinct and contain complementary information. Previous studies reported that function and

structure contain similar information, but also distinct information (Alexander-Bloch et al., 2013). One study

reported that information obtained from function and structure contain complementary information for the

identification of siblings, but did not investigate the contributions of distinct anatomical brain locations

(Kumar et al., 2018). The current results are not only consistent with those of previous studies but also

demonstrated qualitative differences between function and structure by exhaustively investigating the

contributions of each distinct anatomical brain location. It is noteworthy that GMV was able to obtain

similar accuracy, even with short scans that are routinely acquired as initial scans in MRI protocols.

We also found that several demographic factors and behavioral/physiological phenotypes had a relation-

ship with the brain similarity of dyads. First, we found that age had a relationship with the accuracies of

GMV, but not FC. It is known that both FC and GMV change through adolescence (Gennatas et al.,

2017; Vá�sa et al., 2020); thus, this difference suggests that the functional and structural development of

the brain are not qualitatively equal, at least from the perspective of parent-child similarity. Second,

when we split children into males and females, we found that age had a relationship with the brains of fe-

male children, both for FC and GMV. This finding suggests that the developmental trajectory of the brain

qualitatively differs between females andmales. In addition, female children were more similar to their par-

ents than male children, particularly at age 13. This finding is intriguing because previous studies also re-

ported that female children are more similar to their mothers both behaviorally (Whitley et al., 2011) and

neurally (Yamagata et al., 2016). Third, testosterone had a relationship with the brain similarity in parent-

child dyads. Interestingly, children with high levels of testosterone exhibited greater similarity than other

children, despite female children having greater accuracy than male children. Note that there were no sig-

nificant differences in levels of testosterone between males and females both at age 11 (two-sample ttest,

t(49) = �0.64, p = 0.53, Hedge’s g = �0.19) and 13 (two-sample ttest, t(44) = 0.81, p = 0.42, Hedge’s g =

0.25). It is known that levels of testosterone increase through adolescence, especially in male children

(Harden et al., 2014). Thus, different results may have been obtained if older children were tested. Fourth,

questionnaire-based development scores had a relationship with the similarity. Children with higher devel-

opmental problem scores were more similar to their parents than other children. Although this result is

somewhat counterintuitive, it suggests that similarity of the brain does not merely represent behavioral

maturity assessed by questionnaire. Overall, the current results provide the first detailed picture of the

signature of intergenerational transmission in the brain.

Recent developments in cognitive neuroscience have made it possible to investigate individual differ-

ences, an issue that has not been deeply investigated because of the absence of adequate datasets, analyt-

ical techniques, and computational resources. The current results shed light on the importance of investi-

gating family-level differences, in addition to individual-level differences. Families are not a neutral

environment for identity development, but deeply affect individuals from adolescence, strongly influencing

the development of a person’s identity (Grotevant and Cooper, 1986). Given that the current results re-

vealed that parental brains are similar to the brains of their children, we propose that future studies should

investigate the relationships between family-level behavioral indices and family-level brain information to

enable more reliable predictions of children’s behavior and development. We believe our dataset will help

to extend research in this direction (Okada et al., 2019).

The current findings indicate several potentially interesting questions for future research. The first and

perhaps most important question is whether parent-child brain similarity changes across children’s devel-

opment. Recent studies proposed a brain-based quantitative approach for investigating the trajectory of

development (Rosenberg et al., 2018; Zuo et al., 2017). Although the current study revealed that children at

age 11 and age 13 are different, it may be valuable to investigate whether the trajectory of the parent-child
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brain similarity affects the various risks faced by adolescents, including psychiatric disorders and criminal

behavior, using much longer-term longitudinal datasets. Second, we used GMV as a structural brain mea-

surement because a number of previous studies investigated the relationship between GMV and various

traits. However, the human brain also exhibits individual differences in white matter microstructure. Diffu-

sion tensor imaging provides measures of white matter integrity in the brain and can provide useful data

but, like GMV, produces different information to FC (Honey et al., 2009). Indeed, previous studies have

shown that thickness correlations partially reflect underlying fiber connections but contain exclusive infor-

mation (Gong et al., 2012). Future studies should use other types of structural information, such as structural

connectivity obtained by diffusion tensor imaging.

In the present study, we sought to address a critical question in social science: Whether, to what extent, and

how parents and children are similar. Our analytical framework and the richness of our dataset made it

possible to ask the question from the neurobiological perspective. The results revealed that parents’

(mostly consisting of mothers) and their children’s brains exhibit a high degree of similarity, and that various

factors, including age, sex, hormones, and development score have relationship with the similarity these

results provide a comprehensive picture of the neurobiological substrates of parent-child similarity, and

show the usability of our dataset for investigating the neurobiological substrates of intergenerational

transmission.

Limitations of the study

Our study has several limitations. First, our dataset consisted almost entirely of mothers (81mothers among

84 parents). Although we confirmed that we were able to successfully conduct analyses of both male and

female children, the greater similarity between female children and their parents could potentially be

related to the sex imbalance of the parents in the sample. In addition, mothers might be more similar to

their children than fathers because they provide the prenatal environment for their children. Future studies

should investigate whether children’s brains can also be identified from those of fathers. Second, in the cur-

rent study, we were not able to separate the two major effects included in intergenerational transmission

(i.e., genetic effects and environmental effects) because we only examined biological parent-child relation-

ships. Thus, it may be valuable for future studies to test whether non-biological parents and children who

share the same environment show the same level of brain similarity.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the corresponding author, Yu Takagi (yutakagi322@gmail.com).

Materials availability

Materials are available from the corresponding author upon reasonable request.

Data and code availability

The data that support the findings of the current study (Population-neuroscience study of the Tokyo TEEN

Cohort) may be available from the corresponding author upon reasonable request (http://value.umin.jp/

data-resource.html). Analyses were conducted in Matlab; code is available online at https://github.com/

yu-takagi/iscience2021-parent-child-TTC.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Overview of the dataset

The Tokyo TEENCohort (TTC) study, which was launched in 2012, is a large-scale longitudinal general pop-

ulation-based survey to elucidate puberty development during adolescence, particularly the acquisition

processes of self-regulation and willingness to face challenges, by focusing on the interaction between bio-

logical, psychological, and social factors (Ando et al., 2019; Okada et al., 2019). This study was conducted as

part of the population-neuroscience component of the TTC (pn-TTC) study, in which 301 early adolescents

were recruited from the general population. Subjects of the pn-TTC study were subsampled from a larger

subject group of the TTC study, and it was confirmed that the pn-TTC subsample was representative of the

TTC study population. Written informed consent was obtained from each subject and the subject’s primary

parent before participation. All protocols were approved by the research ethics committees of the Grad-

uate School of Medicine and Faculty of Medicine at the University of Tokyo, TokyoMetropolitan Institute of

Medical Science, and the Graduate University for Advanced Studies. All research was performed in accor-

dance with relevant guidelines/regulations. The detailed methods for subject recruitment are described

elsewhere (Ando et al., 2019; Okada et al., 2019). The dataset is publicly shared upon request (http://

value.umin.jp/data-resource.html).

We excluded subjects who exhibited anomalies in fMRI or T1w images. We also excluded parents who did

not have either fMRI or T1w images, and children who did not have either fMRI or T1w images at age 11 and

age 13. After this screening process, 84 dyads were included in the final analysis (39 female children; 81

mothers; age = 11.59 G 0.66 for children at age 11, 13.63 G 0.62 for children at age 13, and 43.35 G

0.62 for parents, mean G s.t.d).

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Population-neuroscience study of the Tokyo TEEN Tokyo TEEN Cohort http://value.umin.jp/data-resource.html

Software and algorithms

MATLAB R2019a MathWorks RRID: SCR 001622

https://github.com/yu-takagi/iscience2021-

parent-child-TTC

SPM12 University College RRID: SCR 007037

London; London
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All primary parents were assessed regarding whether they had any psychiatric symptoms, current or past,

using the Mini-International Neuropsychiatric Interview (MINI) (Otsubo et al., 2005), which was adminis-

tered by trained psychiatrists. Among 84 parents, seven parents had at least one symptom. Specifically,

three parents had a history of alcohol dependence, two parents had alcohol dependence and alcohol

abuse, one parent had suicidal thoughts, and one parent had bulimia nervosa.

METHOD DETAILS

MRI parameters

Subjects were instructed to lie supine on the bed of the MRI scanner. MRI scanning was performed on a

Philips Achieva 3T system (Philips Medical Systems, Best, The Netherlands) using an eight-channel receiver

head coil. Each subject underwent resting-state fMRI and T1-weighted (T1w) three-dimensional magneti-

zation-prepared rapid gradient echo (3D-MPRAGE) sequences.

Sagittal T1w images were acquired using the 3D-MPRAGE sequence with the following parameters:

repetition time (TR) = 7.0 ms, echo time (TE) = 3.2 ms, minimum inversion time = 875.8 ms, flip

angle = 9�, matrix = 256 3 256, field of view (FOV) = 256 mm 3 240 mm 3 200 mm, voxel size =

1 mm 3 1 mm 3 1 mm, slice thickness = 1 mm, number of slices = 200. The acquisition time was approx-

imately 10 min 42 sec.

Resting-state fMRI images were acquired using a gradient-echo echo-planar imaging (EPI) sequence with

the following parameters: TR / TE, 2500 ms / 30 ms; flip angle, 80�; matrix, 643 64; FOV, 212 mm3 199 mm

3 159 mm; voxel size, 3.31 mm 3 3.31 mm; slice thickness, 3.20 mm; slice gap, 0.8 mm. Each brain volume

consisted of 40 axial slices and each functional run contained 250 image volumes preceded by four dummy

volumes, resulting in a total scan time of 10 min 40 sec. Subjects were instructed to stay awake, to keep their

minds as clear as possible, and to keep their eyes on a fixation point at the center of the screen through a

mirror during scanning.

Information extraction

We used Statistical Parametric Mapping 8 (SPM8: Wellcome Department of Cognitive Neurology, http://

www.fil.ion.ucl.ac.uk/spm/software/) in MATLAB (MathWorks, Natick, Massachusetts) for preprocessing

and statistical analyses.

Preprocessing of structural MRI. T1w images were segmented into three tissue classes (grey matter

[GM], white matter [WM], and cerebrospinal fluid [CSF]) using a segmentation approach implemented in

SPM8. The segmented images (only GM) were then normalized into standardized Montreal Neurological

Institute (MNI) space by applying a deformation field in SPM8. The GMV of each ROI was extracted and

averaged within that ROI. We used a functional atlas defining 268 ROIs that cover the entire brain (func-

tional atlas from Finn et al. (Finn et al., 2015), which used the method developed by Shen et al. [Shen

et al., 2013]) (this atlas can be downloaded from https://www.nitrc.org/frs/?group_id=51), enabling us to

obtain a vector with a size of 268 for each subject. Note that, although an alternative method for inter-sub-

ject registration called Diffeomorphic Anatomical Registration Exponentiated Lie algebra (DARTEL) exists,

we did not employ it because our goal was not to conduct comparisons at the group-level. Future studies

should investigate whether employing another segmentation and normalization method can improve

accuracy.

Preprocessing of resting-state fMRI. Preprocessing of resting-state fMRI included slice-timing correc-

tion, realignment, co-registration, normalization to MNI space, and spatial smoothing with an isotropic

Gaussian kernel of 6 mm full-width at half-maximum. To avoid the effects of headmotion artifacts, we calcu-

lated framewise displacement (FD). FD is defined as the mean relative displacement between two consec-

utive volumes for each of the six motion parameters. We conducted a ‘‘scrubbing’’ procedure by removing

volumes with FD > 0.5 mm, along with the previous volume and two subsequent volumes, as proposed by

Power et al. (Power et al., 2012). The average grey matter time-course for each ROI was calculated, then

temporally filtered using a first-order Butterworth filter with a pass band between 0.01 Hz and 0.08 Hz.

The time-course of each ROI was linearly regressed by the temporal fluctuations in white matter, cerebro-

spinal fluid, and the entire brain, as well as six head motion parameters. The time-course of white matter

and cerebrospinal fluid were filtered using a first-order Butterworth filter with a pass band between
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0.01 Hz and 0.08 Hz, and a white matter mask was eroded by one voxel to consider a partial volume

effect. All parameters were determined in accord with a previous study (Yahata et al., 2016). For each

subject, an FCmatrix between all ROIs was then calculated by evaluating pair-wise temporal Pearson’s cor-

relations of blood-oxygenation level dependent time courses, based only on the remaining images after

the scrubbing step above. We used the same 268 ROIs that were used for GMV. Because FC matrices

are symmetrical, values on only one side of the diagonal were kept, resulting in 35,778 unique edges

(268 3 267/2). We then regressed the motion and total grey matter volume and mean FD out from data

matrices.

Motion index. In addition to resting-state fMRI and structural MRI information, we performed the same

analyses using motion estimates during resting-state fMRI to investigate the effects of motion artifacts

(Finn et al., 2015). We first specified 20 bins to span {0:0.05:1} to calculate discrete motion distribution vec-

tors for each parent and child based on FD over an entire scan. Thesemotion distribution vectors were then

used in the same way as the FC or GMV vectors.

Testosterone and Child Behavior Checklist

We investigated the effects of testosterone and Child Behavior Checklist (CBCL) scores on the brain sim-

ilarity of parent-child dyads. The detailedmethods for data collection are described elsewhere (Ando et al.,

2019; Okada et al., 2019). In the main analyses, we excluded dyads if either parent or child did not have a

score. We also excluded children who had an extremely high testosterone measurement (more than

mean + 1.5 s.t.d. Mean values of excluded children were 41.65 pg/mL [N=4] and 92.63 pg/mL [N=7] for chil-

dren at age 11 and 13, respectively). After exclusion, the number of dyads was 51 for testosterone at age 11

(4.01G 3.63 pg/mL, meanG s.t.d), and 46 for testosterone at age 13 (15.96G 17.83 pg/mL, meanG s.t.d),

82 for CBCL at age 13 (6.55G 6.16, meanG s.t.d). There was no exclusion for CBCL age at 11 (10.48G 9.10,

mean G s.t.d).

1. Testosterone: The adolescents collected their salivary samples at home early in the morning. In advance,

both the adolescents and their primary parents were informed of how to collect the adolescents’ saliva us-

ing sample tubes. The adolescents tried it under the guidance of the survey staff for practice. They were

instructed not to collect the saliva within a week after a tooth extraction or immediately after dental treat-

ment to avoid contamination with blood. They were also asked not to eat food after brushing their teeth on

the night before the saliva collection. They were instructed to rinse their mouth soon after getting up and to

make sure they were at their normal body temperature, and not to have breakfast and not to brush teeth

before the collection. Furthermore, they were asked to wait for 20 min after the rinse and then to collect

4.5 ml of their saliva by passive drool in sterilized tubes (1.5 ml/tube * 3 tubes) made of polypropylene (Nal-

geneTM General Long-Term Storage Cryogenic Tubes, Thermo Fisher SCIENTIFIC, U.S.A.) within 60 min.

Salivary samples were collected in only one day, since high correlation among morning salivary testos-

terone levels across days in adolescents was reported(Granger et al., 2004). Salivary samples were kept

in household refrigerator freezers, delivered frozen to our laboratory, where the weights were measured

and tubes stored at minus 80 degrees C until the testosterone levels were measured. The concentration

of salivary testosterone was measured once by liquid chromatography- tandem mass spectrometry (LC–

MS/MS), which has become the current standard (Ketha et al., 2014). All testosterone measurements

were then square-root transformed to better approximate a normal distribution prior to quantitative

analyses.

2. CBCL: CBCL is a parental-report questionnaire used to screen children for behavioural problems: there

are 20 competence items and 120 items on behavioural and emotional problems. The CBCL includes the

following eight empirically-based syndrome scales: 1) Aggressive behavior, 2) Anxious/depressed, 3)

Attention problems, 4) Rule-breaking behavior, 5) Somatic complaints, 6) Social problems, 7) Thought

problems, and 8) Withdrawn/depressed, as well as summary scores reflecting ‘‘internalization’’ and ‘‘exter-

nalization.’’ We used the average scores of ‘‘internalization’’ and ‘‘externalization’’ in the main results.

QUANTIFICATION AND STATISTICAL ANALYSIS

Similarity analysis

Wemodified a connectome fingerprinting approach by Fin et al. (Finn et al., 2015). They used two datasets

consisting of the same individual but different task sessions, called ‘‘source’’ and ‘‘target’’ dataset. They
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correlated the connectivity vector from one participant in the source dataset to the vectors of all

participants in the target dataset and identified the maximum correlation. If the two vectors showing

the strongest correlations came from the same individual, the resulting binary accuracy was 100%,

whereas binary accuracy was 0% otherwise. Although these studies successfully identified brain

networks that contributed to the individual identification, their method treats second-ranked and worst-

ranked cases as equally failed cases, thus discarding some information that might be useful for improving

the statistical power. In addition, the chance rate depends on the number of samples, thus making the

interpretation difficult, especially comparing different datasets with different sample sizes. To overcome

these issues, we modified the method as follows. We confirmed that the proposed method is more sensi-

tive than conventional methods (Figure S5) and the chance rate was always 50%, irrespective of the sample

size.

For each parent-child dyad, we first calculated the similarity of their FC and/or GMV patterns based on their

Pearson’s correlation. We next assessed whether the similarity of the parent-child dyad (child and their own

parent) was larger than a stranger-child dyad (child and another child’s parent). We then calculated the win-

ning rate of the similarity between parent-child dyad, denoted as ‘‘accuracy’’. We repeated this procedure

across all children and averaged accuracies.

Intuitively, the obtained statistics can be considered as a ‘‘pairwise classification accuracy’’ calculated by

the following procedure: 1. Select a child randomly from all children in the sample. 2. Select two parents,

including the child’s own parent and a randomly selected parent in the sample. 3. If the Pearson’s correla-

tion coefficient between parent-child dyad is higher than that of stranger-child dyad, the result is recorded

as correct parent-child identification. 4. In contrast, if the Pearson’s correlation coefficient between parent-

child dyad is smaller than that of stranger-child dyad, it is recorded as a failed identification. 5. Repeat this

procedure and calculate accuracy across repetition.

By increasing the number of repetitions, this approach converges to the accuracy obtained by the main

analysis. The chance rate of this approach is always 50%.

We performed 1,000-times bootstrapping to estimate the 95% confidence interval of accuracy, by

randomly subsampling 90% of the subjects in each iteration. To determine whether accuracy was achieved

at above-chance levels, we used 1,000-times permutation testing to generate a null distribution by

randomly shuffling the parent-child mapping.

To determine the role of specific edges/regions in the performance, we quantified highly unique and highly

consistent edges/regions using a differential power (DP) measure and a group consistency measure (4)

described in detail elsewhere (Finn et al., 2015). DP provides an estimate, for each given edge/region,

of the likelihood that within parent-child dyad similarity (between a parent and their parent) is higher

than stranger-child similarity (between a parent and another parent’s child). Specifically, we computed

the edge/region product vector (4i) from two sets of FC/GMV vectors [XChild
i �;

½XParent
i �,4iðf Þ=XChild

i ðf Þ � XParent
i ðf Þ; f = 1; 2;.;M where i indexes dyad, f indexes edge/region, and M is

the total number of edges/regions in the entire FC/GMV vector. We can calculate 4ibetween vectors of

a child and another child’s parent

4ijðf Þ = XChild
i ðf Þ � XParent

j ðf Þ; isj

To compute the DP for all the dyads in a given dataset, we calculate an empirical probability

Piðf Þ =
P
���4jiðf Þ>4iiðf Þ

��+
��4ijðf Þ>4iiðf Þ

���

2ðNÞ ;N= numberofdyads

A low Piðf Þ indicates a more discriminative edge/region. We can finally calculate DP of an edge/region

across all children in a sample:

DPðeÞ =
X

i

f � lnðPiðeÞÞg

If the parent-child dyad product was higher than the stranger-child product across all children in a sample,

this corresponds to a high DP value, and the edge/region is helpful.
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The group consistency measure, 4 is simply the mean of 4i for a given edge/region across all children.

Edges/regions with high 4 values are therefore high across all pairs of children and parents, and thus

are not helpful.

For the analyses in Figure 2, we used whole-brain FC or GMV. For the analyses of data shown in Figure 3, we

split the whole brain into 10 sub-networks and conducted the same analyses using FC or GMV within each

sub-network. The definition of sub-networks was obtained from Horien et al. (Horien et al., 2019).
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