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ABSTRACT PCR amplification of 16S rRNA genes is a critical yet underappreciated
step in the generation of sequence data to describe the taxonomic composition of
microbial communities. Numerous factors in the design of PCR can impact the se-
quencing error rate, the abundance of chimeric sequences, and the degree to which
the fragments in the product represent their abundance in the original sample (i.e.,
bias). We compared the performance of high fidelity polymerases and various num-
bers of rounds of amplification when amplifying a mock community and human
stool samples. Although it was impossible to derive specific recommendations, we
did observe general trends. Namely, using a polymerase with the highest possible fi-
delity and minimizing the number of rounds of PCR reduced the sequencing error
rate, fraction of chimeric sequences, and bias. Evidence of bias at the sequence level
was subtle and could not be ascribed to the fragments’ fraction of bases that were
guanines or cytosines. When analyzing mock community data, the amount that the
community deviated from the expected composition increased with the number of
rounds of PCR. This bias was inconsistent for human stool samples. Overall, the re-
sults underscore the difficulty of comparing sequence data that are generated by
different PCR protocols. However, the results indicate that the variation in human
stool samples is generally larger than that introduced by the choice of polymerase
or number of rounds of PCR.

IMPORTANCE A steep decline in sequencing costs drove an explosion in studies
characterizing microbial communities from diverse environments. Although a signifi-
cant amount of effort has gone into understanding the error profiles of DNA se-
quencers, little has been done to understand the downstream effects of the PCR
amplification protocol. We quantified the effects of the choice of polymerase and
number of PCR cycles on the quality of downstream data. We found that these
choices can have a profound impact on the way that a microbial community is rep-
resented in the sequence data. The effects are relatively small compared to the vari-
ation in human stool samples; however, care should be taken to use polymerases
with the highest possible fidelity and to minimize the number of rounds of PCR.
These results also underscore that it is not possible to directly compare sequence
data generated under different PCR conditions.
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For surveying the structure of microbial communities, 16S rRNA gene sequencing is
a powerful and widely used tool (1–3). This approach has exploded in popularity

with advances in sequencing throughput such that it is now possible to characterize
numerous samples with thousands of sequences per sample. Many factors can impact
how a natural community is represented by the sequencing data, including the method
of acquiring samples (4–8), storage conditions (4–6, 9–12), extraction methods (13),
amplification conditions (8, 14, 15), sequencing method (15–17), and analytical pipeline
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(15, 18–20). The increased sampling depth that is now available relative to previous
Sanger sequencing-based methods is expected to compound the impacts of an inves-
tigator’s choices and the interpretation of their results.

One step in the generation of 16S rRNA gene sequence data that has been long
known to have a significant impact on the description of microbial communities is the
choice of conditions for PCR amplification (8, 14, 15). Factors such as the choice of
primers have an obvious impact on which populations will be amplified (18, 21).
However, a variety of PCR artifacts can also impact the perception of a community,
including the formation of chimeras (14, 22–24), misincorporation of nucleotides (23,
25, 26), preferential amplification of some populations over others, leading to bias (24,
27–33), and accumulation of random amplification events leading to PCR drift (24, 27,
32, 34). Many bioinformatic tools have been developed to identify chimeras; however,
there are significant sensitivity and specificity tradeoffs (14, 35). Laboratory-based
solutions to minimize chimera formation have also been proposed such as minimizing
the amount of template DNA in the PCR, minimizing the number of rounds of PCR,
minimizing the amount of shearing in the template DNA, using DNA polymerases that
have proofreading ability, and emulsion PCR (14, 23, 36). Others have attempted to
account for PCR bias using modeling approaches (29, 37). In cases where such mod-
eling approaches have been successful, it has been with relatively small communities
with consistent composition (29). To minimize PCR drift, some investigators pool
technical replicate PCRs hoping to average out the drift (34). Other factors that have
been shown to impact the formation of PCR artifacts are outside the control of an
investigator, including the fraction of DNA bases that are guanines or cytosines, the
variation in the length of the targeted region across the community, the sequence of
the DNA that flanks the template, and the genetic diversity of the community (28,
30–33). Early investigations of the factors that lead to the formation of PCR artifacts
focused on analyzing binary mixtures of genomic DNA and 16S rRNA gene fragments
to explore PCR biases and chimera formation. Although these studies were instrumen-
tal in forcing researchers to be cautious about the interpretation of their results, we
have a poor understanding of how these factors affect the formation of PCR artifacts in
more complex communities.

The influence that the choice of DNA polymerase has on the formation of PCR
artifacts has not been well studied. There has been recent interest in how the choice of
the hypervariable region and data analysis pipeline impact the sequencing error rate
(15, 18–20); however, these studies use the same DNA polymerase in the PCR step and
implicitly assume that the rate of nucleotide misincorporation from PCR are signifi-
cantly smaller than those from the sequencing phase. There has been more limited
interest in the impact that DNA polymerase choice has on the formation of chimeras
(23, 38). A recent study found differences in the number of operational taxonomic units
(OTUs) and chimeras between normal and high fidelity DNA polymerases (38). The
authors of the study reduced the difference between two polymerases by optimizing
the annealing and extension steps within the PCR protocol (38). Yet this optimization
was specific for the community they were analyzing (i.e., captive and semicaptive
red-shanked doucs) and assumed that if the two polymerases generate the same
community structure that the community structure was correct. In fact, the community
structures generated by both methods were not free of artifacts but likely had the same
artifacts. A challenge in these types of experiments is having a priori knowledge of the
true community representation. A mock community with known composition allows
researchers to quantify the sequencing error rate, fraction of chimeras, and bias (19);
however, mock communities have a limited phylogenetic diversity relative to natural
communities. Natural communities, in contrast, have an unknown community compo-
sition, making absolute measurements impossible. They can be used to validate results
from mock communities and to understand the relative impacts of artifacts on the
ability to differentiate biological and methodological sources of variation. Given the
large number of DNA polymerases available to researchers, it is unlikely that a specific
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recommendation is possible. Rather, the development of general best practices and
understanding the impact of PCR artifacts on an analysis are needed.

This study investigated the impact of choice of high fidelity DNA polymerase and
the number of rounds of amplification on the formation of PCR artifacts using a mock
community and human stool samples. It was hypothesized that additional rounds of
PCR would exacerbate the number of artifacts. We tested (i) the effect of the polymer-
ase on the error rate of the bases represented in the final sequences, (ii) the fraction of
sequences that appeared to be chimeras and the ability to detect those chimeras, (iii)
the bias of preferentially amplifying one fragment over another in a mixed pool of
templates, and (iv) intersample variation in community structure of samples amplified
with the same polymerase across the amplification process. To characterize these
factors, we sequenced a mock community of 8 organisms with known sequences and
community structure and human fecal samples with unknown sequences and commu-
nity structures. We sequenced the V4 region of the 16S rRNA genes from a mock
community by generating paired 250-nucleotide (nt) reads on the Illumina MiSeq
platform. This region and sequencing approach were used because they have been
shown to result in a relatively low sequencing error rate and are a widely used protocol
(18). To better understand the impact of DNA polymerase choice on PCR artifacts, we
selected five high fidelity DNA polymerases and amplified the communities using 20,
25, 30, and 35 rounds of amplification. Collectively, our results suggest that the number
of rounds and to a lesser extent the choice of DNA polymerase used in PCR impact the
sequence data. The effects are consistent and are smaller than the biological differ-
ences between individuals.

RESULTS
Sequencing errors vary by the number of cycles and the DNA polymerase used

in PCR. The presence of sequence errors can confound the ability to accurately classify
16S rRNA gene sequences and group sequences into operational taxonomic units
(OTUs). More importantly, sequencing errors themselves can alter the representation of
the community. Therefore, it is important to minimize the number of sequencing errors.
Using a widely used approach that generates the lowest reported error rate, we
quantified the error rate by sequencing the V4 region of the 16S rRNA genes from an
8-member mock community. We also removed any contigs that were at least three
bases more similar to a chimera of two reference sequences than to a single reference
sequence (18, 19, 39). Regardless of the polymerase, the error rate increased with the
number of rounds of amplification (Fig. 1). Using 30 rounds of PCR is a common
approach across diverse types of samples. Among the data generated using 30 rounds
of PCR, the Accuprime polymerase had the highest error rate (i.e., 0.124%), followed by

FIG 1 The error rate of assembled mock community sequence reads increases with the number of rounds
of PCR; however, much of this error was eliminated by denoising and followed the relative error rates
provided by the manufacturers. Each line represents the means for four replicates.
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the Platinum (i.e., 0.094%), Phusion (i.e., 0.064%), KAPA (i.e., 0.062%), and Q5 (i.e.,
0.060%) polymerases (Fig. 1). When we applied a preclustering denoising step, which
merged the counts of reads within 2 nt of a more abundant sequence (19), the error
rates dropped considerably such that the Platinum polymerase had the highest error
rate (i.e., 0.014%), followed by the Accuprime (i.e., 0.012%), Q5 (i.e., 0.0053%), Phusion
(i.e., 0.0049%), and KAPA (i.e., 0.0049%) polymerases (Fig. 1). Although specific recom-
mendations are difficult to make because the phylogenetic diversity of the initial DNA
template is likely to have an impact on the results, it is clear that using as few PCR cycles
as necessary and a polymerase with the lowest possible error rate is a good guide to
minimizing the impact of polymerase on the error rate.

The fraction of sequences identified as being chimeric varies by the number of
cycles and the DNA polymerase used in PCR. Chimeric PCR products can significantly
confound downstream analyses. Although numerous bioinformatic tools exist to iden-
tify and remove chimeric sequences with high specificity, their sensitivity is relatively
low and can be reduced by the presence of sequencing errors (14, 35). Because the true
sequences of the organisms in the mock community were known, we generated all
possible chimeras between pairs of V4 16S rRNA gene fragments and used these
possible chimeric sequences to screen the sequences generated under the different
PCR conditions to detect chimeras. The number of chimeras increased with rounds of
amplification (Fig. 2A). Interestingly, the fraction of chimeric sequences from the mock
community varied by the type of polymerase used. After 30 rounds of PCR, the Platinum
polymerase had the highest chimera rate (i.e., 18.2%), followed by the Q5 (i.e., 8.1%),
Phusion (i.e., 7.5%), KAPA (i.e., 2.3%), and Accuprime (i.e., 0.9%) polymerases. To explore
the characteristics of the chimeras further, we analyzed those chimeras formed after 35
cycles. Because of the uneven number of chimeras generated across the five poly-
merases, we subsampled the frequency of the chimeras to have the same number of
chimeras per polymerase, the Q5, Phusion, Accuprime, and Platinum polymerases; the
chimeric sequence yield with the KAPA polymerase was significantly lower than the

FIG 2 The fraction of all denoised sequences that were identified as being chimeric increases with the number of rounds of
PCR used and varied between polymerases. (A) Sequencing of a mock community allowed us to identify the total fraction of
sequences that were chimeric as well as the specificity and sensitivity of UCHIME to detect those chimeras. Each line represents
the means for four replicates. (B) Sequencing of four human stool samples after using one of five different polymerases again
demonstrated increased rate of chimera formation with increasing number of rounds of PCR and variation across polymerases.
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other polymerases and was omitted from our initial comparison. As has been shown
previously (14), chimera formation was not random. Among the chimeras that were
generated in mock community samples, 4.4% of the chimeras were found across all four
polymerases. These chimeras represented between 67.6 and 74.5% of the chimeras
generated with each polymerase; they represented 40.4% of the chimeric sequences
generated using the KAPA polymerase. These results indicate that the mechanisms
leading to the formation of chimeras are largely independent of the properties of the
polymerase but are more likely due to the properties of the sequences.

Because our chimera screening procedure could be applied only to mock commu-
nities, we used the UCHIME algorithm to model the chimera screening approach that
is used in most sequence curation pipelines. By comparing the output of UCHIME to our
approach of screening for chimeras using all possible chimeras generated from the
mock community sequences, we were able to calculate UCHIME’s sensitivity and
specificity (Fig. 2A). The specificity for all polymerases was above 95.4% and showed a
weak association with the number of cycles used (Fig. 2A). There was considerable
interpolymerase and interround amplification variation in the sensitivity of UCHIME to
detect the chimeras from the mock community. This suggested that the residual error
rate after preclustering the sequence data did not compromise the sensitivity of
UCHIME to detect chimeras. The sensitivity of UCHIME varied between 50 and 87.0%
when at least 25 cycles were used. The generalizability of these results is limited
because we used a single mock community with limited genetic diversity. Although we
did not know the true chimera rate for our four human stool samples, we were able to
calculate the fraction of sequences that UCHIME identified as being chimeric (Fig. 2B).
These results followed those from the mock communities: additional rounds of ampli-
fication significantly increased the rate of chimeras, and there was variation between
the polymerases that we used. Although it was not possible to identify the features of
a polymerase that resulted in higher rates of chimeras, it is clear that using the smallest
number of PCR cycles possible will minimize the impact of chimeras.

At the sequence level, PCR amplification bias is subtle. Since researchers began
using PCR to amplify 16S rRNA gene fragments, there has been concern that amplifying
fragments from a mixed template pool could lead to a biased representation in the
pool of products and would confound downstream analyses (24, 27–33). The mock
community was generated by mixing equal amounts of genomic DNA from 8 bacteria
resulting in uneven representation of the rrn operons across the bacteria, as each
bacterium had a different genome size and varied in the number of operons in its
genome. The vendor of the mock community subjects each lot of genomic DNA to
shotgun sequencing to more accurately quantify the actual abundance of each organ-
ism in the community. It should be noted that this approach to quantifying abundance
is also not without its own biases (40), but it does provide an alternative approach to
characterizing the structure of the mock community. We compared the vendor-
reported relative abundance of the 16S rRNA genes from each bacterium in the mock
community to the data we generated across rounds of amplification and polymerase
(Fig. 3). Interestingly, for some bacteria, their representation became less biased with
additional rounds of PCR (e.g., Lactobacillus fermentum), while others became more
biased (e.g., Enterococcus faecalis), and others had little change (e.g., Bacillus subtilis). In
contrast to prior reports (28), the percentage of bases in the V4 region that were
guanines or cytosines was not predictive of the amount of bias. Across the strains, there
was no variation in the length of their V4 regions, and they each had the same
sequence in the region that the primers annealed. One of the bacteria represented in
the mock community, Salmonella enterica, had 6 identical copies of the V4 region and
1 copy that differed from those by one nucleotide. The dominant copy had a thymidine,
and the rare copy had a guanine. We used the sequence data to calculate the ratio of
the dominant variants to rare variants from S. enterica expecting a ratio near 6 (see
Fig. S1 in the supplemental material). The Accuprime, Phusion, Platinum, and Q5
polymerases converged to a ratio of 5.4; however, the ratio for the KAPA polymerase
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was above 6 for all rounds of PCR (6.1 to 7.4), and the ratio for Q5 was below 6 for all
rounds of PCR (5.3 to 5.5). Given the subtle nature of the variation in the relative
abundances of each 16S rRNA gene fragment, it was not possible to create generaliz-
able rules that would explain the bias.

At the community level, the effects of PCR amplification bias grow with
additional rounds of PCR. Because the variation in bias between polymerases and
across rounds of PCR could be artificially inflated due to sequencing errors and
chimeras, we analyzed the alpha and beta diversity of the mock community data at
different phases of the sequence curation pipeline (Fig. 4). First, we removed the
chimeras from the mock community data as described above and mapped the indi-
vidual reads to the OTUs that the 16S rRNA gene fragments would cluster into if there
were no sequencing errors. This gave us a community distribution that reflected the
distribution following PCR without any artifacts (Fig. 4A, “No errors or chimeras”).
Although the richness did not change, the Shannon diversity increased with the
number of rounds of PCR for all polymerases except the KAPA polymerase, for which
the diversity decreased. These data suggest that PCR had the effect of making the
community distribution more even than it was originally, except for the data generated
using the KAPA polymerase, where the evenness decreased. Next, we used the ob-
served sequence errors but removed chimeras by comparing sequences to all possible
chimeras between mock community sequences and clustered the reads to OTUs

FIG 3 The relative abundances of mock community sequence reads mapped to reference sequences differed subtly from the
expected relative abundances as determined by shotgun metagenomic sequencing. Bias did not increase with number of
rounds of PCR or vary by polymerase or the guanine and cytosine content of the fragment. The expected relative abundance
of each organism is indicated by the horizontal gray line. The percentage of bases that were guanines or cytosines within the
V4 region of the 16S rRNA genes in each organism is indicated by the number in the lower left corner of each panel. Each line
represents the means for four replicates.
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(Fig. 4A, “Residual errors, complete chimera removal”). The richness and diversity
metrics trended higher with higher error rates and number of rounds of PCR. Finally, we
used the observed sequence data and the UCHIME algorithm to identify chimeras
(Fig. 4A, “Residual errors, chimera removal with VSEARCH”). Again, the richness and
diversity metrics trended higher with higher error rates and numbers of rounds of PCR.
These comparisons demonstrated that although the bias at the sequence level was
subtle, PCR introduces bias at the community level that is exacerbated by errors and
chimeras when sequences are clustered into OTUs. When we measured the Bray-Curtis
distance between the communities observed after 25 rounds of amplification and those
at 30 and 35, distances between 25 and 35 rounds were higher than between 25 and
30 rounds for each of the polymerases by an average of 0.022 units (Fig. 4B). The
Platinum polymerase varied the most across rounds of amplification (25 versus 30
rounds, 0.13; 25 versus 35 rounds, 0.15). For any number of cycles, the median
Bray-Curtis distance between polymerases ranged between 0.074 and 0.11. Although

FIG 4 Despite evidence of subtle PCR bias at the genome level, there was significant evidence of bias using community-wide
metrics that grew with the number of rounds of PCR when using a mock community. (A) With the exception of the KAPA
polymerase data, the richness and Shannon diversity values increased with number of rounds of PCR and the inclusion of
residual sequencing errors and chimeras. The horizontal black line indicates the expected richness and diversity. (B) Relative
to the mock community sampled after 25 rounds of PCR, the distance to the communities sampled after 30 and 35 rounds
of PCR increased for all polymerases. The data in panels A and B show the means for four replicates. (C) The variation between
samples demonstrated a significant change in the community driven by the number of rounds of PCR and the polymerase
used. The ellipses represent bivariate normally distributed 95% confidence intervals.
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the distances between samples were small, the ordination of these distances showed
a clear change in community structure with increasing rounds of PCR (Fig. 4C). This
observation was supported by our statistical analysis, which revealed that the effect of
the number of rounds of PCR (R2 � 0.21; P � 0.001) was comparable to the choice of
polymerase (R2 � 0.20; P � 0.001). These results demonstrate that subtle differences in
relative abundances can have an impact on overall community structure. This variation
underscores the importance of comparing only sequence data that have been gener-
ated using the same PCR conditions.

The choice of polymerase or the number of rounds of amplification has little
impact on the relative interpretation of community-wide metrics of diversity. We
expected that the biases that we observed at the population and community levels
using mock community data would be small relative to the expected differences
between biological samples. To study this further, we calculated alpha and beta
diversity metrics using the human stool samples for each of the polymerases and
rounds of amplification. We calculated the number of observed OTUs and Shannon
diversity for each condition and stool sample (Fig. 5A). Although there were clear
differences between PCR conditions, the relative ordering of the stool samples did not
vary meaningfully across conditions. When we characterized the variation between
rounds of amplification using human stool samples, the distance between the 25 and
30 rounds and 25 and 35 rounds varied considerably between samples and poly-
merases (Fig. 5B). In general, the interround variation was lowest for the data generated
using the KAPA and Accuprime polymerases. The data generated using the Platinum
polymerase were consistent across rounds, but overall, it was more biased than the
other polymerases. Considering that the average distance across the four samples
varied between 0.39 and 0.56, regardless of the polymerases and number of rounds of
amplification, any bias due to amplification is unlikely to obscure community-wide
differences between samples. In support of this was our principal coordinates analysis
of the Bray-Curtis distances, which revealed distinct clusters by stool sample (Fig. 5C).
Within each cluster, there were no obvious patterns related to the polymerase or
number of rounds of PCR. Our statistical analysis revealed statistically significant
differences in the community structures with the stool sample explaining the most
variation (R2 � 0.79; P � 0.001), followed by the number of rounds of PCR (R2 � 0.044;
P � 0.001) and the choice of polymerase (R2 � 0.033; P � 0.001). Together, these results
indicate that for a coarse analysis of communities, the choice of number of rounds of
amplification or polymerase is not important, but that they must be consistent across
samples. It is difficult to develop a specific recommendation based on the level of bias
across rounds of PCR or polymerases; however, the general suggestion is to use as few
rounds of amplification as possible.

There is little evidence of a relationship between polymerase or number of
rounds of amplification on PCR drift. There have been concerns that the same
template DNA subjected to the same PCR conditions could result in different repre-
sentations of communities because of random drift over the course of PCR. To test this,
we determined the average Bray-Curtis distance between replicate reactions using the
same polymerase and number of rounds of amplification (Fig. 6). Using the mock
community data, there were no obvious trends. The average Bray-Curtis distance within
a set of conditions varied by 0.062 to 0.11 units. Although we did not generate
technical replicates of each of the stool samples, the intersample variation for each set
of conditions was consistent and varied between 0.50 and 0.56 units. These data
suggest that amplicon sequencing is robust to random variation in amplification and
that any differences are likely to be smaller than what is considered biologically
relevant.

DISCUSSION

Our results suggest that the number of rounds of PCR and to a lesser degree the
choice of DNA polymerase impact the analysis of 16S rRNA gene sequence data from
bacterial communities. Although it was not possible to make direct connections
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between PCR conditions and specific sources of bias, we were able to identify general
recommendations that reduce the amount of error, chimera formation, and bias.
Researchers should strive to minimize the number of rounds of PCR and should use a
high fidelity polymerase. Although specific PCR conditions impact the precise interpre-
tation of the data, the effects were consistent and were smaller than the biological
differences between the samples we tested. On the basis of these observations,
amplicons must be generated by consistent protocols to yield meaningful comparisons.
When comparing across studies, values like richness, diversity, and relative abundances
must be made in relative and not absolute terms. Furthermore, care must be taken to
not directly compare or pool samples from different studies. Instead, it is important to
statistically model the study-based variation, as has been done in recent meta-analyses
that compared relative effect sizes or pooled data using a mixed effects statistical
model (41, 42).

The observed sequencing error rates and alpha diversity metrics followed the

FIG 5 Sequencing of human stool samples indicated clear increase in bias with number of rounds of PCR; however, the bias
appeared to be consistent within each sample. (A) With the exception of data collected using the KAPA polymerase, the
richness and Shannon diversity values increased with number of rounds of PCR. (B) Relative to the stool communities sampled
after 25 rounds of PCR, the distances to the stool communities sampled after 30 and 35 rounds of PCR were inconsistent, and
there was little difference in variation for data collected using the KAPA polymerase. (C) The variation between stool samples
was larger than the amount of variation introduced by changing the number of rounds of PCR or polymerase. The ellipses
represent bivariate normally distributed 95% confidence intervals. Results for some samples at 20 cycles are not presented
because it was not possible to obtain a sufficient number of reads for those polymerases.
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manufacturers’ measurements of their polymerases’ fidelity (Fig. 1). Accuprime and
Platinum have fidelity that are approximately 10 times higher than that of Taq, whereas
the fidelity of Phusion, Q5, and KAPA are more than 100 times higher. Among these
polymerases, the KAPA polymerase consistently resulted in a lower error rate, lower
chimera rate, and lower bias across rounds of PCR for the mock community samples.
Furthermore, among the human samples, the KAPA polymerase consistently had the
lowest detected chimera rate and intercycle bias. These benefits were most accentu-
ated at 35 cycles. However, in our experience and despite efforts to optimize the yield
with the KAPA polymerase, the reactions typically had a high proportion of primer-
dimer products and low yield of correctly sized products. Although the error rate with
the Accuprime polymerase was not as low as that with KAPA, we consider it to be an
acceptable alternative. Considering that polymerase development is an active area of
commercial development with potential new polymerases becoming available, it is
important for researchers to understand how changing the polymerase impacts down-
stream analyses for their type of samples.

Over the past 20 years, a large literature has attempted to document various PCR
biases and underscored the fact that data based on amplification of DNA from a mixed
community are not a true representation of the actual community. In addition to
obvious biases imposed by primer selection, other factors inherent in PCR can influence
the representation of communities. Factors that can lead to preferential amplification
of one fragment over another have included guanine and cytosine composition, length,
flanking DNA composition, amount of DNA shearing, and number of rounds of PCR (24,
27–33). These factors may become exacerbated if PCR is performed on multiple
samples that vary in their concentration (43). In addition, environmental and reagent
contaminants can also have a significant impact on the analysis of low biomass samples
(44). Less well understood is the effect of phylogenetic diversity on bias and chimera
formation. Communities with low phylogenetic diversity may be more prone to chi-
mera formation, since chimeras are more likely to form among closely related se-
quences (14, 35). The interaction of these various influences on PCR artifacts are
complex and difficult to tease apart. Minimizing the level of DNA shearing, controlling
for template concentration across samples, and using the fewest number of rounds of
PCR with a polymerase that has the highest possible fidelity are strategies that can be
employed to minimize the formation of chimeras. Although care should always be
taken when choosing a polymerase for 16S rRNA gene sequencing, our observations
show that variation among polymerases is smaller than the actual biological variation
in fecal communities between individuals.

Even with these strategies, it is impossible to remove all PCR artifacts. Beyond the
imperfections of the best polymerases, sometimes difficult to lyse organisms require

FIG 6 The average distance between replicates of sequencing the same mock community or between the human
stool samples (i.e., drift) did not vary by number of rounds of PCR or by polymerase.
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stringent lysis steps and low biomass samples require additional rounds of PCR. A host
of bioinformatics tools are available for removing residual sequencing errors (18,
45–47). Other tools are available for removing chimeras (14, 35) where there is a
tradeoff between the sensitivity of detecting chimeras and the specificity of correctly
calling a sequence a chimera. In recent years, parameters for these algorithms have
been changed to increase their sensitivity with little evaluation of the effects on the
specificity of the algorithms (45, 47). Others recommend removing any read that has an
abundance below a specified threshold as a tool to remove PCR and sequencing
artifacts (e.g., removing all sequences that appear only once) (20, 45–47). This method
must be approached with caution, as such approaches are likely to introduce a different
bias of the community representation and ignore the fact, as we showed, that artifacts
may be quite abundant and reproducible. Ultimately, researchers must test their
hypotheses with multiple methods to validate the claims they reach with any one
method (48). All methods have biases and limitations, and we must use complementary
methods to obtain robust results.

MATERIALS AND METHODS
Mock community. The ZymoBIOMICS Microbial Community DNA Standard (Zymo, CA, USA) was

used for mock communities, and the bacterial component was made up of Pseudomonas aeruginosa,
Escherichia coli, Salmonella enterica, Lactobacillus fermentum, Enterococcus faecalis, Staphylococcus aureus,
Listeria monocytogenes, and Bacillus subtilis at equal genomic DNA abundance (https://web
.archive.org/web/20171217151108/http://www.zymoresearch.com:80/microbiomics/microbial-standards/
zymobiomics-microbial-community-standards). The actual relative abundance for each bacterium was
obtained from Zymo’s certificate of analysis for the lot (lot ZRC187325), which they determined using
shotgun metagenomic sequencing (https://github.com/SchlossLab/Sze_PCRSeqEffects_mSphere_2019/raw/
master/data/references/ZRC187325.pdf).

Human samples. Fecal samples were obtained from 4 individuals who were part of an earlier study
(49). These samples were collected using a protocol approved by the University of Michigan Institutional
Review Board. For this study, the samples were deidentified. DNA was extracted from the fecal samples
using the MOBIO PowerMag Microbiome RNA/DNA extraction kit (now Qiagen, MD, USA).

PCR protocol. Five high fidelity DNA polymerases were tested, including AccuPrime (ThermoFisher,
MA, USA), KAPA HIFI (Roche, IN, USA), Phusion (New England Biolabs, MA, USA), Platinum (ThermoFisher,
MA, USA), and Q5 (New England Biolabs, MA, USA). Manufacturer recommendations were followed
except for the annealing and extension times, which were selected based on previously published
protocols (18, 38). Primers targeting the V4 region of the 16S rRNA gene were used with modifications
to generate MiSeq amplicon libraries (18) (https://github.com/SchlossLab/MiSeq_WetLab_SOP/). The 16S
rRNA gene targeting regions of the primers annealed to E. coli positions 515 to 533 (GTGCCAGCMGCC
GCGGTAA) and 787 to 806 (GGACTACHVGGGTWTCTAAT). The number of rounds of PCR used for each
sample and polymerase started at 15 and increased by 5 rounds up to 35 cycles. Insufficient PCR product
was generated using 15 rounds and has not been included in our analysis.

Library generation and sequencing. Each PCR condition (i.e., combination of polymerase and
number of rounds of PCR) was replicated four times for the mock community and one time for each fecal
sample. Libraries were generated as previously described (18) (https://github.com/SchlossLab/MiSeq
_WetLab_SOP/). The libraries were sequenced using the Illumina MiSeq sequencing platform to generate
paired 250-nt reads.

Sequence processing. The mothur software program (v 1.41) was used for all sequence processing
steps (50). The protocol has been previously published (18) (https://www.mothur.org/wiki/MiSeq_SOP).
Briefly, paired reads were assembled using mothur’s make.contigs command to correct errors introduced
by sequencing (18). Any assembled contigs that contained an ambiguous base call, mapped to the
incorrect region of the 16S rRNA gene, or appeared to be a contaminant were removed from subsequent
analyses. Sequences were further denoised using mothur’s pre.cluster command to merge the counts of
sequences that were within 2 nt of a more abundant sequence. The VSEARCH implementation of UCHIME
was used to screen for chimeras (35, 51). At various stages in the sequence processing pipeline for the
mock community data, the mothur seq.error command was used to quantify the sequencing error rate
as well as the true chimera rate. This command uses the true sequences from the mock community to
generate all possible chimeras and removes any contigs that were at least three bases more similar to
a chimera than to a reference sequence. The command then counts the number of substitutions,
insertions, and deletions in the contig relative to the reference sequence and reports the error rate
without the inclusion of chimeric sequences (19). UCHIME’s sensitivity was calculated as the percentage
of true chimeras that were detected as chimeras when using UCHIME. Its specificity was calculated as the
percentage of nonchimeric sequences that were detected as being nonchimeric by UCHIME. The
reference sequences and rrn operon copy number for each bacterium were obtained from the Zymo-
BIOMICS Microbial Community DNA Standard protocol (https://web.archive.org/web/20181221151905/
https://www.zymoresearch.com/media/amasty/amfile/attach/_D6305_D6306_ZymoBIOMICS_Microbial
_Community_DNA_Standard_v1.1.3.pdf). Sequences were assigned to operational taxonomic units
(OTUs) at a threshold of 3% dissimilarity using the OptiClust algorithm (52). To adjust for unequal
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sequencing when measuring alpha and beta diversity, all samples were rarefied for downstream
analysis. The Good’s coverage for the samples was routinely greater than 95%.

Statistical analysis. All analysis was done with the R (v 3.5.1) software package (53). Data transfor-
mation and graphing were completed using the tidyverse package (v 1.2.1). The distance matrix data
were analyzed using the adonis function within the vegan package (v 2.5.4).

Data availability. The data analysis code for this study can be found at https://github.com/
SchlossLab/Sze_PCRSeqEffects_mSphere_2019. The raw sequences are available at the SRA (accession
no. SRP132931).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSphere.00163-19.
FIG S1, EPS file, 0.1 MB.
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