
Changes in Landscape Greenness and Climatic Factors over 25 
Years (1989–2013) in the USA

Maliha S. Nash1,*, James Wickham2, Jay Christensen1, and Timothy Wade3

1U.S. Environmental Protection Agency, Office of Research and Development, National Exposure 
Research Laboratory, Las Vegas, NV 89119, USA; Christensen.Jay@epa.gov

2U.S. Environmental Protection Agency, Office of Research and Development, National Exposure 
Research Laboratory, Research Triangle Park, NC 27711, USA; Wickham.james@epa.gov

3Retired; timw11@yahoo.com

Abstract

Monitoring and quantifying changes in vegetation cover over large areas using remote sensing can 

be achieved using the Normalized Difference Vegetation Index (NDVI), an indicator of greenness. 

However, distinguishing gradual shifts in NDVI (e.g., climate related-changes) versus direct and 

rapid changes (e.g., fire, land development) is challenging as changes can be confounded by time-

dependent patterns, and variation associated with climatic factors. In the present study, we 

leveraged a method that we previously developed for a pilot study to address these confounding 

factors by evaluating NDVI change using autoregression techniques that compare results from 

univariate (NDVI vs. time) and multivariate analyses (NDVI vs. time and climatic factors) for 

7,660,636 1 km × 1 km pixels comprising the 48 contiguous states of the USA, over a 25-year 
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period (1989–2013). NDVI changed significantly for 48% of the nation over the 25-year period in 

the univariate analyses where most significant trends (85%) indicated an increase in greenness 

over time. By including climatic factors in the multivariate analyses of NDVI over time, the 

detection of significant NDVI trends increased to 53% (an increase of 5%). Comparisons of 

univariate and multivariate analyses for each pixel showed that less than 4% of the pixels had a 

significant NDVI trend attributable to gradual climatic changes while the remainder of pixels with 

a significant NDVI trend indicated that changes were due to direct factors. While most NDVI 

changes were attributable to direct factors like wildfires, drought or flooding of agriculture, and 

tree mortality associated with insect infestation, these conditions may be indirectly influenced by 

changes in climatic factors.
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long-term monitoring; NDVI change; USA; direct factors; climatic factors; autoregression model

1. Introduction

Remote sensing data have been used by numerous researchers to monitor and quantify 

changes in vegetation cover over large areas for long-term time frames [1–8]. Vegetation 

change maps can inform environmental decision-makers of widespread general trends and 

can identify specific areas where land conditions are degrading or improving. The 

Normalized Difference Vegetation Index (NDVI), derived from the Advanced Very High 

Resolution Radiometer (AVHRR) satellite data, is a widely used indicator to evaluate 

vegetative condition over time [9–11], and is often referred to as an index of greenness. 

Changes in vegetation can be detected and quantified using NDVI in combination with 

historical data and expert knowledge, and this approach has been applied in a number of 

areas with diverse land cover, including: Oregon, USA [5,12], Europe [13], Morocco [14], 

the African Sahel [15,16], and globally [17]. NDVI has been used to identify gradual 

changes over decades [18,19], as well as more direct and rapid changes such as those caused 

by fire, agriculture, land clearing, and habitat restoration [20–22].

Distinguishing gradual shifts in NDVI (e.g., climate-related changes) versus direct and rapid 

changes (e.g., fire, land development) is challenging as changes can be confounded by 

variation associated with climatic factors and by time-dependent patterns. Climatic factors 

such as precipitation and temperature often strongly influence vegetation physiology and 

phenology and hence greenness [23,24]. NDVI has been shown to be related to climatic 

factors, particularly precipitation (e.g., [25–29]). Climatic factors may show a general 

pattern of change over time [30], and thus may account for a trend in NDVI in some areas. 

Moreover, to detect change in vegetation cover, it is also important to account for time-

dependent patterns in NDVI, which are typically pronounced [5,29,31]. There have been 

several recent studies of the relationship between AVHRR NDVI trends and some climatic 

factors ([32–50]; Table 1). A few patterns emerge from examination of these studies: (1) past 

studies rely on global datasets with coarse spatial resolution (8 km resolution) [51]; (2) the 

majority of studies focus on the relationship between AVHRR NDVI and precipitation, with 

some studies relating AVHRR NDVI and temperature, and very few including other climatic 
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factors; and (3) autoregressive techniques that control for serial correlation in the time series 

data are generally not included. In a few studies, the Durbin–Watson (DW) statistic was 

evaluated to test for the presence of serial correlation (e.g., [52]) and the non-parametric 

Mann–Kendall test was used to test for the existence of a monotonic trend, but controlling 

for the effects of serial correlation in detection of trends between AVHRR NDVI and time or 

climatic factors has not been a common practice.

This study addresses the gaps in past NDVI analyses, investigating long-term changes in 

AVHRR NDVI across the continental Unites States (CONUS) at a 1-km resolution, 

including multiple climatic factors in the analysis and accounting for serial autocorrelation. 

Unlike previous studies, the use of this statistical approach improves our ability to identify 

significant changes of NDVI (greenness) with time. Even more importantly, we identify 

trends in NDVI combining novel univariate (NDVI = time) and multivariate (NDVI = time + 

climatic factors) autoregressive models. These combined models allow us to differentiate 

between NDVI changes related to specific climatic factors and non-climatic factors across 

the CONUS. Comparison of the behaviors (i.e., significance) of individual pixels in the two 

models can be used to identify whether trends can be attributable to direct (land cover 

change, pest infestation, fire) or indirect factors. This work builds on a previous study in 

which these methods (per-pixel comparison of univariate and multivariate autoregressive 

model results) were tested using AVHRR NDVI time series data for the state of New 

Mexico, USA [8]. The objective of the current research is to extend the analyses in [8] to the 

entire continental U.S. Extension to the entire continental United States is worthwhile 

because changes related to both direct and indirect factors are not spatially stationary [53–

55], and it is therefore unlikely that the spatial pattern of NDVI trends can be extrapolated 

from a small region [8] to the entirety of the continental United States. Additionally, our 

approach was developed with the intent of being more broadly applicable, regardless of land 

cover type.

2. Materials and Methods

2.1. Data

We used the 1 km × 1 km AVHRR NDVI produced by the U.S. Geological Survey Earth 

Resource Observation and Science (EROS) Center as our 25-year NDVI time series (1989–

2013). The AVHRR 1 km × 1 km local area coverage (LAC) dataset is fully described by 

[56]. Similar to the commonly used global datasets (see Table 2 in [51]), pre-processing of 

the 1 km × 1 km AVHRR NDVI data include radiometric calibration and atmospheric 

correction to reduce or remove effects related to ozone, water vapor absorption and Rayleigh 

scattering. These data are based on the native, at-nadir 1 km × 1 km spatial resolution of the 

AVHRR sensor, rather than the on-board resampled 4 km × 4 km spatial resolution data on 

which the global AVHRR NDVI datasets are based, which likely reduces cloud 

contamination relative to the 4 km × 4 km data [56]. The 1 km × 1 km AVHRR NDVI data 

are biweekly maximum values composites [57] obtained from the daily overpasses, and the 

Clouds from AVHRR-Phase 1 (CLAVR-1) algorithm [58] is used to further reduce the 

effects of cloud contamination. Image-to-image registration is used to preserve the 

geometric integrity of the time series. Our dataset included 300 (12 months × 25 years; from 
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January 1989–December 2013) NDVI observations per pixel. Description of the AVHRR 

LAC data is provided in the Supplementary Materials.

The main climatic parameters for the continental U.S. analyses are derived from the 4 km × 

4 km Parameter-elevation Regressions on Independent Slopes Model [59] which incorporate 

field-based climate data with regressed interpolations. The 4 km × 4 km PRISM pixels were 

gridded into 1 km × 1 km using inverse distance weighting to match the spatial resolution of 

the AVHRR data (see [60]). The climatic factors provided by the PRISM data included 

monthly averages of minimum and maximum temperature, precipitation, and dew point 

temperature (more description of the Climatic factors data is provided in the Supplementary 

Materials). Previous research has shown that greenness is strongly associated with 

temperature and precipitation [10,11]. In addition, we derived an additional climatic 

parameter from the PRISM data, which was a one-month lag in precipitation data.

2.2. Statistical Methods

We conducted two types of analyses for each of the 7,660,636 1 km × 1 km pixels in the 

continental U.S. First, we conducted univariate autoregression of NDVI versus time to 

quantify the temporal trend (slope) for NDVI, and for each of the climatic parameters (e.g., 

precipitation versus time). The trend direction for each significant pixel was then mapped to 

identify geographic patterns of significance and trend direction. Second, we conducted a 

multivariate autoregression of NDVI versus time and climatic parameters to reveal the 

combined effects and relative contributions of climatic factors to significant NDVI trends. 

Time series regression (autoregression) was used in both analyses because errors in temporal 

data may be serially dependent, and if dependency exists, the standard error of the estimate 

(e.g., slope) would be inflated. Our autoregressive error model included a backstep function 

with up to 30 lags to account for serial dependence in errors. Autocorrelation function 

(ACF) and partial autocorrelation function for residuals were checked for no significant 

correlation.

2.1.1. Univariate Autoregression—This analysis addressed trends in NDVI and the 

individual climatic factors over the 25-year period. For each 1 km × 1 km pixel, the 

autoregression model (Proc Autoreg; SAS/ETS, 1999) with stepwise selection for the 

significant autoregressive error was fitted to the observed values to define the direction and 

p-value for the slope as:

Y t = θ0 + θ1Time + μt (1)

μt = ∑
t = 1

k

ρiμt − i + εt (2)
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εt IN 0, σ2 (3)

where ϒ is one of the individual time series variables: monthly NDVI, monthly precipitation, 

maximum, minimum temperature, and monthly dew point temperature (n = 300 months). 

The fitted autoregression model for the observed variable (ϒt) is the structural part, which is 

the same as that of an ordinary least square regression model (OLS; θ0 + θ1Time), and the 

autoregressive error (ut). Coefficients θ0, and θ1 are the intercept and the slope with time, 

respectively. The time series error term, ut, may be autocorrelated. The autoregressive error 

model (Equation (2)) will account for such autocorrelation where the term ∑
i

k
ρiμt − i is the 

summation of the significant autoregressive parameter (ρ) times lagged error(s), and k is the 

order of significant lags in the model. The error term, εt, from the autoregressive error model 

is normally and independently distributed with mean of zero and variance σ2 (Equation (3)). 

The slope (θ1) quantifies the rate and direction of change for each variable over 25 years. 

We used a significance level of p < 0.05 to test whether the slope differed from zero.

2.2.2. Multivariate Autoregression—The multivariate model for each pixel was:

NDVIt = β0 + β1Pt + β2Pt − 1 + β3Tmint + β4Tmaxt + β5DPt + β6Timet + μt (4)

μt = ∑
t = 1

k

ρiμt − i + εt (5)

εt IN 0, σ2 (6)

where Pt is precipitation at month t, Pt−1 is precipitation for previous month (i.e., one-month 

lag precipitation), Tmin is minimum temperature, Tmax is maximum temperature, DP is 

dew point temperature, and ε is the error term. The right side of Equation (4) includes the 

autoregression error (μt) and the structure term (the remainder of the model), and by 

summing both these terms yields the predicted value. The estimates (βi’s) for each factor 

quantify the magnitude and direction of the relationship between NDVI and each factor over 

the 25-year period. The coefficient of Time (β6) is the temporal trend of NDVI after 

accounting for climatic factors. We chose blocks of pixels that had either significant increase 

or decrease (p < 0.05) in greenness to aid interpretation of our results by drawing on 

available literature, consultation with local experts, and Google Earth™.

Nash et al. Page 5

Remote Sens (Basel). Author manuscript; available in PMC 2018 November 28.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



We considered that potential collinearity among climatic factors may confound the results. 

However, our primary interest is the significance of the coefficient for the time variable (i.e., 

NDVI trend). If time is not correlated with any of the climatic factors, the time coefficient 

variance will not be affected by the collinearity among the climatic factors [61]. From a 

random sample of 2500 pixels, the correlation between time and each climatic factor was 

low (lrl ≤ 0.32, r2 ≤ 0.10). Consequently, we kept all predictors in Equation (4). In all 

analyses, we used the 8 bites NDVI values., Only for the temporal NDVI figures, 

transformed NDVI values (NDVI/255) were displayed.

2.2.3. Comparison of Univariate and Multivariate Models—Because climatic 

factors were included in the multivariate analysis but omitted in the univariate analysis, a 

comparison of the results of the univariate and multivariate analyses for each pixel was used 

to determine if a significant NDVI trend was associated with either indirect factors (climatic 

factors, and hence, climate change) or direct factors (e.g., fire, agriculture, land cover 

change). We evaluated four possible outcomes for the significance of NDVI trend in the two 

analyses. A significant NDVI trend is indicated by a significant time coefficient, i.e., θ1 in 

the univariate analysis (Equation (1)) and β6 in the multivariate analysis (Equation (4)). The 

four possible outcomes were:

A. NDVI trend was significant in both the univariate and multivariate analyses. 

NDVI significance apparently resulted from direct factors such as wildfire or 

agriculture, because the trend was significant regardless of whether climatic 

factors were included in the analysis.

B. NDVI trend was significant in the univariate analysis, but not in the multivariate 

analysis. This is consistent with a change in the climatic factors as the cause of 

the significant NDVI trend.

C. NDVI trend was not significant in the univariate analysis, but was significant in 

the multivariate analysis. A significant trend in the multivariate analysis would 

suggest that the change is presumably due to direct factors. However, the trend in 

the univariate analysis might not be significant because the variation in NDVI 

associated indirectly with variation in climatic factors was masked by the 

influence of direct factors on NDVI.

D. NDVI trend was not significant in either the univariate or the multivariate 

analyses. This would suggest that there is no evidence for a temporal trend in 

NDVI.

3. Results of Univariate and Multivariate Models

3.1. Univariate Autoregression Results

NDVI changed significantly for approximately one-half of the nation over the 25-year period 

(1989–2013) in the univariate analyses (Figure 1A; Table 2). The direction of the trend was 

predominantly positive, 85% of the total significant change was an increase in NDVI (Table 

2). This dominant increase in NDVI is occurring across diverse land cover, possible 

disturbance, practices, and others that we do not have enough information to verify the cause 
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on that scale. Areas with significant greenness increase were concentrated on the pacific 

coast and southeastern states of the U.S. Areas of significant decrease in greenness were 

concentrated in the northern and central Rocky Mountains, and west of the Great Lakes.

The proportion of the continental United States with significant changes in monthly climatic 

parameters ranged from ~12% (precipitation) to ~40% (minimum temperature) (Table 2). 

Geographic patterns of change differed among the three temperature variables (Figure 2A–

C). Significant increases in maximum temperature were concentrated in Texas, Louisiana, 

and New England (Figure 2A), whereas significant increases in minimum temperature were 

widespread throughout the continental United States (Figure 2B). Significant decreases in 

both maximum and minimum temperature were scattered as small clusters throughout the 

continental United States. Significant increases and decreases in dew point temperature 

exhibited a geographic dichotomy with increases in the eastern two-thirds of the continental 

United States and decreases concentrated in the west (Figure 2C). Significant increases in 

precipitation were concentrated in the northeast and significant decreases were concentrated 

along the Red River separating Oklahoma and Texas (Figure 2D).

There was not a strong; visual correspondence between locations with significant changes in 

NDVI and significant changes in the climatic factors. For example, the widespread 

significant increases in NDVI in the southeastern quadrant of the continental U.S. (Missouri 

to Florida) (Figure 1A) is accompanied by a much patchier pattern of significant change 

(increase or decrease) among the climatic factors (Figure 2).

3.2. Association between the NDVI and Climatic Factors in Multivariate Analyses

NDVI was significantly related to one or more climatic factors in the multivariate 

autoregression for much of the contiguous 48 states (Figure 3). NDVI was predominantly 

positively associated with four of the five climatic factors. Particularly frequent positive and 

significant associations were for dew point temperature (53% of pixels) and 1-month lag 

precipitation (47% of pixels), with <4% of pixels showing significant negative associations 

for these two factors. Monthly maximum temperature and precipitation also showed 

predominantly positive associations with the NDVI, with 39% and 19% of pixels showing 

significant positive associations, respectively. In contrast to these positive associations, 

NDVI was negatively associated with minimum temperature (36% of the pixels). The spatial 

distribution of these significant positive and negative associations between NDVI and the 

climatic factors are clustered in different patterns across the nation. Precipitation influenced 

the NDVI proportionally in the central part of the nation arid it doubled with the past month 

(i.e., one-month Lag precipitation, Pt−1 in Equation (4)) of precipitation.

3.3. NDVI Trend in Multivariate Analyses

When climatic factors were included in the multivariate autoregression model, the extent of 

area with significant NDVI change over the 25-year period increased. NDVI changed 

significantly for 53% of the pixels in the multivariate autoregression (Table 3; Figure 1B), 

whereas it changed significantly in only 48% of the pixels in the univariate autoregression 

(Table 2; Figure 1A). The predominant direction of change in the multivariate autoregression 

was an increase in NDVI (Figure 1B).
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Comparison of NDVI trends between the univariate and multivariate analyses suggests that 

direct factors were the predominant cause of NDVI change rather than the selected climatic 

factors (Table 3). The spatial distribution of the four outcomes linking changes in NDVI to 

that of climatic or direct factor is presented in Figure 4. Outcome A was the most frequent 

(45%), i.e., there was a significant trend in the NDVI in both analyses and, in this case, all 

pixels had a trend direction that was the same for both the univariate and multivariate 

analyses. NDVI significance apparently resulted from factors other than climate, such as 

direct factors like wildfire, because the trend was significant regardless of whether climatic 

factors were included in the analysis. A total of 53% (Outcomes A (45%) and C (8%)) of all 

the pixels were significant for NDVI trend in the multivariate analysis, reflects the influence 

of the direct factors on NDVI rather than the selected climatic factors. Nearly 4% of the 

pixels showed climatic factors as the cause of the significant NDVI trend (Outcome B (the 

trend was significant in the univariate analysis, but not in the multivariate analysis due to 

inclusion of climatic factors in the multivariate model)), and these pixels tended to cover 

diverse forested and agricultural land cover (Figure 4). For example, areas with significant 

increases in NDVI due to climate (Figure 4) extended from eastern Nebraska through Ohio, 

which is cropland agriculture, and from Pennsylvania through Maine, which is 

predominantly forested (Figure S1).

4. Discussion

Including climatic factors in the multivariate analysis of the NDVI over time increased the 

percentage of pixels with a significant NDVI trend from 48% (univariate analyses) to 53% 

(multivariate analyses). Comparisons univariate and multivariate analyses, significant NDVI 

trends associated with direct factors could be distinguished from other factors. The 

comparison revealed that NDVI changes were predominantly related to factors other than the 

climate. Pixels with a significant NDVI trend in either the univariate or multivariate analyses 

were predominantly related to direct factors as the likely cause of the NDVI trend. Since 

only 4% at these pixels were in outcome B. Considering the significant changes, the average 

slope value for Outcome B was less than that of Outcome A but a little higher than that of 

Outcome C, and the interquartile range (IQR), and the maximum of the trend values for both 

Outcomes A and C were higher than that of outcome 13 (Table S1).

That only a small fraction of the 48 contiguous states had a significant NDVI trend 

associated with climate change was unanticipated given that several climatic factors have 

changed significantly during the 25-year study period, and that NDVI was significantly 

related to these factors in the multivariate autoregression model for much of the area. This 

small fraction may be due to our distinction between specific climatic and direct factors in 

the model comparisons. Localized factors such as pest infestations, disease, drought, 

flooding or shift in agriculture can be in part attributable to climate change [62], but were 

not included as explicit factors in the multivariate model.

The spatial distribution of the four outcomes linking changes in NDVI to that of climatic or 

direct factors is presented in Figure 4. The large spatial extent of NDVI change throughout 

much of the United States that is not related to the climate suggests there are many 

mechanisms through which vegetation greenness has changed during the 25 years included 
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in the study. More research and study is needed to better understand the broad patterns in 

NDVI change found in this study. The specific cause for NDVI change in a given area can 

only be ascertained with detailed knowledge of land cover change in the area, and 

unfortunately, such data are not readily available for most areas and we will not attempt to 

explain all the significant changes in NDVI. However, evaluating several areas with some 

local information provides some understanding for the patterns of the NDVI change specific 

to those areas.

NDVI in the multivariate autoregression analyses was significantly related to each of the 

climatic factors analyzed for large fractions of the 48 contiguous states. Thus, given that 

much of the variation in the NDVI could be accounted for by variation in climatic factors, it 

is not surprising that a significant NDVI trend was detected at a greater frequency for the 

multivariate analyses that included climatic factors in comparison to the univariate analyses 

that excluded them. NDVI was most frequently and positively associated with monthly dew 

point temperature (53%) followed by previous monthly precipitation (47%). The higher 

response to previous monthly precipitation than that of the present month was also observed 

in New Mexico [8] and it is consistent with previous research [63] that found that green-up 

of grasses occurs several weeks after precipitation. Some of the relationships between NDVI 

and precipitation and temperature reported here have been observed in other studies [10,64] 

related to vegetation cover type and spatial locations. The positive association with 

maximum temperature seems reasonable because warmer temperatures can increase 

vegetation growth [63,65]. The positive association between the NDVI and maximum 

temperature presumably reflects the predominant effect of maximum temperature on the 

NDVI throughout the year, as warmer than average temperatures during summer months 

would be expected to reduce the NDVI [66]. A strong negative relationship between NDVI 

and increasing minimum temperature was also observed by [10,67] and found that this 

relationship is dependent on spatial location, precipitation and growing season. Vegetation 

response to climatic factors is constrained by geographical location, soil characteristics (e.g., 

moisture, nutrients, and ground water level), and other factors [68–70]. For example, forest 

response to warming temperatures is a function of geographic factors (latitude, altitude, 

aspect, and soil) at a given location [71–73].

5. Evaluation of Selected Areas for Cause of NDVI Change

Below, we explore examples of significant change in the NDVI where sufficient information 

was available to infer the likely cause for the change. The specific examples include 

significant NDVI changes related to changes due to flooding, fire, and pest infestation. 

These examples identify areas of dramatic change and rely on information gained from 

previous in-depth studies and available aerial imagery over the 25-year period that indicates 

change. One example is given in which significant NDVI change was detected but was 

attributable to climatic factors instead of a visible direct factor. These examples are not 

meant to be exhaustive, nor will they explain all NDVI shifts but illustrate the potential use 

if this autoregressive technique to identify NDVI change and potential links to climatic and 

direct factors.
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5.1. Flooding of Agricultural Areas

In the agricultural portions of this region, agricultural practices have generally shifted during 

the observed time period away from diverse crops and grassland towards corn/soybean 

rotations [74]. Such shifts in agricultural practices might influence local NDVI responses but 

the varied responses and drivers make it difficult to identify specific direct causes, especially 

as these changes are difficult to document or verify with current publicly available imagery. 

In localized areas where drainage is less prevalent or where drainage is concentrated, more 

dramatic multi-year changes in flooding on the agriculture landscape can be documented via 

imagery and might result in decreases in NDVI. NDVI values decrease in areas where 

agricultural production is stressed or removed due to drought [53,75] or flooding [76–78]. 

We looked specifically at the agricultural region near Devils Lake, ND where the model 

indicated direct changes were responsible for changing NDVI (Outcome A) (Figure 5A). 

The climate of North Dakota and the greater Prairie Pothole Region has strong multi-decadal 

wet–dry cycles [79]. During the period of 1989–2013, the area shifted from a moderate 

drought (1988–1992) to a wet period (1993–present) [79,80]. During the drought, lake water 

levels and lake extent were reduced [81,82] and neighboring lands, and even lake beds, were 

used for pasture and row crop agriculture. Torrential summer rains in 1993 ushered in the 

present wet period causing lake levels and lake extents to increase and expand into 

surrounding fields and grasslands over the; next two decades. By 2011, depressional areas 

under cultivation and multiple lakes (including Devils Lake, Pelican Lake and Irvine Lake) 

were all inundated and converged into one large waterbody, increasing the extent of surface 

water over 400% from 1990 to 2011 [82]. We examined historical aerial imagery around 

Pelican and Irvine Lake from 1990 to the present for a few representative pixels with 

significant declines in NDVI (Figure 5). Google Earth™ images show cultivated areas 

present in 1990 (Figure 5B). In 1997, the pixel at Pelican Lake is inundated while the 

northern pixels are beginning to wet (Figure 5C). Flooding continues through 2003 (Figure 

5D), where all chosen pixels were submerged and show open water by 2013 (Figure 5E). 

Highest NDVI values were observed around 1993 followed by a gradual decrease of NDVI 

values (Figure 5F). Vegetation under water stress and turbid open waters typically return a 

lower NDVI value than those of healthy crops [83].

5.2. Fires and Post Fire Greenness Gains

Timing of a fire event and variability in post fire recovery influence the direction of the 

trend. The effects of fire can produce either a positive or negative NDVI trend depending on 

when the fire occurred within the time period examined (Figure 6) [8]. In this study, we 

present an example in Yellowstone National Park where a fire occurred in June 1988. The 

severity of the fire varied spatially [84,85]. Sixty-one percent of the fire affected the forest 

canopy (crown fire), while 34% occurred as a ground fire [84]. A large fraction of the pixels 

within and outside Yellowstone National Park experienced a significant decline in the NDVI 

during the study period except for cluster of significant increase at the western border of the 

park (Figure 6). All pixels with a significant change (increase and decrease) in NDVI belong 

to Outcome C (univariate = significant; multivariate = significant), suggesting that change 

was attributable to direct factors (Figure 4). The pattern of significantly decreasing NDVI is 

consistent with vegetation loss as a result of the 1988 fire just prior the onset of the NDVI 

period reported here (1989–2013) followed by a reduced NDVI for many years due to 
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limited vegetation recovery, as represented by the pixel located at A in Figure 6 (see Figure 

S2). Pixel A is located in higher elevation where the influence of soil moisture and 

temperature on vegetation is more than on B. Additionally, trees with canopy fires become 

more susceptible to insect infestation from infested nearby trees [86]. In contrast, vegetation 

recovery has occurred since the 1988 fire in the block of pixels with significantly increasing 

NDVI at the western edge of the park boundary, as represented by the pixel located at B in 

Figure 6 (see Figure S3).

5.3. Tree Mortality Due to Insect Infestation

Many forested areas in the USA have suffered substantial tree mortality and defoliation from 

pest infestations and diseases [18,88–90] which have been particularly severe in Colorado 

[91]. The occurrence of tree mortality is largely coincident with decreases in NDVI (Figure 

7). All pixels with significantly changing NDVI in Figure 7 are attributable to direct: factors 

though direct factors like insect infestations can be influenced by changes in climate factors. 

Precipitation for consecutive years was below normal in the infested area [91]. The 

association of insects with hosts is dependent on climatic factors and varies with the 

geographical location [91,92] and insect infestation increased due to reduced resistance in 

drought-stressed trees. In this area, precipitation with no significant change while minimum 

temperature increased significantly during the study period in the mortality area. An increase 

of the minimum temperature reduces the likelihood of extreme low temperatures which 

would set back pest infestations [86]. Dew point temperature also decreased significantly in 

parts of the infested areas.

5.4. Change Attributable to Climate

Unlike the examples shown for change attributable to direct factors, for pixels in outcome B, 

we would not expect to find land cover changes that would be visibly discernible in maps 

and aerial photography. We provide one example (Figure 8) from a location in central West 

Virginia for which there was aerial imagery from 1996 to 2013. For this location, there was 

no apparent change in land cover or vegetation vigor between 1996 and 2013 even though 

there was a significantly increasing trend in NDVI. The comparison between time 

coefficients from univariate and multivariate models are presented in Figures S4 and S4. The 

trend value and its significant p value for the climatic factors and NDVI are given is Table 

S2. From the multivariate autoregression model, NDVI associated positively and 

significantly with dew point temperature (coefficient = +2.6152, p < 0.0001) and responded 

negatively and significantly to minimum temperature (coefficient = −1.8981, p = 0.0025). 

Responses of NDVI were not significant with maximum temperature, precipitation and one-

month lag precipitation.

5.5. Comparison with Previous Studies

It is possible to compare our results with two studies [36,49] listed in Table 1. Comparison 

with the others is not possible because of locational mismatches or lack of quantification of 

long-term NDVI trends over broad geographic extents. Using the 4-km GVIx AVHRR data 

for the period 1982–2007, [49] found significantly decreasing NDVI trends in shrublands 

and significantly increasing trends in grasslands across the Great Plains and western United 

States. Using the 8-km GIMMS AVHRR data from 1981 through 2007, [36] found extensive 

Nash et al. Page 11

Remote Sens (Basel). Author manuscript; available in PMC 2018 November 28.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



areas of significantly decreasing NDVI along the USA-Mexico border (central Texas to 

California) that extended north along the California coast to San Francisco, and areas of 

significantly increasing NDVI in a “sea” of non-significant NDVI changes throughout the 

semi-arid western United States. These results [36,49] are not fully consistent with the 

results reported here. For our univariate and multivariate results, we found a distinct 

concentration of significantly decreasing NDVI in the forested (i.e., higher elevations) 

portion of the Rocky Mountains and isolated areas of both significantly increasing and 

decreasing NDVI in the more arid lower elevations of the western United States in which the 

areas of significantly decreasing NDVI tended to be smaller and more isolated than the areas 

of significantly increasing NDV I (Figure 3). Although speculative, the differences between 

our results and those of [36,49] are probably attributable to differences in the resolution of 

the AVHRR NDVI data sets used, differences in the time period examined, and differences 

in the statistical methods used to quantify NDVI trends. Our results appear to be finer 

grained (i.e., patchy) and we suspect that this is attributable to the higher resolution of the 

AVHRR NDVI data we used. Although relationships between earth surface features and 

sensors are complex and dynamic, a general rule-of-thumb is that sensor systems do not tend 

to resolve features smaller than twice the size of the sensor spatial resolution [93,94]. Our 

AVHRR NDVI data has 16 pixels for every single pixel in the GVIx data and 64 pixels for 

every single pixel in the GIMMS data, suggesting that the AVHRR data we used were better 

able to discern spatial patterns at a finer scale than the coarser resolution AVHRR data used 

previous studies. The time period of our study was substantially different than the other two, 

starting and ending about 6–8 years later [36,49]. Temporal differences in the time period 

examined would likely result in differences in the spatial pattern of NDVI trend significance 

since the factors attributable to NDVI changes are also temporally dynamic. We would 

expect to find greater similarity between our results and those of [36,49] if they were 

calibrated to the same period (e.g., 1989–2007) despite differences in data sources and 

statistical methods. The time period chosen for our study was dictated by the availability of 

the high resolution AVHRR data we used [9]. It is also intuitive that the choice of statistical 

methods would influence the outcome. Neither [49] nor [36] used classical autoregressive 

techniques to account for temporal correlation. Linear regression of NDVI versus 

precipitation was used to detect trends in [49] and in [36], Mann–Kendall and linear 

correlation were used to detect inter-annual trends, and harmonic regression, a technique 

related to autoregression, was used to uncover intra-annual periodicities. We used long-

established statistical methods that account for serial correlation in temporal data so that 

parameter standard errors and hence significance were evaluated correctly

6. Conclusions

Remote monitoring of changes in greenness over time can be useful for identifying long 

term trends resulting from climate change or anthropogenic activities on the ground. The 

effect of different climatic factors (temperature and precipitation) and anthropogenic factors 

on NDVI is not homogenous across space and time. The present study shows that NDVI is 

often significantly related to precipitation and temperature, and that the relationships are not 

necessarily intuitive. Consequently, climatic factors may confound the ability to detect areas 

of NDVI change not associated with climatic factors. By including climatic factors in a 
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multivariate analysis of the NDVI over time, the detection of areas with significant NDVI 

change can be increased. Moreover, a comparison of analyses with and without climatic 

factors can be used to distinguish between areas of NDVI change associated to climatic 

factors and areas associated with direct factors. Comments about changes of slope and once 

the areas affected by direct factors have been identified, they can be evaluated for causes of 

change, such as fire or fire recovery, change in flooding extent, change in agriculture extent 

or practices, and insect infestations. A closer look and monitoring changes in trends 

direction and magnitude in a specific affected area can be segmented according to 

disturbance time as we presented in this paper. This could support tailored management 

strategies based on the major causes of direct and/or climate change in the area.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Pixels (1 km × 1 km) with significant temporal trend for the monthly NDVI from 1989 

through 2013 in contiguous 48 U.S. states, determined by: (A) significant changes in 

greenness (univariate autoregression; Equation (1)); and (B) multivariate autoregression 

(Equation (4)). Sample size is 300 for each pixel. Green indicates significant (p < 0.05) 

increase in greenness (i.e., NDVI); red indicates significant decrease in greenness.
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Figure 2. 
Pixels (1 km × 1 km) with significant temporal trend for monthly climatic factors from 1989 

to 2013 in contiguous 48 U.S. states determined using univariate autoregression (Equation 

(1); n = 300 for each pixel). Green indicates significant increase; red indicates significant 

decrease. Factors are: (A) monthly maximum temperature; (B) monthly minimum 

temperature; (C) monthly dew point temperature; and (D) monthly precipitation.
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Figure 3. 
Summary of relationship direction and significance level between the NDVI and climatic 

factors and time in multivariate autoregression analyses (Equation (4)) for ~7,660,636 1 km 

× 1 km pixels in USA. Factors are average monthly minimum temperature (Tmin), 

maximum temperature (Tmax), dew point temperature; (DP), precipitation (P), previous 

month’s precipitation (Lag[Prcp]), and time. Data are summarized tor pixels with 

significantly (p < 0.05) positive association between the NDVI and the subject factor (+sig), 

not significant positive association (+nsig), not significant negative (−nsig) association, and 

significant negative (−sig) association.
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Figure 4. 
Comparison of the NDVI trend significance between the univariate and multivariate 

autoregression for each pixel. Outcomes A (significant trend in univariate model/significant 

trend in multivariate model) and C (not significant trend in univariate model/significant trend 

in multivariate model) denote changes due to direct factors, Outcome B (significant trend in 

univariate model/not significant trend in multivariate model) denotes changes due to climatic 

factors, and Outcome D (not significant trend in univariate model/mot significant trend in 

multivariate model) denotes no change in greenness.
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Figure 5. 
Progression of agriculture and flooding between 1990 and 2013 in Devils Lake area, North 

Dakota: (A) inset map shows the location of the area within the Devils Lake and the selected 

three numbered 1 km × 1 km pixels; (B–E) Google Earth™ images showing the: pre 

flooding (A); and post flooding (C–E); and (F) numbered pixels 1–3 in (A–E) are used in 

F1–F3, showing the behavior of NDVI with years. NDVI trend with time (β6 < −0.077) is 

significant (p < 0.0001) (lines are described in Figure S2). The coordinates for pixels 1–3 are 

48°17′05″N, 99°07′16″W; 48°16′01″N, 99°06′23″W; and 48°10′50″N, 99°10′53″W; 

respectively.
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Figure 6. 
The 1988 Yellowstone fire polygon (black hatching) within Yellowstone National Park (dark 

black lines). Green and red pixels indicate significant increase and decrease in the NDVI 

over time (multivariate autoregression), respectively Labeled symbols A and B are the 

locations of the pixels used in Figures S2 and S3, respectively, showing NDVI behavior over 

time. (Fire polygon from [87]).
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Figure 7. 
Progress of tree mortality from insect infestation and diseases in Colorado from 1994 to 

2013 (black hatching). Green pixels indicate a significant increase in the NDVI over time 

(multivariate autoregression), and red pixels indicate significant decrease in NDVI over time 

(multivariate autoregression).
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Figure 8. 
Forested land located in central West Virginia that had a significantly increasing NDVI trend 

without discernable land cover change (Outcome B). The latitude and longitude of the pixel 

center is 38°22′11″N and 81°51′56″W. (A–C) Google Earth™ images indicating no 

change in land cover between 1996 and 2013; and (D) NDVI with time (NDVI trend 

increased significantly in univariate (p < 0.0001) but it was not significant after including the 

climatic factor (p = 0.0663) (lines are described in Figure S2).
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Table 1.

Recent studies of AVHRR NDVI—climate data relationships.

Reference Year Location Length AVHRR
Data

AVHRR
Resolution

Climate Data
Resolution

Independent
Variables Analysis

[32] 2009 Africa 1982–1996 GIMMS 8-km 0.5° P OLS

[33] 2007 Tibetan Plateau, China 1982–1989 GIMMS 8-km Station P LC

[34] 2011 China 1982–2006 GIMMS 8-km Station T,P OLS

[35] 2009 Brazil 1981–2006 GIMMS 8-km 0.5° P OLS

[36] 2012 Drylands, Global 1981–2007 GIMMS-g 8-km 2.5° T,P,E MK, OLS

[37] 2005 Sahel, Africa 1982–2003 GIMMS 8-km 2.5° P OLS

[38] 2002 Global 1982–1990 PAL 8-km 0.5° T,P OLS

[39] 2004 USA 1989–1993 EROS 1-km Station T,P,PET, E DW, spR

[40] 2010 USA and Canada 1981–2001 PAL 8-km 0.25°, 32-km T,P,LST,E,S OLS

[41] 2012 Canada 1985–2007 PAL 1-km Station T, P MK, OLS

[42] 2012 China 1982–2003 GIMMS 8-km Station T, P OLS

[43] 2012 Mexico 1982–2007 GIMMS 8-km Station P MK, HR, visual

[44] 2005 Sahel, Africa 1982–1999 PAL 8-km 2.5° P visual

[45] 2010 Asia 1982–2006 GIMMS 8-km 2.5° T, P EOF, SVD

[46] 2012 China 1982–2012 GIMMS 8-km 0.1° T, P OLS

[47] 2009 Brazil 1982–2006 GIMMS 8-km 0.1° P visual

[48] 2004 USA 1990–2000 EROS 1-km Station SOI, P visual

[49] 2010 USA 1982–2007 GVIx 4-km 32 km2 DSL, P OLS

[50] 2008 S. America 1981–2000 GIMMS 8-km - Water level visual

Notes: blank entry = not reported; GIMMS = Global Inventory Modeling and Mapping Studies; PAL = Pathfinder AVHRR Land; station = climate 
data from local weather stations; T = temperature; P = precipitation, PET = potential evapotranspiration; E = solar radiation; S = soil moisture; LST 
= land surface temperature; SOI = southern oscillation index; DSL = dry season length; OLS = ordinary least squares; LC = linear correlation; MK 
= Mann–Kendall; DW = Durbin–Watson; spR = spatial regression; visual = qualitative; EOF = empirical orthogonal function; SVD = singular 
value decomposition.
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Table 2.

Percent of total pixels with significant increasing or decreasing trend in the univariate analyses for the NDVI 

and for each of the climatic factors. Significance level is p < 0.05.

Variable Increase Decrease Total

NDVI 41.11 7.28 48.38

Minimum Temperature 35.41 4.09 39.50

Maximum Temperature 11.94 4.45 16.39

Dew Point 20.08 12.52 32.60

Precipitation 2.88 8.74 11.62
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Table 3.

Frequency of outcomes in comparison of NDVI trends; between univariate and multivariate analyses for 

~7,660,636 1 km × 1 km pixels in conterminous states. Outcomes A and C denote changes due to direct 

factors, Outcome B denotes changes due to climatic factors, and Outcome D denotes no change in greenness.

NDVI Trends in Univariate Analysis
NDVI Trends in Multivariate Analyses

Significant Not S ignificant Total

Significant Outcome A
44.83

Outcome B
3.56 48.38

Not Significant Outcome C
8.16

Outcome D
43.45 51.62

Total 52 at 47.01 100.00
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